Artificial Neural Networks‐Based LEACH Algorithm for Fast and Efficient Cluster Head Selection in Wireless Sensor Networks
ABSTRACT Recent improvements in wireless sensor networks (WSN) technology enabled more research on energy efficiency. Limited battery and difficulties in renewing the batteries in a critical application require the efficient use of energy for WSN. Besides energy efficiency, providing fast‐response s...
Saved in:
| Published in | International journal of communication systems Vol. 38; no. 3 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
01.02.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1074-5351 1099-1131 |
| DOI | 10.1002/dac.6127 |
Cover
| Abstract | ABSTRACT
Recent improvements in wireless sensor networks (WSN) technology enabled more research on energy efficiency. Limited battery and difficulties in renewing the batteries in a critical application require the efficient use of energy for WSN. Besides energy efficiency, providing fast‐response systems facilitate real‐time applications. Combining machine learning (ML) with the clustering methods that significantly contribute to the energy efficiency of WSN seems to improve the efficiency. In this paper, the low‐energy adaptive clustering hierarchy (LEACH) clustering method for WSN is implemented through a supervised learning method, artificial neural networks (ANN), for cluster head (CH) selection. The power of ANN as a superior classifier is thought to contribute much to the field. The details of designing an ANN are given in detail for the first time in WSN field. In addition, a dataset is prepared via MATLAB to be used for classification or other analysis related to a clustered network. The proposed model provides more than 85% accuracy for CH selection, and it is 83.28% faster than LEACH to determine the CHs. This method produces more efficient solutions in large networks in terms of the time for CH selection. The feasibility of ANN is also shown for the issues related to WSN such as CH selection.
ANN determines cluster heads (CH) 85% similar to LEACH with less computational load. ANN determines CHs more than 83% faster than LEACH, which supports real time applications. ANN can be adopted easily to various WSN problems and provides efficient solutions. CH selection can be investigated as a classification problem and can be solved by machine learning algorithms. |
|---|---|
| AbstractList | Recent improvements in wireless sensor networks (WSN) technology enabled more research on energy efficiency. Limited battery and difficulties in renewing the batteries in a critical application require the efficient use of energy for WSN. Besides energy efficiency, providing fast‐response systems facilitate real‐time applications. Combining machine learning (ML) with the clustering methods that significantly contribute to the energy efficiency of WSN seems to improve the efficiency. In this paper, the low‐energy adaptive clustering hierarchy (LEACH) clustering method for WSN is implemented through a supervised learning method, artificial neural networks (ANN), for cluster head (CH) selection. The power of ANN as a superior classifier is thought to contribute much to the field. The details of designing an ANN are given in detail for the first time in WSN field. In addition, a dataset is prepared via MATLAB to be used for classification or other analysis related to a clustered network. The proposed model provides more than 85% accuracy for CH selection, and it is 83.28% faster than LEACH to determine the CHs. This method produces more efficient solutions in large networks in terms of the time for CH selection. The feasibility of ANN is also shown for the issues related to WSN such as CH selection. ABSTRACT Recent improvements in wireless sensor networks (WSN) technology enabled more research on energy efficiency. Limited battery and difficulties in renewing the batteries in a critical application require the efficient use of energy for WSN. Besides energy efficiency, providing fast‐response systems facilitate real‐time applications. Combining machine learning (ML) with the clustering methods that significantly contribute to the energy efficiency of WSN seems to improve the efficiency. In this paper, the low‐energy adaptive clustering hierarchy (LEACH) clustering method for WSN is implemented through a supervised learning method, artificial neural networks (ANN), for cluster head (CH) selection. The power of ANN as a superior classifier is thought to contribute much to the field. The details of designing an ANN are given in detail for the first time in WSN field. In addition, a dataset is prepared via MATLAB to be used for classification or other analysis related to a clustered network. The proposed model provides more than 85% accuracy for CH selection, and it is 83.28% faster than LEACH to determine the CHs. This method produces more efficient solutions in large networks in terms of the time for CH selection. The feasibility of ANN is also shown for the issues related to WSN such as CH selection. ANN determines cluster heads (CH) 85% similar to LEACH with less computational load. ANN determines CHs more than 83% faster than LEACH, which supports real time applications. ANN can be adopted easily to various WSN problems and provides efficient solutions. CH selection can be investigated as a classification problem and can be solved by machine learning algorithms. |
| Author | Senturk, Arafat |
| Author_xml | – sequence: 1 givenname: Arafat orcidid: 0000-0002-9005-3565 surname: Senturk fullname: Senturk, Arafat email: arafatsenturk@duzce.edu.tr organization: Duzce University |
| BookMark | eNp1kE1OwzAQhS1UJNqCxBG8ZJNiO42TLEPoD1IFC0AsI8cegyF1kJ2qqsSCI3BGToLTwpLVmzf63oz0RmhgWwsInVMyoYSwSyXkhFOWHqEhJXkeURrTQT-n0yiJE3qCRt6_EkIyxpMh-ihcZ7SRRjT4FjZuL922dW_--_PrSnhQeDUryiUumufWme5ljXXr8Fz4Dgur8Ez3abAdLpuN78DhJQiF76EB2ZnWYmPxk3HBeh-21ofw34dTdKxF4-HsV8focT57KJfR6m5xUxarSDLG06hmdcZjSGLIFFcQ10RktAZZQwJcSqVpphXRuYiD1YqRKa1pkhKW84xCiI7RxeGudK33DnT17sxauF1FSdW3VoXWqr61gEYHdGsa2P3LVddFued_ADfWckE |
| Cites_doi | 10.1016/J.AEJ.2023.09.064 10.1016/S1389‐1286(01)00302‐4 10.1016/J.ADHOC.2024.103564 10.1016/J.ADHOC.2022.103079 10.1016/j.comcom.2007.05.024 10.1016/J.KNOSYS.2024.112039 10.1016/J.ECOINF.2022.101640 10.1016/J.JII.2024.100642 10.1016/j.comnet.2008.04.002 10.1016/J.COSE.2024.103991 10.32604/CMC.2024.050596 10.1016/J.FSS.2019.11.015 10.1016/J.ASEJ.2024.102644 10.1016/J.IOT.2023.100829 10.1016/S1570-8705(03)00047-7 10.1016/J.EIJ.2022.03.003 10.1016/J.VRIH.2022.10.002 10.1109/PCCC.2005.1460630 10.1109/HICSS.2000.926982 10.1145/219717.219768 10.1016/J.SETA.2022.102154 10.1109/TPDS.2002.1036066 10.1117/12.633945 10.1007/s11227-017-2128-1 10.1109/JPROC.2003.814918 10.1155/2013/314732 10.1109/ICCT.2010.5688947 10.1016/j.adhoc.2008.06.003 10.1016/J.JFRANKLIN.2024.107014 |
| ContentType | Journal Article |
| Copyright | 2025 John Wiley & Sons Ltd. |
| Copyright_xml | – notice: 2025 John Wiley & Sons Ltd. |
| DBID | AAYXX CITATION |
| DOI | 10.1002/dac.6127 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1099-1131 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_dac_6127 DAC6127 |
| Genre | article |
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABPVW ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD ESX F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHY HVGLF HZ~ I-F IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MK~ ML~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO ROL RX1 RYL SAMSI SUPJJ TUS UB1 V2E W8V W99 WBKPD WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WT AAYXX CITATION |
| ID | FETCH-LOGICAL-c2267-b2b863e53e8d6de3b0a81becbe5e6ccdf18fd0f9a3e6cfd2041b157029681e863 |
| IEDL.DBID | DR2 |
| ISSN | 1074-5351 |
| IngestDate | Wed Oct 01 03:18:10 EDT 2025 Thu Sep 25 07:37:15 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2267-b2b863e53e8d6de3b0a81becbe5e6ccdf18fd0f9a3e6cfd2041b157029681e863 |
| Notes | Funding The author received no specific funding for this work. |
| ORCID | 0000-0002-9005-3565 |
| PageCount | 8 |
| ParticipantIDs | crossref_primary_10_1002_dac_6127 wiley_primary_10_1002_dac_6127_DAC6127 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | February 2025 2025-02-00 |
| PublicationDateYYYYMMDD | 2025-02-01 |
| PublicationDate_xml | – month: 02 year: 2025 text: February 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal of communication systems |
| PublicationYear | 2025 |
| References | 2002; 38 2023; 141 1995; 38 2010 2002; 13 2022; 23 2024; 361 2024; 163 2022; 69 2005 2024; 145 2008; 52 2004; 2 2020; 389 2007; 30 2024; 79 2024; 15 2023; 82 2003; 91 2023; 23 2024; 6 2013; 2013 2000 2024; 41 2009; 7 2018; 74 2022; 52 2016 2024; 299 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Öztemel E. (e_1_2_7_30_1) 2016 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_23_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_20_1 |
| References_xml | – volume: 82 start-page: 82 year: 2023 end-page: 100 article-title: Secure Localization Techniques in Wireless Sensor Networks Against Routing Attacks Based on Hybrid Machine Learning Models publication-title: Alexandria Engineering Journal – volume: 389 start-page: 114 year: 2020 end-page: 144 article-title: HQCA‐WSN: High‐Quality Clustering Algorithm and Optimal Cluster Head Selection Using Fuzzy Logic in Wireless Sensor Networks publication-title: Fuzzy Sets and Systems – volume: 41 year: 2024 article-title: An Innovative Approach for Cluster Head Selection and Energy Optimization in Wireless Sensor Networks Using Zebra Fish and Sea Horse Optimization Techniques publication-title: Journal of Industrial Information Integration – year: 2005 – volume: 23 year: 2023 article-title: IoT‐Based Expert System for Fault Detection in Japanese Plum Leaf‐Turgor Pressure WSN publication-title: Internet of Things – start-page: 648 year: 2010 end-page: 651 – volume: 141 year: 2023 article-title: MOCRAW: A Meta‐Heuristic Optimized Cluster Head Selection Based Routing Algorithm for WSNs publication-title: Ad Hoc Networks – year: 2000 – volume: 163 year: 2024 article-title: Partitioned Uneven Cluster Routing Algorithm Based on Gray Wolf Optimization in WSNs publication-title: Ad Hoc Networks – volume: 91 start-page: 1247 issue: 8 year: 2003 end-page: 1256 article-title: Sensor Networks: Evolution, Opportunities, and Challenges publication-title: Proceedings of the IEEE – volume: 23 start-page: 417 issue: 3 year: 2022 end-page: 426 article-title: Smart Cities: Fusion‐Based Intelligent Traffic Congestion Control System for Vehicular Networks Using Machine Learning Techniques publication-title: Egyptian Informatics Journal – volume: 79 start-page: 3585 issue: 3 year: 2024 end-page: 3629 article-title: Accelerated Particle Swarm Optimization Algorithm for Efficient Cluster Head Selection in WSN publication-title: Computers, Materials and Continua – volume: 52 year: 2022 article-title: Galactic Swarm Optimized Convolute Network and Cluster Head Elected Energy‐Efficient Routing Protocol in WSN publication-title: Sustainable Energy Technologies and Assessments – year: 2016 – volume: 52 start-page: 2292 issue: 12 year: 2008 end-page: 2330 article-title: Wireless Sensor Network Survey publication-title: Computer Networks – volume: 361 issue: 12 year: 2024 article-title: Efficient Fuzzy Methodology for Congestion Control in Wireless Sensor Networks publication-title: Journal of the Franklin Institute – volume: 69 year: 2022 article-title: Amphibian Species Detection in Water Reservoirs Using Artificial Neural Networks for Ecology‐Friendly City Planning publication-title: Ecological Informatics – volume: 38 start-page: 393 issue: 4 year: 2002 end-page: 422 article-title: Wireless Sensor Networks: A Survey publication-title: Computer Networks – volume: 15 issue: 4 year: 2024 article-title: Enhancing Data Transmission Efficiency in Wireless Sensor Networks Through Machine Learning‐Enabled Energy Optimization: A Grouping Model Approach publication-title: Ain Shams Engineering Journal – volume: 6 start-page: 1 issue: 1 year: 2024 end-page: 16 article-title: Effective Data Transmission Through Energy‐Efficient Clustering and Fuzzy‐Based IDS Routing Approach in WSNs publication-title: Virtual Reality & Intelligent Hardware – volume: 145 year: 2024 article-title: Detection and Mitigation of Vampire Attacks With Secure Routing in WSN Using Weighted RNN and Optimal Path Selection publication-title: Computers & Security – volume: 7 start-page: 537 issue: 3 year: 2009 end-page: 568 article-title: Energy Conservation in Wireless Sensor Networks: A Survey publication-title: Ad Hoc Networks – volume: 299 year: 2024 article-title: Optimizing Energy‐Efficient Cluster Head Selection in Wireless Sensor Networks Using a Binarized Spiking Neural Network and Honey Badger Algorithm publication-title: Knowledge‐Based Systems – volume: 2 start-page: 45 issue: 1 year: 2004 end-page: 63 article-title: Design Guidelines for Wireless Sensor Networks: Communication, Clustering and Aggregation publication-title: Ad Hoc Networks – volume: 13 start-page: 924 issue: 9 year: 2002 end-page: 935 article-title: Data Gathering Algorithms in Sensor Networks Using Energy Metrics publication-title: IEEE Transactions on Parallel and Distributed Systems – volume: 74 year: 2018 – volume: 2013 start-page: 1 year: 2013 end-page: 14 article-title: Balancing Energy Consumption in Clustered Wireless Sensor Networks publication-title: International Scholarly Research Notices – volume: 38 start-page: 54 issue: 11 year: 1995 end-page: 64 article-title: Applications of Machine Learning and Rule Induction publication-title: Communications of the ACM – volume: 30 start-page: 2826 issue: 14–15 year: 2007 end-page: 2841 article-title: A Survey on Clustering Algorithms for Wireless Sensor Networks publication-title: Computer Communications – ident: e_1_2_7_20_1 doi: 10.1016/J.AEJ.2023.09.064 – ident: e_1_2_7_2_1 doi: 10.1016/S1389‐1286(01)00302‐4 – ident: e_1_2_7_25_1 doi: 10.1016/J.ADHOC.2024.103564 – ident: e_1_2_7_23_1 doi: 10.1016/J.ADHOC.2022.103079 – ident: e_1_2_7_8_1 doi: 10.1016/j.comcom.2007.05.024 – ident: e_1_2_7_24_1 doi: 10.1016/J.KNOSYS.2024.112039 – ident: e_1_2_7_31_1 doi: 10.1016/J.ECOINF.2022.101640 – ident: e_1_2_7_26_1 doi: 10.1016/J.JII.2024.100642 – ident: e_1_2_7_3_1 doi: 10.1016/j.comnet.2008.04.002 – ident: e_1_2_7_17_1 doi: 10.1016/J.COSE.2024.103991 – ident: e_1_2_7_22_1 doi: 10.32604/CMC.2024.050596 – ident: e_1_2_7_28_1 doi: 10.1016/J.FSS.2019.11.015 – ident: e_1_2_7_19_1 doi: 10.1016/J.ASEJ.2024.102644 – ident: e_1_2_7_18_1 doi: 10.1016/J.IOT.2023.100829 – ident: e_1_2_7_13_1 doi: 10.1016/S1570-8705(03)00047-7 – ident: e_1_2_7_16_1 doi: 10.1016/J.EIJ.2022.03.003 – ident: e_1_2_7_21_1 doi: 10.1016/J.VRIH.2022.10.002 – ident: e_1_2_7_12_1 doi: 10.1109/PCCC.2005.1460630 – ident: e_1_2_7_11_1 doi: 10.1109/HICSS.2000.926982 – ident: e_1_2_7_29_1 doi: 10.1145/219717.219768 – ident: e_1_2_7_27_1 doi: 10.1016/J.SETA.2022.102154 – ident: e_1_2_7_6_1 doi: 10.1109/TPDS.2002.1036066 – volume-title: Yapay Sinir Ağları year: 2016 ident: e_1_2_7_30_1 – ident: e_1_2_7_10_1 doi: 10.1117/12.633945 – ident: e_1_2_7_7_1 doi: 10.1007/s11227-017-2128-1 – ident: e_1_2_7_4_1 doi: 10.1109/JPROC.2003.814918 – ident: e_1_2_7_9_1 doi: 10.1155/2013/314732 – ident: e_1_2_7_14_1 doi: 10.1109/ICCT.2010.5688947 – ident: e_1_2_7_5_1 doi: 10.1016/j.adhoc.2008.06.003 – ident: e_1_2_7_15_1 doi: 10.1016/J.JFRANKLIN.2024.107014 |
| SSID | ssj0008265 |
| Score | 2.3555593 |
| Snippet | ABSTRACT
Recent improvements in wireless sensor networks (WSN) technology enabled more research on energy efficiency. Limited battery and difficulties in... Recent improvements in wireless sensor networks (WSN) technology enabled more research on energy efficiency. Limited battery and difficulties in renewing the... |
| SourceID | crossref wiley |
| SourceType | Index Database Publisher |
| SubjectTerms | artificial neural networks cluster head selection LEACH machine learning wireless sensor networks |
| Title | Artificial Neural Networks‐Based LEACH Algorithm for Fast and Efficient Cluster Head Selection in Wireless Sensor Networks |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fdac.6127 |
| Volume | 38 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1074-5351 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1099-1131 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008265 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1NS8MwGMeDeNKD7-J8I4J469YmTdsd59wYoh7UwcBDSZqnOpydbN1FPPgR_Ix-Ep-kq5uCIJ5C24SEvD3_lCe_h5DjlLm87qvUCXwVOr6fSkei3XASJYwc0aHm5jby5VXQ6frnPdGbelWauzAFH-Lrh5tZGXa_NgtcqnFtBg3VWB-aZ3OR3OOBPU1dz8hRqJpF6W4ouPBK7qzLamXBb5ZoXpla09JeJXdlowqPksfqJFfV5OUHr_F_rV4jK1PFSRvFFFknC5BtkOU5DuEmeTUfC5QENbQOm1j38PHH2_spGjpNL1qNZoc2BvfDUT9_eKIodmlbjnMqM01bFkSB9os2BxODXqAdnDv0xgbZwZGn_YwaP9sB7qv4Nhtj4bKGLdJtt26bHWcalsFJUKuFjmIqCjgIDpEONHDlStS-kCgQECSJTr0o1W5alxwfU81c31OeCF1WDyIPsOg2WcyGGewQavhoKUTAQOBJRYDkHHDIWAL1UIMrK-SoHKL4uaBvxAVnmcXYk7HpyQo5sR3-a4b4rNE06e5fM-6RJWai_Frf7H2ymI8mcIDSI1eHdpJ9Ap9Z14Y |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PT9swFMefGBzYDoMN0MpPI027BRI7TlJxKqVVGKUHBhIHpCiOXwBRUkTTy8SBP4G_kb-EZ4dQQEKadrIS27LlX-9r6_ljgJ85d0XTV7kT-Cp0fD9PnZTshpMpaeSIDrUwt5EP-0F84v8-ladTsFPfhan4EC8HbmZm2PXaTHBzIL09oYZqKpDsc_gJZvyAtilGER1N2FGkm2XtcCiF9GryrMu365xvbNFrbWqNS3cOzupqVT4lV1vjUm1lf98RG_-z3vPw9Vl0slY1Sr7BFBbf4csrFOEC3JnIiibBDLDDBtZDfPR4_7BLtk6zXqfVjllrcD68vSwvrhnpXdZNRyVLC806lkVBJoy1B2NDX2AxDR_2x76zQ53PLgtmXG0HtLTS32JEmesSFuGk2zlux87zywxORnItdBRXUSBQCox0oFEoNyX5i5lCiUGW6dyLcu3mzVTQZ66563vKk6HLm0HkIWVdguliWOAPYAaRlmOEHCVtViSmQiD1Gc-wGWp00wZs1n2U3FQAjqRCLfOEWjIxLdmAX7bFP0yQ7LXaJlz-14QbMBsfH_aS3n7_YAU-c_Por3XVXoXp8naMa6RESrVuR9wTJmPbpw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bb9MwFMePRpEQe9gYF62wgZEQb2kTO85Fe-p6UWFjQsCkPSBFcXzMqpW0atOXiYd9hH3GfZIdO8s2kJAQT1YSW7Z8O39Hx78D8M5wX6ShMl4UqtgLQ5N7OdkNr1DSyhEda2FvI386isbH4ccTebIGe81dmJoPcfvDza4Mt1_bBY5zbbp31FBNFZJ9jh_Aw1CmifXnG3y5Y0eRbpaNw6EUMmjIsz7vNiV_s0X3takzLqNN-N40q_YpOeusKtUpzv8gNv5nu5_Axo3oZL16lmzBGpZPYf0eivAZ_LIfa5oEs8AOlzgP8eXVxeU-2TrNDoe9_pj1pj9mi0l1-pOR3mWjfFmxvNRs6FgUZMJYf7qy9AU2punDvro4OzT4bFIy62o7pa2V3pZLKtzU8ByOR8Nv_bF3E5nBK0iuxZ7iKokESoGJjjQK5eckf7FQKDEqCm2CxGjfpLmgR6O5HwYqkLHP0ygJkIq-gFY5K3EbmEWkGUyQo6TDisRcCKQx4wWmsUY_b8PbZoyyeQ3gyGrUMs-oJzPbk21473r8rxmyQa9v05f_mvENPPo8GGWHH44OXsFjbmP-Ok_tHWhVixXukhCp1Gs34a4BACfbKw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Neural+Networks%E2%80%90Based+LEACH+Algorithm+for+Fast+and+Efficient+Cluster+Head+Selection+in+Wireless+Sensor+Networks&rft.jtitle=International+journal+of+communication+systems&rft.au=Senturk%2C+Arafat&rft.date=2025-02-01&rft.issn=1074-5351&rft.eissn=1099-1131&rft.volume=38&rft.issue=3&rft_id=info:doi/10.1002%2Fdac.6127&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_dac_6127 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1074-5351&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1074-5351&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1074-5351&client=summon |