Artificial Neural Networks‐Based LEACH Algorithm for Fast and Efficient Cluster Head Selection in Wireless Sensor Networks

ABSTRACT Recent improvements in wireless sensor networks (WSN) technology enabled more research on energy efficiency. Limited battery and difficulties in renewing the batteries in a critical application require the efficient use of energy for WSN. Besides energy efficiency, providing fast‐response s...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of communication systems Vol. 38; no. 3
Main Author Senturk, Arafat
Format Journal Article
LanguageEnglish
Published 01.02.2025
Subjects
Online AccessGet full text
ISSN1074-5351
1099-1131
DOI10.1002/dac.6127

Cover

Abstract ABSTRACT Recent improvements in wireless sensor networks (WSN) technology enabled more research on energy efficiency. Limited battery and difficulties in renewing the batteries in a critical application require the efficient use of energy for WSN. Besides energy efficiency, providing fast‐response systems facilitate real‐time applications. Combining machine learning (ML) with the clustering methods that significantly contribute to the energy efficiency of WSN seems to improve the efficiency. In this paper, the low‐energy adaptive clustering hierarchy (LEACH) clustering method for WSN is implemented through a supervised learning method, artificial neural networks (ANN), for cluster head (CH) selection. The power of ANN as a superior classifier is thought to contribute much to the field. The details of designing an ANN are given in detail for the first time in WSN field. In addition, a dataset is prepared via MATLAB to be used for classification or other analysis related to a clustered network. The proposed model provides more than 85% accuracy for CH selection, and it is 83.28% faster than LEACH to determine the CHs. This method produces more efficient solutions in large networks in terms of the time for CH selection. The feasibility of ANN is also shown for the issues related to WSN such as CH selection. ANN determines cluster heads (CH) 85% similar to LEACH with less computational load. ANN determines CHs more than 83% faster than LEACH, which supports real time applications. ANN can be adopted easily to various WSN problems and provides efficient solutions. CH selection can be investigated as a classification problem and can be solved by machine learning algorithms.
AbstractList Recent improvements in wireless sensor networks (WSN) technology enabled more research on energy efficiency. Limited battery and difficulties in renewing the batteries in a critical application require the efficient use of energy for WSN. Besides energy efficiency, providing fast‐response systems facilitate real‐time applications. Combining machine learning (ML) with the clustering methods that significantly contribute to the energy efficiency of WSN seems to improve the efficiency. In this paper, the low‐energy adaptive clustering hierarchy (LEACH) clustering method for WSN is implemented through a supervised learning method, artificial neural networks (ANN), for cluster head (CH) selection. The power of ANN as a superior classifier is thought to contribute much to the field. The details of designing an ANN are given in detail for the first time in WSN field. In addition, a dataset is prepared via MATLAB to be used for classification or other analysis related to a clustered network. The proposed model provides more than 85% accuracy for CH selection, and it is 83.28% faster than LEACH to determine the CHs. This method produces more efficient solutions in large networks in terms of the time for CH selection. The feasibility of ANN is also shown for the issues related to WSN such as CH selection.
ABSTRACT Recent improvements in wireless sensor networks (WSN) technology enabled more research on energy efficiency. Limited battery and difficulties in renewing the batteries in a critical application require the efficient use of energy for WSN. Besides energy efficiency, providing fast‐response systems facilitate real‐time applications. Combining machine learning (ML) with the clustering methods that significantly contribute to the energy efficiency of WSN seems to improve the efficiency. In this paper, the low‐energy adaptive clustering hierarchy (LEACH) clustering method for WSN is implemented through a supervised learning method, artificial neural networks (ANN), for cluster head (CH) selection. The power of ANN as a superior classifier is thought to contribute much to the field. The details of designing an ANN are given in detail for the first time in WSN field. In addition, a dataset is prepared via MATLAB to be used for classification or other analysis related to a clustered network. The proposed model provides more than 85% accuracy for CH selection, and it is 83.28% faster than LEACH to determine the CHs. This method produces more efficient solutions in large networks in terms of the time for CH selection. The feasibility of ANN is also shown for the issues related to WSN such as CH selection. ANN determines cluster heads (CH) 85% similar to LEACH with less computational load. ANN determines CHs more than 83% faster than LEACH, which supports real time applications. ANN can be adopted easily to various WSN problems and provides efficient solutions. CH selection can be investigated as a classification problem and can be solved by machine learning algorithms.
Author Senturk, Arafat
Author_xml – sequence: 1
  givenname: Arafat
  orcidid: 0000-0002-9005-3565
  surname: Senturk
  fullname: Senturk, Arafat
  email: arafatsenturk@duzce.edu.tr
  organization: Duzce University
BookMark eNp1kE1OwzAQhS1UJNqCxBG8ZJNiO42TLEPoD1IFC0AsI8cegyF1kJ2qqsSCI3BGToLTwpLVmzf63oz0RmhgWwsInVMyoYSwSyXkhFOWHqEhJXkeURrTQT-n0yiJE3qCRt6_EkIyxpMh-ihcZ7SRRjT4FjZuL922dW_--_PrSnhQeDUryiUumufWme5ljXXr8Fz4Dgur8Ez3abAdLpuN78DhJQiF76EB2ZnWYmPxk3HBeh-21ofw34dTdKxF4-HsV8focT57KJfR6m5xUxarSDLG06hmdcZjSGLIFFcQ10RktAZZQwJcSqVpphXRuYiD1YqRKa1pkhKW84xCiI7RxeGudK33DnT17sxauF1FSdW3VoXWqr61gEYHdGsa2P3LVddFued_ADfWckE
Cites_doi 10.1016/J.AEJ.2023.09.064
10.1016/S1389‐1286(01)00302‐4
10.1016/J.ADHOC.2024.103564
10.1016/J.ADHOC.2022.103079
10.1016/j.comcom.2007.05.024
10.1016/J.KNOSYS.2024.112039
10.1016/J.ECOINF.2022.101640
10.1016/J.JII.2024.100642
10.1016/j.comnet.2008.04.002
10.1016/J.COSE.2024.103991
10.32604/CMC.2024.050596
10.1016/J.FSS.2019.11.015
10.1016/J.ASEJ.2024.102644
10.1016/J.IOT.2023.100829
10.1016/S1570-8705(03)00047-7
10.1016/J.EIJ.2022.03.003
10.1016/J.VRIH.2022.10.002
10.1109/PCCC.2005.1460630
10.1109/HICSS.2000.926982
10.1145/219717.219768
10.1016/J.SETA.2022.102154
10.1109/TPDS.2002.1036066
10.1117/12.633945
10.1007/s11227-017-2128-1
10.1109/JPROC.2003.814918
10.1155/2013/314732
10.1109/ICCT.2010.5688947
10.1016/j.adhoc.2008.06.003
10.1016/J.JFRANKLIN.2024.107014
ContentType Journal Article
Copyright 2025 John Wiley & Sons Ltd.
Copyright_xml – notice: 2025 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
DOI 10.1002/dac.6127
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-1131
EndPage n/a
ExternalDocumentID 10_1002_dac_6127
DAC6127
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MK~
ML~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
CITATION
ID FETCH-LOGICAL-c2267-b2b863e53e8d6de3b0a81becbe5e6ccdf18fd0f9a3e6cfd2041b157029681e863
IEDL.DBID DR2
ISSN 1074-5351
IngestDate Wed Oct 01 03:18:10 EDT 2025
Thu Sep 25 07:37:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2267-b2b863e53e8d6de3b0a81becbe5e6ccdf18fd0f9a3e6cfd2041b157029681e863
Notes Funding
The author received no specific funding for this work.
ORCID 0000-0002-9005-3565
PageCount 8
ParticipantIDs crossref_primary_10_1002_dac_6127
wiley_primary_10_1002_dac_6127_DAC6127
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2025
2025-02-00
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: February 2025
PublicationDecade 2020
PublicationTitle International journal of communication systems
PublicationYear 2025
References 2002; 38
2023; 141
1995; 38
2010
2002; 13
2022; 23
2024; 361
2024; 163
2022; 69
2005
2024; 145
2008; 52
2004; 2
2020; 389
2007; 30
2024; 79
2024; 15
2023; 82
2003; 91
2023; 23
2024; 6
2013; 2013
2000
2024; 41
2009; 7
2018; 74
2022; 52
2016
2024; 299
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Öztemel E. (e_1_2_7_30_1) 2016
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – volume: 82
  start-page: 82
  year: 2023
  end-page: 100
  article-title: Secure Localization Techniques in Wireless Sensor Networks Against Routing Attacks Based on Hybrid Machine Learning Models
  publication-title: Alexandria Engineering Journal
– volume: 389
  start-page: 114
  year: 2020
  end-page: 144
  article-title: HQCA‐WSN: High‐Quality Clustering Algorithm and Optimal Cluster Head Selection Using Fuzzy Logic in Wireless Sensor Networks
  publication-title: Fuzzy Sets and Systems
– volume: 41
  year: 2024
  article-title: An Innovative Approach for Cluster Head Selection and Energy Optimization in Wireless Sensor Networks Using Zebra Fish and Sea Horse Optimization Techniques
  publication-title: Journal of Industrial Information Integration
– year: 2005
– volume: 23
  year: 2023
  article-title: IoT‐Based Expert System for Fault Detection in Japanese Plum Leaf‐Turgor Pressure WSN
  publication-title: Internet of Things
– start-page: 648
  year: 2010
  end-page: 651
– volume: 141
  year: 2023
  article-title: MOCRAW: A Meta‐Heuristic Optimized Cluster Head Selection Based Routing Algorithm for WSNs
  publication-title: Ad Hoc Networks
– year: 2000
– volume: 163
  year: 2024
  article-title: Partitioned Uneven Cluster Routing Algorithm Based on Gray Wolf Optimization in WSNs
  publication-title: Ad Hoc Networks
– volume: 91
  start-page: 1247
  issue: 8
  year: 2003
  end-page: 1256
  article-title: Sensor Networks: Evolution, Opportunities, and Challenges
  publication-title: Proceedings of the IEEE
– volume: 23
  start-page: 417
  issue: 3
  year: 2022
  end-page: 426
  article-title: Smart Cities: Fusion‐Based Intelligent Traffic Congestion Control System for Vehicular Networks Using Machine Learning Techniques
  publication-title: Egyptian Informatics Journal
– volume: 79
  start-page: 3585
  issue: 3
  year: 2024
  end-page: 3629
  article-title: Accelerated Particle Swarm Optimization Algorithm for Efficient Cluster Head Selection in WSN
  publication-title: Computers, Materials and Continua
– volume: 52
  year: 2022
  article-title: Galactic Swarm Optimized Convolute Network and Cluster Head Elected Energy‐Efficient Routing Protocol in WSN
  publication-title: Sustainable Energy Technologies and Assessments
– year: 2016
– volume: 52
  start-page: 2292
  issue: 12
  year: 2008
  end-page: 2330
  article-title: Wireless Sensor Network Survey
  publication-title: Computer Networks
– volume: 361
  issue: 12
  year: 2024
  article-title: Efficient Fuzzy Methodology for Congestion Control in Wireless Sensor Networks
  publication-title: Journal of the Franklin Institute
– volume: 69
  year: 2022
  article-title: Amphibian Species Detection in Water Reservoirs Using Artificial Neural Networks for Ecology‐Friendly City Planning
  publication-title: Ecological Informatics
– volume: 38
  start-page: 393
  issue: 4
  year: 2002
  end-page: 422
  article-title: Wireless Sensor Networks: A Survey
  publication-title: Computer Networks
– volume: 15
  issue: 4
  year: 2024
  article-title: Enhancing Data Transmission Efficiency in Wireless Sensor Networks Through Machine Learning‐Enabled Energy Optimization: A Grouping Model Approach
  publication-title: Ain Shams Engineering Journal
– volume: 6
  start-page: 1
  issue: 1
  year: 2024
  end-page: 16
  article-title: Effective Data Transmission Through Energy‐Efficient Clustering and Fuzzy‐Based IDS Routing Approach in WSNs
  publication-title: Virtual Reality & Intelligent Hardware
– volume: 145
  year: 2024
  article-title: Detection and Mitigation of Vampire Attacks With Secure Routing in WSN Using Weighted RNN and Optimal Path Selection
  publication-title: Computers & Security
– volume: 7
  start-page: 537
  issue: 3
  year: 2009
  end-page: 568
  article-title: Energy Conservation in Wireless Sensor Networks: A Survey
  publication-title: Ad Hoc Networks
– volume: 299
  year: 2024
  article-title: Optimizing Energy‐Efficient Cluster Head Selection in Wireless Sensor Networks Using a Binarized Spiking Neural Network and Honey Badger Algorithm
  publication-title: Knowledge‐Based Systems
– volume: 2
  start-page: 45
  issue: 1
  year: 2004
  end-page: 63
  article-title: Design Guidelines for Wireless Sensor Networks: Communication, Clustering and Aggregation
  publication-title: Ad Hoc Networks
– volume: 13
  start-page: 924
  issue: 9
  year: 2002
  end-page: 935
  article-title: Data Gathering Algorithms in Sensor Networks Using Energy Metrics
  publication-title: IEEE Transactions on Parallel and Distributed Systems
– volume: 74
  year: 2018
– volume: 2013
  start-page: 1
  year: 2013
  end-page: 14
  article-title: Balancing Energy Consumption in Clustered Wireless Sensor Networks
  publication-title: International Scholarly Research Notices
– volume: 38
  start-page: 54
  issue: 11
  year: 1995
  end-page: 64
  article-title: Applications of Machine Learning and Rule Induction
  publication-title: Communications of the ACM
– volume: 30
  start-page: 2826
  issue: 14–15
  year: 2007
  end-page: 2841
  article-title: A Survey on Clustering Algorithms for Wireless Sensor Networks
  publication-title: Computer Communications
– ident: e_1_2_7_20_1
  doi: 10.1016/J.AEJ.2023.09.064
– ident: e_1_2_7_2_1
  doi: 10.1016/S1389‐1286(01)00302‐4
– ident: e_1_2_7_25_1
  doi: 10.1016/J.ADHOC.2024.103564
– ident: e_1_2_7_23_1
  doi: 10.1016/J.ADHOC.2022.103079
– ident: e_1_2_7_8_1
  doi: 10.1016/j.comcom.2007.05.024
– ident: e_1_2_7_24_1
  doi: 10.1016/J.KNOSYS.2024.112039
– ident: e_1_2_7_31_1
  doi: 10.1016/J.ECOINF.2022.101640
– ident: e_1_2_7_26_1
  doi: 10.1016/J.JII.2024.100642
– ident: e_1_2_7_3_1
  doi: 10.1016/j.comnet.2008.04.002
– ident: e_1_2_7_17_1
  doi: 10.1016/J.COSE.2024.103991
– ident: e_1_2_7_22_1
  doi: 10.32604/CMC.2024.050596
– ident: e_1_2_7_28_1
  doi: 10.1016/J.FSS.2019.11.015
– ident: e_1_2_7_19_1
  doi: 10.1016/J.ASEJ.2024.102644
– ident: e_1_2_7_18_1
  doi: 10.1016/J.IOT.2023.100829
– ident: e_1_2_7_13_1
  doi: 10.1016/S1570-8705(03)00047-7
– ident: e_1_2_7_16_1
  doi: 10.1016/J.EIJ.2022.03.003
– ident: e_1_2_7_21_1
  doi: 10.1016/J.VRIH.2022.10.002
– ident: e_1_2_7_12_1
  doi: 10.1109/PCCC.2005.1460630
– ident: e_1_2_7_11_1
  doi: 10.1109/HICSS.2000.926982
– ident: e_1_2_7_29_1
  doi: 10.1145/219717.219768
– ident: e_1_2_7_27_1
  doi: 10.1016/J.SETA.2022.102154
– ident: e_1_2_7_6_1
  doi: 10.1109/TPDS.2002.1036066
– volume-title: Yapay Sinir Ağları
  year: 2016
  ident: e_1_2_7_30_1
– ident: e_1_2_7_10_1
  doi: 10.1117/12.633945
– ident: e_1_2_7_7_1
  doi: 10.1007/s11227-017-2128-1
– ident: e_1_2_7_4_1
  doi: 10.1109/JPROC.2003.814918
– ident: e_1_2_7_9_1
  doi: 10.1155/2013/314732
– ident: e_1_2_7_14_1
  doi: 10.1109/ICCT.2010.5688947
– ident: e_1_2_7_5_1
  doi: 10.1016/j.adhoc.2008.06.003
– ident: e_1_2_7_15_1
  doi: 10.1016/J.JFRANKLIN.2024.107014
SSID ssj0008265
Score 2.3555593
Snippet ABSTRACT Recent improvements in wireless sensor networks (WSN) technology enabled more research on energy efficiency. Limited battery and difficulties in...
Recent improvements in wireless sensor networks (WSN) technology enabled more research on energy efficiency. Limited battery and difficulties in renewing the...
SourceID crossref
wiley
SourceType Index Database
Publisher
SubjectTerms artificial neural networks
cluster head selection
LEACH
machine learning
wireless sensor networks
Title Artificial Neural Networks‐Based LEACH Algorithm for Fast and Efficient Cluster Head Selection in Wireless Sensor Networks
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fdac.6127
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1074-5351
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1099-1131
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008265
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1NS8MwGMeDeNKD7-J8I4J469YmTdsd59wYoh7UwcBDSZqnOpydbN1FPPgR_Ix-Ep-kq5uCIJ5C24SEvD3_lCe_h5DjlLm87qvUCXwVOr6fSkei3XASJYwc0aHm5jby5VXQ6frnPdGbelWauzAFH-Lrh5tZGXa_NgtcqnFtBg3VWB-aZ3OR3OOBPU1dz8hRqJpF6W4ouPBK7qzLamXBb5ZoXpla09JeJXdlowqPksfqJFfV5OUHr_F_rV4jK1PFSRvFFFknC5BtkOU5DuEmeTUfC5QENbQOm1j38PHH2_spGjpNL1qNZoc2BvfDUT9_eKIodmlbjnMqM01bFkSB9os2BxODXqAdnDv0xgbZwZGn_YwaP9sB7qv4Nhtj4bKGLdJtt26bHWcalsFJUKuFjmIqCjgIDpEONHDlStS-kCgQECSJTr0o1W5alxwfU81c31OeCF1WDyIPsOg2WcyGGewQavhoKUTAQOBJRYDkHHDIWAL1UIMrK-SoHKL4uaBvxAVnmcXYk7HpyQo5sR3-a4b4rNE06e5fM-6RJWai_Frf7H2ymI8mcIDSI1eHdpJ9Ap9Z14Y
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PT9swFMefGBzYDoMN0MpPI027BRI7TlJxKqVVGKUHBhIHpCiOXwBRUkTTy8SBP4G_kb-EZ4dQQEKadrIS27LlX-9r6_ljgJ85d0XTV7kT-Cp0fD9PnZTshpMpaeSIDrUwt5EP-0F84v8-ladTsFPfhan4EC8HbmZm2PXaTHBzIL09oYZqKpDsc_gJZvyAtilGER1N2FGkm2XtcCiF9GryrMu365xvbNFrbWqNS3cOzupqVT4lV1vjUm1lf98RG_-z3vPw9Vl0slY1Sr7BFBbf4csrFOEC3JnIiibBDLDDBtZDfPR4_7BLtk6zXqfVjllrcD68vSwvrhnpXdZNRyVLC806lkVBJoy1B2NDX2AxDR_2x76zQ53PLgtmXG0HtLTS32JEmesSFuGk2zlux87zywxORnItdBRXUSBQCox0oFEoNyX5i5lCiUGW6dyLcu3mzVTQZ66563vKk6HLm0HkIWVdguliWOAPYAaRlmOEHCVtViSmQiD1Gc-wGWp00wZs1n2U3FQAjqRCLfOEWjIxLdmAX7bFP0yQ7LXaJlz-14QbMBsfH_aS3n7_YAU-c_Por3XVXoXp8naMa6RESrVuR9wTJmPbpw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bb9MwFMePRpEQe9gYF62wgZEQb2kTO85Fe-p6UWFjQsCkPSBFcXzMqpW0atOXiYd9hH3GfZIdO8s2kJAQT1YSW7Z8O39Hx78D8M5wX6ShMl4UqtgLQ5N7OdkNr1DSyhEda2FvI386isbH4ccTebIGe81dmJoPcfvDza4Mt1_bBY5zbbp31FBNFZJ9jh_Aw1CmifXnG3y5Y0eRbpaNw6EUMmjIsz7vNiV_s0X3takzLqNN-N40q_YpOeusKtUpzv8gNv5nu5_Axo3oZL16lmzBGpZPYf0eivAZ_LIfa5oEs8AOlzgP8eXVxeU-2TrNDoe9_pj1pj9mi0l1-pOR3mWjfFmxvNRs6FgUZMJYf7qy9AU2punDvro4OzT4bFIy62o7pa2V3pZLKtzU8ByOR8Nv_bF3E5nBK0iuxZ7iKokESoGJjjQK5eckf7FQKDEqCm2CxGjfpLmgR6O5HwYqkLHP0ygJkIq-gFY5K3EbmEWkGUyQo6TDisRcCKQx4wWmsUY_b8PbZoyyeQ3gyGrUMs-oJzPbk21473r8rxmyQa9v05f_mvENPPo8GGWHH44OXsFjbmP-Ok_tHWhVixXukhCp1Gs34a4BACfbKw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Neural+Networks%E2%80%90Based+LEACH+Algorithm+for+Fast+and+Efficient+Cluster+Head+Selection+in+Wireless+Sensor+Networks&rft.jtitle=International+journal+of+communication+systems&rft.au=Senturk%2C+Arafat&rft.date=2025-02-01&rft.issn=1074-5351&rft.eissn=1099-1131&rft.volume=38&rft.issue=3&rft_id=info:doi/10.1002%2Fdac.6127&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_dac_6127
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1074-5351&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1074-5351&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1074-5351&client=summon