Hybridization of particle swarm optimization algorithm with neural network for COVID‐19 using computerized tomography scan and clinical parameters

The 2019 coronavirus disease began in Wuhan, China, and spread worldwide. This pandemic was concerning, given its significant and worrying impact on human health. Strategies to manage the disease begin with diagnosing the infection, often using the real‐time reverse transcription polymerase chain re...

Full description

Saved in:
Bibliographic Details
Published inJournal of engineering (Stevenage, England) Vol. 2023; no. 2
Main Authors Sameer, Humam Adnan, Gharghan, Sadik Kamel, Mutlag, Ammar Hussein
Format Journal Article
LanguageEnglish
Published London John Wiley & Sons, Inc 01.01.2023
Subjects
Online AccessGet full text
ISSN2051-3305
2051-3305
DOI10.1049/tje2.12226

Cover

Abstract The 2019 coronavirus disease began in Wuhan, China, and spread worldwide. This pandemic was concerning, given its significant and worrying impact on human health. Strategies to manage the disease begin with diagnosing the infection, often using the real‐time reverse transcription polymerase chain reaction (RT‐PCR) assay. However, this process is time intensive. Therefore, alternative rapid methods to diagnose the coronavirus with high accuracy are needed. X‐ray and computerized tomography (CT) scans are reasonable solutions for rapid coronavirus diagnosis. The dataset of 500 patients was tested, including 286 uninfected patients and 214 infected with COVID‐19. Clinical parameters, including heart rate (HR), temperature (T), blood oxygen level, D‐dimer, and CT scan, including red‐green‐blue (RGB) pixel values of the left and right lungs, were collected from 500 patients and used to train an artificial neural network (ANN) to diagnose coronavirus. The ANN was hybridized with a particle swarm optimization (PSO) algorithm to improve diagnosis accuracy. The results show that the proposed PSO‐ANN method significantly improved diagnosis accuracy (98.93%), sensitivity (100%), and specificity (98.13%). The effectiveness of the proposed method was confirmed by comparing the findings with those of previous studies. This study tested the dataset of 500 patients, including 286 uninfected patients and 214 infected with COVID‐19. Clinical parameters, including heart rate, temperature, blood oxygen level, D‐dimer, and CT images, consisting of red‐green‐blue pixel valuesof the left and right lungs, were collected and used to train and artificial neural network (ANN) to diagonse Coronavirus. The ANN was hybridized with partical swarm optimization (PSO) to improve diagnosis accuracy.
AbstractList The 2019 coronavirus disease began in Wuhan, China, and spread worldwide. This pandemic was concerning, given its significant and worrying impact on human health. Strategies to manage the disease begin with diagnosing the infection, often using the real‐time reverse transcription polymerase chain reaction (RT‐PCR) assay. However, this process is time intensive. Therefore, alternative rapid methods to diagnose the coronavirus with high accuracy are needed. X‐ray and computerized tomography (CT) scans are reasonable solutions for rapid coronavirus diagnosis. The dataset of 500 patients was tested, including 286 uninfected patients and 214 infected with COVID‐19. Clinical parameters, including heart rate (HR), temperature (T), blood oxygen level, D‐dimer, and CT scan, including red‐green‐blue (RGB) pixel values of the left and right lungs, were collected from 500 patients and used to train an artificial neural network (ANN) to diagnose coronavirus. The ANN was hybridized with a particle swarm optimization (PSO) algorithm to improve diagnosis accuracy. The results show that the proposed PSO‐ANN method significantly improved diagnosis accuracy (98.93%), sensitivity (100%), and specificity (98.13%). The effectiveness of the proposed method was confirmed by comparing the findings with those of previous studies.
The 2019 coronavirus disease began in Wuhan, China, and spread worldwide. This pandemic was concerning, given its significant and worrying impact on human health. Strategies to manage the disease begin with diagnosing the infection, often using the real‐time reverse transcription polymerase chain reaction (RT‐PCR) assay. However, this process is time intensive. Therefore, alternative rapid methods to diagnose the coronavirus with high accuracy are needed. X‐ray and computerized tomography (CT) scans are reasonable solutions for rapid coronavirus diagnosis. The dataset of 500 patients was tested, including 286 uninfected patients and 214 infected with COVID‐19. Clinical parameters, including heart rate (HR), temperature (T), blood oxygen level, D‐dimer, and CT scan, including red‐green‐blue (RGB) pixel values of the left and right lungs, were collected from 500 patients and used to train an artificial neural network (ANN) to diagnose coronavirus. The ANN was hybridized with a particle swarm optimization (PSO) algorithm to improve diagnosis accuracy. The results show that the proposed PSO‐ANN method significantly improved diagnosis accuracy (98.93%), sensitivity (100%), and specificity (98.13%). The effectiveness of the proposed method was confirmed by comparing the findings with those of previous studies. This study tested the dataset of 500 patients, including 286 uninfected patients and 214 infected with COVID‐19. Clinical parameters, including heart rate, temperature, blood oxygen level, D‐dimer, and CT images, consisting of red‐green‐blue pixel valuesof the left and right lungs, were collected and used to train and artificial neural network (ANN) to diagonse Coronavirus. The ANN was hybridized with partical swarm optimization (PSO) to improve diagnosis accuracy.
Author Gharghan, Sadik Kamel
Sameer, Humam Adnan
Mutlag, Ammar Hussein
Author_xml – sequence: 1
  givenname: Humam Adnan
  surname: Sameer
  fullname: Sameer, Humam Adnan
  email: homam0006@gmail.com
  organization: Electrical Engineering Technical College, Middle Technical University
– sequence: 2
  givenname: Sadik Kamel
  orcidid: 0000-0002-9071-1775
  surname: Gharghan
  fullname: Gharghan, Sadik Kamel
  email: sadik.gharghan@mtu.edu.iq
  organization: Electrical Engineering Technical College, Middle Technical University
– sequence: 3
  givenname: Ammar Hussein
  surname: Mutlag
  fullname: Mutlag, Ammar Hussein
  email: ammar_alqiesy@mtu.edu.iq
  organization: Electrical Engineering Technical College, Middle Technical University
BookMark eNp9kEtOwzAQhi1UJMpjwwkssQMF_EjSZolKealSN8A2cmyndUnsYDuKwoojsOCEnARDQGLVzcxI880_M_8-GGmjJQDHGJ1jFGcXfiPJOSaEpDtgTFCCI0pRMvpX74Ej5zYIIUxjgmI8Bh-3fWGVUK_MK6OhKWHDrFe8ktB1zNbQNF7Vf21WrYxVfl3DLkSoZWtZFZLvjH2GpbFwtny6u_p8e8cZbJ3SK8hN3bReWvUqBfSmNivLmnUPHWdBTwvIK6UVDzJhMatlQN0h2C1Z5eTRbz4Aj9fzh9lttFje3M0uFxEPP6ZRxmOcpukkK9g0TijLMhRzGn4rKecUE4qFmCCRIlZORZywmCZCYpwWRSE5mhT0AJwNuq1uWN-xqsobq2pm-xyj_NvT_NvT_MfTQJ8MdGPNSyudzzemtTocmFOUETqlGGeBOh0obo1zVpbbJfEAd6qS_RYyf7ifk2HmC2bTmL0
Cites_doi 10.1148/radiol.2020200370
10.1016/j.psep.2021.07.034
10.1016/j.jiph.2021.04.015
10.1016/j.ejrad.2020.108961
10.1007/s11356-020-11930-6
10.1007/s00330-021-08049-8
10.1016/j.cell.2020.04.045
10.1049/ipr2.12153
10.1080/09720502.2020.1857905
10.1016/j.heliyon.2021.e08143
10.1109/JBHI.2021.3058293
10.1007/s00521-022-06919-w
10.1002/jgm.3303
10.1007/s00134-020-06113-3
10.1016/j.smhl.2020.100178
10.1016/j.asoc.2020.106742
10.3390/su14105820
10.1016/j.iot.2020.100228
10.1016/j.jmii.2020.02.012
10.1007/s11869-020-00968-7
10.1109/BIBM49941.2020.9313252
10.1016/j.compbiomed.2021.104454
10.1016/j.compbiomed.2022.106065
10.1155/2021/6799202
10.1049/ipr2.12249
10.1016/j.ins.2021.03.062
10.1186/s12938-020-00807-x
10.1038/s41598-021-94944-5
10.1016/j.cmpb.2020.105608
10.1038/s41598-021-03287-8
10.1016/j.bj.2021.02.006
10.1002/int.22449
10.1049/ipr2.12474
10.1038/s41579-020-00459-7
10.1016/j.asoc.2022.108966
10.1016/j.asoc.2022.108610
10.3390/s16081043
10.1093/cid/ciaa460
10.1155/2022/5681574
10.1186/s12938-020-00809-9
10.1109/CVPR.2017.369
10.1016/j.compbiomed.2021.104771
10.1152/physiolgenomics.00089.2020
10.1016/j.jcv.2020.104412
10.1002/int.22504
10.4015/S1016237222500065
10.1007/s00330-020-07018-x
10.1109/ICIP42928.2021.9506661
10.21203/rs.3.rs-790321/v1
10.1016/j.cmpb.2022.107053
10.1049/ipr2.12278
10.1155/2022/7672196
10.1016/j.erss.2020.101654
10.1016/j.asoc.2020.106912
10.1109/ACCESS.2022.3162838
10.1007/s10140-020-01886-y
10.1007/s00330-021-08334-6
10.1016/j.bspc.2020.102365
10.1002/int.22686
10.1007/s00330-020-07347-x
10.1016/j.bspc.2021.103076
10.3390/app10093233
10.1111/all.14316
10.1016/j.bspc.2021.103263
10.1109/ICREST51555.2021.9331029
10.1161/ATVBAHA.120.314515
10.1109/ICASSP39728.2021.9414745
10.1016/j.bspc.2021.103182
ContentType Journal Article
Copyright 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
– notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
HCIFZ
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTOC
UNPAY
DOI 10.1049/tje2.12226
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection (LUT)
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2051-3305
EndPage n/a
ExternalDocumentID 10.1049/tje2.12226
10_1049_tje2_12226
TJE212226
Genre article
GroupedDBID 0R~
1OC
24P
5VS
AAHJG
AAJGR
ABJCF
ABQXS
ACCMX
ACESK
ACXQS
ADBBV
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AVUZU
BCNDV
BENPR
BGLVJ
CCPQU
EBS
GROUPED_DOAJ
HCIFZ
IAO
IDLOA
IGS
IPNFZ
ITC
KQ8
M43
M7S
M~E
OCL
OK1
PIMPY
PTHSS
RIE
RIG
RNS
ROL
RUI
AAMMB
AAYXX
ADMLS
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
PHGZM
PHGZT
PQGLB
WIN
8FE
8FG
ABUWG
AZQEC
COVID
DWQXO
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
ID FETCH-LOGICAL-c2266-9c4166679ba8453a9904c3013f3cc31231dd70d60af8d45a435de116bbbec07b3
IEDL.DBID 24P
ISSN 2051-3305
IngestDate Tue Aug 19 14:48:04 EDT 2025
Wed Aug 13 10:48:37 EDT 2025
Wed Oct 29 21:17:31 EDT 2025
Wed Jan 22 16:23:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2266-9c4166679ba8453a9904c3013f3cc31231dd70d60af8d45a435de116bbbec07b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9071-1775
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1049%2Ftje2.12226
PQID 3092383119
PQPubID 6853465
PageCount 17
ParticipantIDs unpaywall_primary_10_1049_tje2_12226
proquest_journals_3092383119
crossref_primary_10_1049_tje2_12226
wiley_primary_10_1049_tje2_12226_TJE212226
PublicationCentury 2000
PublicationDate January 2023
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Journal of engineering (Stevenage, England)
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2021; 25
2021; 24
2021; 20
2021; 64
2021; 23
2022; 71
2022; 72
2021; 28
2020; 126
2020; 128
2020; 11
2020; 10
2020; 19
2021; 36
2022; 123
2021; 31
2020; 53
2020; 52
2022; 34
2022; 37
2020; 46
2021; 153
2022; 32
2021; 2021
2021; 7
2021; 44
2020; 40
2020; 181
1995
2022; 119
2016; 16
2021; 14
2021; 15
2021; 98
2022; 2022
2021; 11
2020; 75
2022
2020; 30
2021; 134
2020; 196
2021
2021; 137
2020
2020; 71
2021; 19
2020; 26
2018
2022; 14
2020; 68
2021; 571
2022; 10
2022; 16
2022; 225
2022; 149
e_1_2_14_73_1
e_1_2_14_75_1
e_1_2_14_52_1
e_1_2_14_50_1
e_1_2_14_71_1
e_1_2_14_35_1
e_1_2_14_56_1
e_1_2_14_12_1
e_1_2_14_33_1
e_1_2_14_54_1
e_1_2_14_14_1
e_1_2_14_39_1
e_1_2_14_77_1
e_1_2_14_16_1
e_1_2_14_37_1
e_1_2_14_58_1
e_1_2_14_79_1
e_1_2_14_6_1
e_1_2_14_8_1
e_1_2_14_60_1
e_1_2_14_2_1
e_1_2_14_20_1
e_1_2_14_4_1
e_1_2_14_62_1
e_1_2_14_81_1
e_1_2_14_45_1
e_1_2_14_68_1
e_1_2_14_43_1
e_1_2_14_66_1
e_1_2_14_22_1
e_1_2_14_28_1
e_1_2_14_49_1
e_1_2_14_26_1
e_1_2_14_47_1
e_1_2_14_19_1
Sheela M.S. (e_1_2_14_25_1) 2022
Yang Y. (e_1_2_14_10_1) 2020
e_1_2_14_72_1
e_1_2_14_74_1
e_1_2_14_30_1
e_1_2_14_53_1
e_1_2_14_51_1
e_1_2_14_70_1
e_1_2_14_11_1
e_1_2_14_34_1
e_1_2_14_57_1
e_1_2_14_13_1
e_1_2_14_32_1
e_1_2_14_55_1
e_1_2_14_15_1
e_1_2_14_38_1
e_1_2_14_76_1
e_1_2_14_17_1
e_1_2_14_36_1
e_1_2_14_59_1
e_1_2_14_78_1
e_1_2_14_29_1
e_1_2_14_5_1
Gaur P. (e_1_2_14_31_1) 2021
Padhye N.S (e_1_2_14_41_1) 2021
e_1_2_14_9_1
Singh B. (e_1_2_14_24_1) 2022
e_1_2_14_42_1
e_1_2_14_63_1
e_1_2_14_80_1
e_1_2_14_3_1
Lyng G.D (e_1_2_14_7_1) 2020; 26
e_1_2_14_40_1
e_1_2_14_61_1
e_1_2_14_23_1
e_1_2_14_46_1
e_1_2_14_67_1
e_1_2_14_21_1
e_1_2_14_44_1
e_1_2_14_65_1
e_1_2_14_27_1
e_1_2_14_48_1
e_1_2_14_69_1
e_1_2_14_18_1
Liang C. (e_1_2_14_64_1) 2018
References_xml – volume: 26
  start-page: 672
  issue: 5
  year: 2020
  end-page: 675
  article-title: Identifying optimal COVID‐19 testing strategies for schools and businesses: Balancing testing
  publication-title: Nat. Med
– volume: 25
  start-page: 1336
  issue: 5
  year: 2021
  end-page: 1346
  article-title: Multiscale attention guided network for COVID‐19 diagnosis using chest X‐ray images
  publication-title: IEEE J. Biomed. Health Inform
– volume: 196
  year: 2020
  article-title: Explainable deep learning for pulmonary disease and Coronavirus COVID‐19 detection from X‐rays
  publication-title: Comput. Methods Programs Biomed
– volume: 149
  year: 2022
  article-title: COVID‐19 diagnosis via chest X‐ray image classification based on multiscale class residual attention
  publication-title: Comput. Biol. Med
– volume: 128
  year: 2020
  article-title: Comparison of seven commercial RT‐PCR diagnostic kits for COVID‐19
  publication-title: J. Clin. Virol
– volume: 181
  start-page: 1423
  issue: 6
  year: 2020
  end-page: 1433
  article-title: Clinically applicable AI system for accurate diagnosis, quantitative measurements, and prognosis of COVID‐19 pneumonia using computed tomography
  publication-title: Cell
– volume: 19
  start-page: 1
  issue: 1
  year: 2020
  end-page: 14
  article-title: Differentiating novel coronavirus pneumonia from general pneumonia based on machine learning
  publication-title: Biomed. Eng. Online
– volume: 28
  start-page: 497
  issue: 3
  year: 2021
  end-page: 505
  article-title: Diagnosis of COVID‐19 using CT scan images and deep learning techniques
  publication-title: Emerg. Radiol
– volume: 71
  year: 2022
  article-title: A deep learning based approach for automatic detection of COVID‐19 cases using chest X‐ray images
  publication-title: Biomed. Signal Process. Control
– year: 2021
– volume: 71
  year: 2022
  article-title: COVID‐19 disease identification from chest CT images using empirical wavelet transformation and transfer learning
  publication-title: Biomed. Signal Process. Control
– start-page: 2018
  year: 2018
  article-title: Prediction of compressive strength of concrete in wet‐dry environment by BP artificial neural networks
  publication-title: Adv. Mater. Sci. Eng
– year: 2021
  article-title: Automatic diagnosis of Covid‐19 from CT images using cyclegan and transfer learning
– volume: 14
  start-page: 5820
  issue: 10
  year: 2022
  article-title: Deep learning models for COVID‐19 detection
  publication-title: Sustainability
– volume: 75
  start-page: 1809
  issue: 7
  year: 2020
  end-page: 1812
  article-title: Distinct characteristics of COVID‐19 patients with initial rRT‐PCR‐positive and rRT‐PCR‐negative results for SARS‐CoV‐2
  publication-title: Allergy
– volume: 71
  start-page: 2249
  issue: 16
  year: 2020
  end-page: 2251
  article-title: Profile of RT‐PCR for SARS‐CoV‐2: A preliminary study from 56 COVID‐19 patients
  publication-title: Clin. Infectious Dis
– volume: 28
  start-page: 11672
  issue: 9
  year: 2021
  end-page: 11682
  article-title: Prediction of the confirmed cases and deaths of global COVID‐19 using artificial intelligence
  publication-title: Environ. Sci. Poll. Res
– volume: 2022
  year: 2022
  article-title: A hybrid feature extraction method for Nepali COVID‐19‐related tweets classification
  publication-title: Comput. Intell. Neurosci
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  end-page: 13
  article-title: A multi‐scale gated multi‐head attention depthwise separable CNN model for recognizing COVID‐19
  publication-title: Sci. Rep
– year: 2020
  article-title: Automatic diagnosis of COVID‐19 and pneumonia using FBD method
– volume: 16
  start-page: 2101
  issue: 8
  year: 2022
  end-page: 2113
  article-title: A COVID‐19 CXR image recognition method based on MSA‐DDCovidNet
  publication-title: IET Image Process
– volume: 64
  year: 2021
  article-title: Application of deep learning techniques for detection of COVID‐19 cases using chest X‐ray images: A comprehensive study
  publication-title: Biomed. Signal Process. Control
– volume: 15
  start-page: 2604
  issue: 11
  year: 2021
  end-page: 2613
  article-title: A multi‐class COVID‐19 segmentation network with pyramid attention and edge loss in CT images
  publication-title: IET Image Process
– volume: 10
  start-page: 34207
  year: 2022
  end-page: 34220
  article-title: Low‐complexity PSO‐based resource allocation scheme for cooperative non‐linear SWIPT‐enabled NOMA
  publication-title: IEEE Access
– volume: 31
  start-page: 2819
  issue: 5
  year: 2021
  end-page: 2824
  article-title: The sensitivity and specificity of chest CT in the diagnosis of COVID‐19
  publication-title: Euro. Radiol
– volume: 23
  issue: 2
  year: 2021
  article-title: COVID‐19: Virology, biology and novel laboratory diagnosis
  publication-title: J. Gene Med.
– volume: 98
  year: 2021
  article-title: CNN‐based transfer learning–BiLSTM network: A novel approach for COVID‐19 infection detection
  publication-title: Appl. Soft Comput
– year: 2022
– volume: 46
  start-page: 1642
  issue: 8
  year: 2020
  end-page: 1644
  article-title: Rapidly scalable mechanical ventilator for the COVID‐19 pandemic
  publication-title: Intensive Care Med
– start-page: 635
  year: 2022
  end-page: 650
– volume: 10
  start-page: 3233
  issue: 9
  year: 2020
  article-title: Transfer learning with deep convolutional neural network (CNN) for pneumonia detection using chest X‐ray
  publication-title: Applied Sciences
– volume: 119
  year: 2022
  article-title: Detection of COVID19 from X‐ray images using multiscale deep convolutional neural network
  publication-title: Appl. Soft Comput
– year: 2021
  article-title: Hybrid deep learning model for diagnosis of Covid‐19 using Ct scans and clinical/demographic data
– volume: 34
  start-page: 8933
  issue: 11
  year: 2022
  end-page: 8957
  article-title: Hybridization of soft‐computing algorithms with neural network for prediction obstructive sleep apnea using biomedical sensor measurements
  publication-title: Neural Comput. Appl
– volume: 24
  start-page: 327
  issue: 2
  year: 2021
  end-page: 352
  article-title: Covid CT‐net: A deep learning framework for COVID‐19 prognosis using CT images
  publication-title: J. Interdisciplinary Math
– start-page: 1
  year: 2022
  end-page: 8
  article-title: Hybrid PSO–SVM algorithm for Covid‐19 Screeniwcng and quantification
  publication-title: Int. J. Inf. Technol
– start-page: 2097
  end-page: 2106
  article-title: Chestx‐ray8: Hospital‐scale chest x‐ray database and benchmarks on weakly‐supervised classification and localization of common thorax diseases
– volume: 20
  year: 2021
  article-title: Predicting mortality risk in patients with COVID‐19 using machine learning to help medical decision‐making
  publication-title: Smart Health
– volume: 98
  year: 2021
  article-title: An optimized deep learning architecture for the diagnosis of COVID‐19 disease based on gravitational search optimization
  publication-title: Appl. Soft Comput
– volume: 52
  start-page: 549
  issue: 11
  year: 2020
  end-page: 557
  article-title: The COVID‐19 pandemic: A global health crisis
  publication-title: Physiol. Genom
– volume: 19
  start-page: 141
  issue: 3
  year: 2021
  end-page: 154
  article-title: Characteristics of SARS‐CoV‐2 and COVID‐19
  publication-title: Nat. Rev. Microbiol
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  end-page: 12
  article-title: Fusion of multi‐scale bag of deep visual words features of chest X‐ray images to detect COVID‐19 infection
  publication-title: Sci. Rep
– year: 1995
  article-title: Introduction to artificial neural networks
– volume: 30
  start-page: 6485
  issue: 12
  year: 2020
  end-page: 6496
  article-title: Comparison of the computed tomography findings in COVID‐19 and other viral pneumonia in immunocompetent adults: A systematic review and meta‐analysis
  publication-title: Euro. Radiol
– volume: 37
  start-page: 1572
  issue: 2
  year: 2022
  end-page: 1598
  article-title: NAGNN: Classification of COVID‐19 based on neighboring aware representation from deep graph neural network
  publication-title: Int. J. Intell. Syst
– volume: 137
  year: 2021
  article-title: Accurate detection of COVID‐19 using deep features based on X‐ray images and feature selection methods
  publication-title: Comput. Biol. Med
– volume: 44
  start-page: 304
  issue: 3
  year: 2021
  end-page: 316
  article-title: Artificial neural network and logistic regression modelling to characterize COVID‐19 infected patients in local areas of Iran
  publication-title: Biomed. J
– volume: 153
  start-page: 363
  year: 2021
  end-page: 375
  article-title: Deep learning model for forecasting COVID‐19 outbreak in Egypt
  publication-title: Process Safety Environ. Protect
– volume: 16
  start-page: 333
  issue: 2
  year: 2022
  end-page: 343
  article-title: A coarse‐refine segmentation network for COVID‐19 CT images
  publication-title: IET Image Process
– volume: 34
  issue: 03
  year: 2022
  article-title: Diagnosis of Covid‐19 based on artificial intelligence models and physiological sensors
  publication-title: Biomed. Eng. Appl. Basis Commun.
– volume: 14
  start-page: 643
  issue: 5
  year: 2021
  end-page: 652
  article-title: Assessing and predicting air quality in northern Jordan during the lockdown due to the COVID‐19 virus pandemic using artificial neural network
  publication-title: Air Quality Atmos. Health
– volume: 14
  start-page: 811
  issue: 7
  year: 2021
  end-page: 816
  article-title: COVID‐19 prevalence forecasting using autoregressive integrated moving average (ARIMA) and artificial neural networks (ANN): Case of Turkey
  publication-title: J. Infect. Public Health
– volume: 32
  start-page: 205
  issue: 1
  year: 2022
  end-page: 212
  article-title: Artificial intelligence for prediction of COVID‐19 progression using CT imaging and clinical data
  publication-title: Euro. Radiol
– year: 2021
  article-title: Reconstructed diagnostic sensitivity and specificity of the RT‐PCR test for COVID‐19
  publication-title: MedRxiv
– year: 2021
  article-title: COVID‐19 detection using transfer learning with convolutional neural network
– volume: 134
  year: 2021
  article-title: FBSED based automatic diagnosis of COVID‐19 using X‐ray and CT images
  publication-title: Comput. Biol. Med
– volume: 126
  year: 2020
  article-title: Diagnosis of the Coronavirus disease (COVID‐19): rRT‐PCR or CT?
  publication-title: Eur. J. Radiol
– volume: 32
  start-page: 2235
  issue: 4
  year: 2022
  end-page: 2245
  article-title: Artificial intelligence for stepwise diagnosis and monitoring of COVID‐19
  publication-title: Eur. Radiol
– volume: 7
  issue: 10
  year: 2021
  article-title: Application of machine learning in the prediction of COVID‐19 daily new cases: A scoping review
  publication-title: Heliyon
– volume: 40
  start-page: 2586
  issue: 11
  year: 2020
  end-page: 2597
  article-title: COVID‐19 and respiratory system disorders: Current knowledge, future clinical and translational research questions
  publication-title: Arterioscler. Thromb. Vasc. Biol
– start-page: 379
  year: 2021
– year: 2020
  article-title: Time course of lung changes on chest CT during recovery from 2019 novel coronavirus (COVID‐19) pneumonia
  publication-title: Radiology
– volume: 19
  start-page: 1
  issue: 1
  year: 2020
  end-page: 13
  article-title: Rapid identification of COVID‐19 severity in CT scans through classification of deep features
  publication-title: BioMed. Eng. Online
– volume: 16
  start-page: 1043
  issue: 8
  year: 2016
  article-title: A wireless sensor network with soft computing localization techniques for track cycling applications
  publication-title: Sensors
– volume: 2021
  year: 2021
  article-title: Research on classification of COVID‐19 chest X‐ray image modal feature fusion based on deep learning
  publication-title: J. Healthcare Eng
– volume: 36
  start-page: 4033
  issue: 8
  year: 2021
  end-page: 4064
  article-title: Learning to learn by yourself: Unsupervised meta‐learning with self‐knowledge distillation for COVID‐19 diagnosis from pneumonia cases
  publication-title: Int. J. Intell. Syst
– volume: 123
  year: 2022
  article-title: Explainable artificial intelligence‐based edge fuzzy images for COVID‐19 detection and identification
  publication-title: Appl. Soft Comput
– volume: 68
  year: 2020
  article-title: When pandemics impact economies and climate change: Exploring the impacts of COVID‐19 on oil and electricity demand in China
  publication-title: Energy Res. Social Sci
– volume: 72
  year: 2022
  article-title: COVID‐19 diagnosis from routine blood tests using artificial intelligence techniques
  publication-title: Biomed. Signal Process. Control
– volume: 11
  year: 2020
  article-title: A methodological approach for predicting COVID‐19 epidemic using EEMD‐ANN hybrid model
  publication-title: Internet of Things
– year: 1995
– volume: 53
  start-page: 404
  issue: 3
  year: 2020
  end-page: 412
  article-title: Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2): Facts and myths
  publication-title: J. Microbiol. Immunol. Infect.
– volume: 15
  start-page: 1814
  issue: 8
  year: 2021
  end-page: 1824
  article-title: COVID‐19 disease severity assessment using CNN model
  publication-title: IET Image Process
– year: 2020
  article-title: Evaluating the accuracy of different respiratory specimens in the laboratory diagnosis and monitoring the viral shedding of 2019‐nCoV infections
  publication-title: MedRxiv
– volume: 571
  start-page: 676
  year: 2021
  end-page: 692
  article-title: CoV2‐detect‐net: Design of COVID‐19 prediction model based on hybrid DE‐PSO with SVM using chest X‐ray images
  publication-title: Inform. Sci
– volume: 36
  start-page: 5085
  issue: 9
  year: 2021
  end-page: 5115
  article-title: Machine learning for medical imaging‐based COVID‐19 detection and diagnosis
  publication-title: Int. J. Intell. Syst
– volume: 225
  year: 2022
  article-title: Classification of lungs infected COVID‐19 images based on inception‐ResNet
  publication-title: Comput. Methods Programs Biomed
– volume: 2022
  year: 2022
  article-title: COVID‐19 detection based on lung Ct scan using deep learning techniques
  publication-title: Comput. Math. Methods Med
– ident: e_1_2_14_46_1
  doi: 10.1148/radiol.2020200370
– ident: e_1_2_14_49_1
  doi: 10.1016/j.psep.2021.07.034
– ident: e_1_2_14_66_1
  doi: 10.1016/j.jiph.2021.04.015
– ident: e_1_2_14_45_1
  doi: 10.1016/j.ejrad.2020.108961
– ident: e_1_2_14_53_1
  doi: 10.1007/s11356-020-11930-6
– ident: e_1_2_14_20_1
  doi: 10.1007/s00330-021-08049-8
– ident: e_1_2_14_15_1
  doi: 10.1016/j.cell.2020.04.045
– ident: e_1_2_14_74_1
  doi: 10.1049/ipr2.12153
– start-page: 379
  volume-title: Biomedical Signal and Image Processing with Artificial Intelligence
  year: 2021
  ident: e_1_2_14_31_1
– ident: e_1_2_14_40_1
  doi: 10.1080/09720502.2020.1857905
– ident: e_1_2_14_65_1
  doi: 10.1016/j.heliyon.2021.e08143
– ident: e_1_2_14_34_1
  doi: 10.1109/JBHI.2021.3058293
– ident: e_1_2_14_55_1
  doi: 10.1007/s00521-022-06919-w
– ident: e_1_2_14_4_1
  doi: 10.1002/jgm.3303
– ident: e_1_2_14_8_1
  doi: 10.1007/s00134-020-06113-3
– ident: e_1_2_14_21_1
  doi: 10.1016/j.smhl.2020.100178
– ident: e_1_2_14_61_1
– ident: e_1_2_14_54_1
  doi: 10.1016/j.asoc.2020.106742
– ident: e_1_2_14_79_1
  doi: 10.3390/su14105820
– ident: e_1_2_14_47_1
  doi: 10.1016/j.iot.2020.100228
– ident: e_1_2_14_3_1
  doi: 10.1016/j.jmii.2020.02.012
– ident: e_1_2_14_52_1
  doi: 10.1007/s11869-020-00968-7
– ident: e_1_2_14_29_1
  doi: 10.1109/BIBM49941.2020.9313252
– ident: e_1_2_14_56_1
– ident: e_1_2_14_27_1
  doi: 10.1016/j.compbiomed.2021.104454
– ident: e_1_2_14_36_1
  doi: 10.1016/j.compbiomed.2022.106065
– ident: e_1_2_14_73_1
  doi: 10.1155/2021/6799202
– ident: e_1_2_14_14_1
  doi: 10.1049/ipr2.12249
– ident: e_1_2_14_57_1
  doi: 10.1016/j.ins.2021.03.062
– ident: e_1_2_14_23_1
  doi: 10.1186/s12938-020-00807-x
– year: 2021
  ident: e_1_2_14_41_1
  article-title: Reconstructed diagnostic sensitivity and specificity of the RT‐PCR test for COVID‐19
  publication-title: MedRxiv
– ident: e_1_2_14_33_1
  doi: 10.1038/s41598-021-94944-5
– ident: e_1_2_14_72_1
  doi: 10.1016/j.cmpb.2020.105608
– ident: e_1_2_14_35_1
  doi: 10.1038/s41598-021-03287-8
– ident: e_1_2_14_50_1
  doi: 10.1016/j.bj.2021.02.006
– ident: e_1_2_14_71_1
  doi: 10.1002/int.22449
– ident: e_1_2_14_81_1
  doi: 10.1049/ipr2.12474
– ident: e_1_2_14_11_1
  doi: 10.1038/s41579-020-00459-7
– ident: e_1_2_14_78_1
  doi: 10.1016/j.asoc.2022.108966
– ident: e_1_2_14_32_1
  doi: 10.1016/j.asoc.2022.108610
– ident: e_1_2_14_59_1
  doi: 10.3390/s16081043
– volume: 26
  start-page: 672
  issue: 5
  year: 2020
  ident: e_1_2_14_7_1
  article-title: Identifying optimal COVID‐19 testing strategies for schools and businesses: Balancing testing
  publication-title: Nat. Med
– ident: e_1_2_14_43_1
  doi: 10.1093/cid/ciaa460
– ident: e_1_2_14_69_1
  doi: 10.1155/2022/5681574
– ident: e_1_2_14_22_1
  doi: 10.1186/s12938-020-00809-9
– ident: e_1_2_14_38_1
– ident: e_1_2_14_39_1
  doi: 10.1109/CVPR.2017.369
– ident: e_1_2_14_58_1
  doi: 10.1016/j.compbiomed.2021.104771
– ident: e_1_2_14_6_1
  doi: 10.1152/physiolgenomics.00089.2020
– ident: e_1_2_14_9_1
  doi: 10.1016/j.jcv.2020.104412
– ident: e_1_2_14_16_1
  doi: 10.1002/int.22504
– ident: e_1_2_14_63_1
  doi: 10.4015/S1016237222500065
– ident: e_1_2_14_2_1
– ident: e_1_2_14_13_1
  doi: 10.1007/s00330-020-07018-x
– ident: e_1_2_14_19_1
  doi: 10.1109/ICIP42928.2021.9506661
– start-page: 2018
  year: 2018
  ident: e_1_2_14_64_1
  article-title: Prediction of compressive strength of concrete in wet‐dry environment by BP artificial neural networks
  publication-title: Adv. Mater. Sci. Eng
– ident: e_1_2_14_62_1
  doi: 10.21203/rs.3.rs-790321/v1
– ident: e_1_2_14_75_1
  doi: 10.1016/j.cmpb.2022.107053
– ident: e_1_2_14_70_1
  doi: 10.1049/ipr2.12278
– ident: e_1_2_14_80_1
  doi: 10.1155/2022/7672196
– ident: e_1_2_14_48_1
  doi: 10.1016/j.erss.2020.101654
– ident: e_1_2_14_51_1
  doi: 10.1016/j.asoc.2020.106912
– ident: e_1_2_14_60_1
  doi: 10.1109/ACCESS.2022.3162838
– ident: e_1_2_14_44_1
  doi: 10.1007/s10140-020-01886-y
– ident: e_1_2_14_77_1
  doi: 10.1007/s00330-021-08334-6
– ident: e_1_2_14_37_1
  doi: 10.1016/j.bspc.2020.102365
– ident: e_1_2_14_28_1
– ident: e_1_2_14_68_1
  doi: 10.1002/int.22686
– ident: e_1_2_14_12_1
  doi: 10.1007/s00330-020-07347-x
– ident: e_1_2_14_30_1
  doi: 10.1016/j.bspc.2021.103076
– ident: e_1_2_14_67_1
  doi: 10.3390/app10093233
– start-page: 635
  volume-title: A Hybrid MSVM COVID‐19 Image Classification Enhanced with Swarm Feature Optimization. Computational Intelligence in Data Mining
  year: 2022
  ident: e_1_2_14_24_1
– ident: e_1_2_14_42_1
  doi: 10.1111/all.14316
– ident: e_1_2_14_76_1
  doi: 10.1016/j.bspc.2021.103263
– year: 2020
  ident: e_1_2_14_10_1
  article-title: Evaluating the accuracy of different respiratory specimens in the laboratory diagnosis and monitoring the viral shedding of 2019‐nCoV infections
  publication-title: MedRxiv
– ident: e_1_2_14_18_1
  doi: 10.1109/ICREST51555.2021.9331029
– ident: e_1_2_14_5_1
  doi: 10.1161/ATVBAHA.120.314515
– ident: e_1_2_14_17_1
  doi: 10.1109/ICASSP39728.2021.9414745
– start-page: 1
  year: 2022
  ident: e_1_2_14_25_1
  article-title: Hybrid PSO–SVM algorithm for Covid‐19 Screeniwcng and quantification
  publication-title: Int. J. Inf. Technol
– ident: e_1_2_14_26_1
  doi: 10.1016/j.bspc.2021.103182
SSID ssj0001342041
Score 2.2397814
Snippet The 2019 coronavirus disease began in Wuhan, China, and spread worldwide. This pandemic was concerning, given its significant and worrying impact on human...
SourceID unpaywall
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
SubjectTerms Accuracy
Algorithms
ANN
Artificial intelligence
Artificial neural networks
clinical parameters
Computed tomography
Coronaviruses
COVID-19
CT scan
Deep learning
Diagnosis
Disease prevention
Disease transmission
D‐dimer
Genomes
Heart rate
Infections
Laboratories
Medical imaging
Neural networks
Pandemics
Parameters
Particle swarm optimization
Patients
Pneumonia
Polymerase chain reaction
Principal components analysis
PSO
Respiratory failure
Support vector machines
Tomography
Viral diseases
X-rays
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwEB6V7QE4IMqPWCiVJXpCCrVjJ1kfKgTtVksPC0It6i3y37agTbJ0U1XtiUfooU_IkzD2Ol162VukRHbibzwzGc_MB7CNNpxnQuP-5ponwsk8Uf5nRcpCDYSx0uiQIDvOR8fi8CQ7WYNxVwvj0yo7nRgUtW2Mj5HvcIquyIAzJj_OfieeNcqfrnYUGipSK9jd0GLsAaynvjNWD9Y_D8ffvi-jLlykNNBZpiiN-II063qWCrnT_nLpB4YWM79vpZau58OLeqauLtV0et-ZDdbo4Ck8iW4k-bTAfQPWXP0MHv_XXPA53I6ufDVWrLMkzYTMopiQ-aU6r0iD2qLqbqvpKX5te1YRH5klvs0ljl8vksQJerZk7-uPL_t__9wwSXyy_CkxkRDi57WzpG2q2PyazBEtompLuqpLP7GqfN7N_AUcHwyP9kZJ5GBIDC5Dnkgj_MFiITVCl3GFxksYVAp8wo3haPaYtQW1OVWTgRWZQu_LOsZyrVE4aKH5S-jVTe1eASlclhpqGFM6FY5yTbXMpLCTTPFB7oo-vOvWvJwtWm2U4YhcyNIjUwZk-rDZwVHG7TYvl8LRh-07iFaO8j6gt-KR8uhwmIar16unfAOPPAf9Ii6zCb32_MK9RU-l1VtR_P4BiY7pFg
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT9wwFH4qw6Fw6EarDtDKUjkhZRqP7WR8RCwaONAeGASnyFuAdpKMZjJCcOpP6KG_kF_CcxZgekCVeouU2LH9ts_2WwC20IYzwTXKN9Ms4E5GgfKbFSljNeDGSqMrB9njaDjiR2fi7EkUf50f4uHAzUtGpa-9gE9sWuv5etfJ5dfyh-v3KJq4aAmWI4FovAPLo-PvO-e-phzyGw4hFG1W0oUGi3boEVy-nOcTdXOtxuNFuFrZm4PXoNqR1m4mP3vzUvfM7V9JHP9nKm_gVQNGyU7NPW_hhcvfweqTFIVr8Gd442O6mmhNUqRk0jAbmV2raUYK1DlZ-1qNL4rpVXmZEX--S3yyTOw_r13NCeJjsvvt9HDv7tdvKol3ub8gpikrcXXrLCmLrEmhTWZIc6JyS9rYTf9jlXnvndl7GB3sn-wOg6aSQ2BwQlEgDffXk7HUyACCKTSB3KBqYSkzhqHxpNbGoY1ClQ4sFwoxnHWURloji4WxZh-gkxe5-wgkdqJvQkOp0n3uQqZDLYXkNhWKDSIXd-FLS9dkUifsSKqLdi4Tv8ZJtcZd2GxJnjRCO0tYiGh3wCiVXdh6YINne9muyPrMJ8nJ0X6_elr_tz43YMVXtK9PeTahU07n7hPinlJ_blj7HoFrBXs
  priority: 102
  providerName: Unpaywall
Title Hybridization of particle swarm optimization algorithm with neural network for COVID‐19 using computerized tomography scan and clinical parameters
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Ftje2.12226
https://www.proquest.com/docview/3092383119
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/tje2.12226
UnpaywallVersion publishedVersion
Volume 2023
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2051-3305
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001342041
  issn: 2051-3305
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2051-3305
  dateEnd: 20241231
  omitProxy: true
  ssIdentifier: ssj0001342041
  issn: 2051-3305
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2051-3305
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001342041
  issn: 2051-3305
  databaseCode: ADMLS
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBHI
  databaseName: IET Digital Library Open Access
  customDbUrl:
  eissn: 2051-3305
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001342041
  issn: 2051-3305
  databaseCode: IDLOA
  dateStart: 20130601
  isFulltext: true
  titleUrlDefault: https://digital-library.theiet.org/content/collections
  providerName: Institution of Engineering and Technology
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2051-3305
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001342041
  issn: 2051-3305
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2051-3305
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001342041
  issn: 2051-3305
  databaseCode: BENPR
  dateStart: 20210201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 2051-3305
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001342041
  issn: 2051-3305
  databaseCode: AVUZU
  dateStart: 20130601
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2051-3305
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001342041
  issn: 2051-3305
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKewAOCGgRC2VliZ4qpdix87DEZWl3WSq6XdFuVU6RX1uKNslqN1VVTvwEDvxCfgljJ-nSSyUueSiJHfmb8YzH80BoB2Q4i7gC_maKBdyKOJBusSJEIlOujdDKO8iO4uGEH55H52vofRsLU-eHuDW4Oc7w87VjcKnqKiSg1AKI1Xcb7lEQb_EDtAE9CkffIR-vLCyMh8SXrgyB8uBnSNTmJ-Xi3erzuxJppWY-vCrm8uZazmZ3FVcveQZP0ZNGZcS9GuNnaM0Wz9HjfxIJbqLfwxsXedXEVOJyiucNSeDltVzkuISZIW8fy9lFubisvuXYWWGxS2kJ7Re1QzgGLRbvH599Ovjz8xcV2DnGX2DdFH-4_GENrsq8SXSNl4AMloXBbYSl61jmzsdmuYUmg_7p_jBo6i0EGoYhDoTmbhMxEQpgipgEQcU1TABsyrRmIOKoMQkxMZHT1PBIgqZlLKWxUkAIJFHsBVovysK-RDixUaiJplSqkFvCFFEiEtxMI8nS2CYd9LYd82xep9XI_HY4F5lDJvPIdNB2C0fWsNYyYwR00pRRKjpo5xaie1vZ9ejd80p2etgP_dWr_3n5NXrkqs_XFplttF4truwb0FEq1fWkCMd08LGLNnoHR59P4PyhPxp_6fp1P9xNRuPe178ci-oH
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFB2VdlFYIJ4iUGAkygbJdF62M4sKQZsqaUtAKEXdmXmlgGI71K6isOITWPA9fAxfwh1nTOgmu-4s2Rrbc8_ce-bOfSC0DTacx0LD-uaaR8LJJFJ-syJlqrrCWGl0EyA7TPon4vA0Pl1Dv9tcGB9W2erERlHb0ngf-Q4nQEW6nFL5avot8l2j_Olq20JDhdYKdrcpMRYSO47cfAZbuGp3sA_yfs7YQW-0149Cl4HIAPVIImmEPzpLpYaPi7kC9SwMwJ6PuTEcFDu1NiU2IWrctSJWwC-sozTRGn6fpJrDuNfQhuBCwuZv401v-P7D0svDBSNN-0wG6IcJIXFbI1XInfqrYy8pWOjkslVcUt3Ni2Kq5jM1mVwmz431O7iFbgbail8vcHYbrbniDrrxXzHDu-hXf-6zv0JeJy7HeBpgiauZOs9xCdopb2-ryRnMbv05x94TjH1ZTRi_WASlY2DSeO_dx8H-nx8_qcQ-OP8Mm9CA4st3Z3Fd5qHYNq4AHVgVFrdZnv7FKvdxPtU9dHIl0riP1ouycA8QTl3MDDGUKs2EI1wTLWMp7DhWvJu4tIOetXOeTRelPbLmSF7IzEsmayTTQVutOLKwvKtsCcYO2v4nopWjvGikt-KRbHTYY83Vw9WvfIo2-6O3x9nxYHj0CF1nwLoWPqEttF6fX7jHwJJq_SRAEaNPV43-v58eJNU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BVuJxQDzVhQKW6AkpYMdOsj5WbVfbggqHblVxifxKabVJVrupqnLiJ3DgF_aXdJw4XXqpxC1SLCfyN-P5PJ4HwCbacJ4IjfrNNY-Ek2mk_GFFykyNhLHS6DZA9iCdTMX-cXIcYnN8LkxXH-LG4eY1o92vvYK7uS26A6fwRTKbMxd_Ymjf0vuwhoacigGsbR1Nf0xXThYuYtp2r4xR-PB_aNKXKBXy82qC20ZpxTQfnldzdXmhZrPb3LU1PuOn8CSwRrLVwfwM7rnqOTz-p5bgC_g7ufTJVyGtktQFmQepIMsLtShJjZtD2b9Ws5N6cdr8LIl3xBJf1RLnr7qYcIJElmx_O9rbufr9h0niY-NPiAn9H05_OUuaugy1rskSwSGqsqRPsvQfVqUPs1m-hOl493B7EoWWC5HBZUgjaYS_R8ykRqQSrtBWCYN7AC-4MRytHLM2ozalqhhZkSgkW9YxlmqNskAzzV_BoKortw4kc0lsqGFM6Vg4yjXVMpHCFonio9RlQ_jQr3k-7ypr5O2NuJC5RyZvkRnCRg9HHrRrmXOKtHTEGZND2LyB6M5ZPrbo3TEkP9zfjdun1_8z-D08-L4zzr_uHXx5A498L_rOP7MBg2Zx7t4iY2n0uyCX1ysE6A4
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT9wwFH4qw6Fw6EarDtDKUjkhZRqP7WR8RCwaONAeGASnyFuAdpKMZjJCcOpP6KG_kF_CcxZgekCVeouU2LH9ts_2WwC20IYzwTXKN9Ms4E5GgfKbFSljNeDGSqMrB9njaDjiR2fi7EkUf50f4uHAzUtGpa-9gE9sWuv5etfJ5dfyh-v3KJq4aAmWI4FovAPLo-PvO-e-phzyGw4hFG1W0oUGi3boEVy-nOcTdXOtxuNFuFrZm4PXoNqR1m4mP3vzUvfM7V9JHP9nKm_gVQNGyU7NPW_hhcvfweqTFIVr8Gd442O6mmhNUqRk0jAbmV2raUYK1DlZ-1qNL4rpVXmZEX--S3yyTOw_r13NCeJjsvvt9HDv7tdvKol3ub8gpikrcXXrLCmLrEmhTWZIc6JyS9rYTf9jlXnvndl7GB3sn-wOg6aSQ2BwQlEgDffXk7HUyACCKTSB3KBqYSkzhqHxpNbGoY1ClQ4sFwoxnHWURloji4WxZh-gkxe5-wgkdqJvQkOp0n3uQqZDLYXkNhWKDSIXd-FLS9dkUifsSKqLdi4Tv8ZJtcZd2GxJnjRCO0tYiGh3wCiVXdh6YINne9muyPrMJ8nJ0X6_elr_tz43YMVXtK9PeTahU07n7hPinlJ_blj7HoFrBXs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybridization+of+particle+swarm+optimization+algorithm+with+neural+network+for+COVID%E2%80%9019+using+computerized+tomography+scan+and+clinical+parameters&rft.jtitle=Journal+of+engineering+%28Stevenage%2C+England%29&rft.au=Sameer%2C+Humam+Adnan&rft.au=Gharghan%2C+Sadik+Kamel&rft.au=Mutlag%2C+Ammar+Hussein&rft.date=2023-01-01&rft.issn=2051-3305&rft.eissn=2051-3305&rft.volume=2023&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1049%2Ftje2.12226&rft.externalDBID=10.1049%252Ftje2.12226&rft.externalDocID=TJE212226
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-3305&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-3305&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-3305&client=summon