Hybridization of particle swarm optimization algorithm with neural network for COVID‐19 using computerized tomography scan and clinical parameters
The 2019 coronavirus disease began in Wuhan, China, and spread worldwide. This pandemic was concerning, given its significant and worrying impact on human health. Strategies to manage the disease begin with diagnosing the infection, often using the real‐time reverse transcription polymerase chain re...
Saved in:
| Published in | Journal of engineering (Stevenage, England) Vol. 2023; no. 2 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
London
John Wiley & Sons, Inc
01.01.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2051-3305 2051-3305 |
| DOI | 10.1049/tje2.12226 |
Cover
| Abstract | The 2019 coronavirus disease began in Wuhan, China, and spread worldwide. This pandemic was concerning, given its significant and worrying impact on human health. Strategies to manage the disease begin with diagnosing the infection, often using the real‐time reverse transcription polymerase chain reaction (RT‐PCR) assay. However, this process is time intensive. Therefore, alternative rapid methods to diagnose the coronavirus with high accuracy are needed. X‐ray and computerized tomography (CT) scans are reasonable solutions for rapid coronavirus diagnosis. The dataset of 500 patients was tested, including 286 uninfected patients and 214 infected with COVID‐19. Clinical parameters, including heart rate (HR), temperature (T), blood oxygen level, D‐dimer, and CT scan, including red‐green‐blue (RGB) pixel values of the left and right lungs, were collected from 500 patients and used to train an artificial neural network (ANN) to diagnose coronavirus. The ANN was hybridized with a particle swarm optimization (PSO) algorithm to improve diagnosis accuracy. The results show that the proposed PSO‐ANN method significantly improved diagnosis accuracy (98.93%), sensitivity (100%), and specificity (98.13%). The effectiveness of the proposed method was confirmed by comparing the findings with those of previous studies.
This study tested the dataset of 500 patients, including 286 uninfected patients and 214 infected with COVID‐19. Clinical parameters, including heart rate, temperature, blood oxygen level, D‐dimer, and CT images, consisting of red‐green‐blue pixel valuesof the left and right lungs, were collected and used to train and artificial neural network (ANN) to diagonse Coronavirus. The ANN was hybridized with partical swarm optimization (PSO) to improve diagnosis accuracy. |
|---|---|
| AbstractList | The 2019 coronavirus disease began in Wuhan, China, and spread worldwide. This pandemic was concerning, given its significant and worrying impact on human health. Strategies to manage the disease begin with diagnosing the infection, often using the real‐time reverse transcription polymerase chain reaction (RT‐PCR) assay. However, this process is time intensive. Therefore, alternative rapid methods to diagnose the coronavirus with high accuracy are needed. X‐ray and computerized tomography (CT) scans are reasonable solutions for rapid coronavirus diagnosis. The dataset of 500 patients was tested, including 286 uninfected patients and 214 infected with COVID‐19. Clinical parameters, including heart rate (HR), temperature (T), blood oxygen level, D‐dimer, and CT scan, including red‐green‐blue (RGB) pixel values of the left and right lungs, were collected from 500 patients and used to train an artificial neural network (ANN) to diagnose coronavirus. The ANN was hybridized with a particle swarm optimization (PSO) algorithm to improve diagnosis accuracy. The results show that the proposed PSO‐ANN method significantly improved diagnosis accuracy (98.93%), sensitivity (100%), and specificity (98.13%). The effectiveness of the proposed method was confirmed by comparing the findings with those of previous studies. The 2019 coronavirus disease began in Wuhan, China, and spread worldwide. This pandemic was concerning, given its significant and worrying impact on human health. Strategies to manage the disease begin with diagnosing the infection, often using the real‐time reverse transcription polymerase chain reaction (RT‐PCR) assay. However, this process is time intensive. Therefore, alternative rapid methods to diagnose the coronavirus with high accuracy are needed. X‐ray and computerized tomography (CT) scans are reasonable solutions for rapid coronavirus diagnosis. The dataset of 500 patients was tested, including 286 uninfected patients and 214 infected with COVID‐19. Clinical parameters, including heart rate (HR), temperature (T), blood oxygen level, D‐dimer, and CT scan, including red‐green‐blue (RGB) pixel values of the left and right lungs, were collected from 500 patients and used to train an artificial neural network (ANN) to diagnose coronavirus. The ANN was hybridized with a particle swarm optimization (PSO) algorithm to improve diagnosis accuracy. The results show that the proposed PSO‐ANN method significantly improved diagnosis accuracy (98.93%), sensitivity (100%), and specificity (98.13%). The effectiveness of the proposed method was confirmed by comparing the findings with those of previous studies. This study tested the dataset of 500 patients, including 286 uninfected patients and 214 infected with COVID‐19. Clinical parameters, including heart rate, temperature, blood oxygen level, D‐dimer, and CT images, consisting of red‐green‐blue pixel valuesof the left and right lungs, were collected and used to train and artificial neural network (ANN) to diagonse Coronavirus. The ANN was hybridized with partical swarm optimization (PSO) to improve diagnosis accuracy. |
| Author | Gharghan, Sadik Kamel Sameer, Humam Adnan Mutlag, Ammar Hussein |
| Author_xml | – sequence: 1 givenname: Humam Adnan surname: Sameer fullname: Sameer, Humam Adnan email: homam0006@gmail.com organization: Electrical Engineering Technical College, Middle Technical University – sequence: 2 givenname: Sadik Kamel orcidid: 0000-0002-9071-1775 surname: Gharghan fullname: Gharghan, Sadik Kamel email: sadik.gharghan@mtu.edu.iq organization: Electrical Engineering Technical College, Middle Technical University – sequence: 3 givenname: Ammar Hussein surname: Mutlag fullname: Mutlag, Ammar Hussein email: ammar_alqiesy@mtu.edu.iq organization: Electrical Engineering Technical College, Middle Technical University |
| BookMark | eNp9kEtOwzAQhi1UJMpjwwkssQMF_EjSZolKealSN8A2cmyndUnsYDuKwoojsOCEnARDQGLVzcxI880_M_8-GGmjJQDHGJ1jFGcXfiPJOSaEpDtgTFCCI0pRMvpX74Ej5zYIIUxjgmI8Bh-3fWGVUK_MK6OhKWHDrFe8ktB1zNbQNF7Vf21WrYxVfl3DLkSoZWtZFZLvjH2GpbFwtny6u_p8e8cZbJ3SK8hN3bReWvUqBfSmNivLmnUPHWdBTwvIK6UVDzJhMatlQN0h2C1Z5eTRbz4Aj9fzh9lttFje3M0uFxEPP6ZRxmOcpukkK9g0TijLMhRzGn4rKecUE4qFmCCRIlZORZywmCZCYpwWRSE5mhT0AJwNuq1uWN-xqsobq2pm-xyj_NvT_NvT_MfTQJ8MdGPNSyudzzemtTocmFOUETqlGGeBOh0obo1zVpbbJfEAd6qS_RYyf7ifk2HmC2bTmL0 |
| Cites_doi | 10.1148/radiol.2020200370 10.1016/j.psep.2021.07.034 10.1016/j.jiph.2021.04.015 10.1016/j.ejrad.2020.108961 10.1007/s11356-020-11930-6 10.1007/s00330-021-08049-8 10.1016/j.cell.2020.04.045 10.1049/ipr2.12153 10.1080/09720502.2020.1857905 10.1016/j.heliyon.2021.e08143 10.1109/JBHI.2021.3058293 10.1007/s00521-022-06919-w 10.1002/jgm.3303 10.1007/s00134-020-06113-3 10.1016/j.smhl.2020.100178 10.1016/j.asoc.2020.106742 10.3390/su14105820 10.1016/j.iot.2020.100228 10.1016/j.jmii.2020.02.012 10.1007/s11869-020-00968-7 10.1109/BIBM49941.2020.9313252 10.1016/j.compbiomed.2021.104454 10.1016/j.compbiomed.2022.106065 10.1155/2021/6799202 10.1049/ipr2.12249 10.1016/j.ins.2021.03.062 10.1186/s12938-020-00807-x 10.1038/s41598-021-94944-5 10.1016/j.cmpb.2020.105608 10.1038/s41598-021-03287-8 10.1016/j.bj.2021.02.006 10.1002/int.22449 10.1049/ipr2.12474 10.1038/s41579-020-00459-7 10.1016/j.asoc.2022.108966 10.1016/j.asoc.2022.108610 10.3390/s16081043 10.1093/cid/ciaa460 10.1155/2022/5681574 10.1186/s12938-020-00809-9 10.1109/CVPR.2017.369 10.1016/j.compbiomed.2021.104771 10.1152/physiolgenomics.00089.2020 10.1016/j.jcv.2020.104412 10.1002/int.22504 10.4015/S1016237222500065 10.1007/s00330-020-07018-x 10.1109/ICIP42928.2021.9506661 10.21203/rs.3.rs-790321/v1 10.1016/j.cmpb.2022.107053 10.1049/ipr2.12278 10.1155/2022/7672196 10.1016/j.erss.2020.101654 10.1016/j.asoc.2020.106912 10.1109/ACCESS.2022.3162838 10.1007/s10140-020-01886-y 10.1007/s00330-021-08334-6 10.1016/j.bspc.2020.102365 10.1002/int.22686 10.1007/s00330-020-07347-x 10.1016/j.bspc.2021.103076 10.3390/app10093233 10.1111/all.14316 10.1016/j.bspc.2021.103263 10.1109/ICREST51555.2021.9331029 10.1161/ATVBAHA.120.314515 10.1109/ICASSP39728.2021.9414745 10.1016/j.bspc.2021.103182 |
| ContentType | Journal Article |
| Copyright | 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU COVID DWQXO HCIFZ L6V M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ADTOC UNPAY |
| DOI | 10.1049/tje2.12226 |
| DatabaseName | Wiley Online Library Open Access CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection (LUT) ProQuest One Community College Coronavirus Research Database ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2051-3305 |
| EndPage | n/a |
| ExternalDocumentID | 10.1049/tje2.12226 10_1049_tje2_12226 TJE212226 |
| Genre | article |
| GroupedDBID | 0R~ 1OC 24P 5VS AAHJG AAJGR ABJCF ABQXS ACCMX ACESK ACXQS ADBBV AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS AVUZU BCNDV BENPR BGLVJ CCPQU EBS GROUPED_DOAJ HCIFZ IAO IDLOA IGS IPNFZ ITC KQ8 M43 M7S M~E OCL OK1 PIMPY PTHSS RIE RIG RNS ROL RUI AAMMB AAYXX ADMLS AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION PHGZM PHGZT PQGLB WIN 8FE 8FG ABUWG AZQEC COVID DWQXO L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY |
| ID | FETCH-LOGICAL-c2266-9c4166679ba8453a9904c3013f3cc31231dd70d60af8d45a435de116bbbec07b3 |
| IEDL.DBID | 24P |
| ISSN | 2051-3305 |
| IngestDate | Tue Aug 19 14:48:04 EDT 2025 Wed Aug 13 10:48:37 EDT 2025 Wed Oct 29 21:17:31 EDT 2025 Wed Jan 22 16:23:48 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | Attribution cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2266-9c4166679ba8453a9904c3013f3cc31231dd70d60af8d45a435de116bbbec07b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9071-1775 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Ftje2.12226 |
| PQID | 3092383119 |
| PQPubID | 6853465 |
| PageCount | 17 |
| ParticipantIDs | unpaywall_primary_10_1049_tje2_12226 proquest_journals_3092383119 crossref_primary_10_1049_tje2_12226 wiley_primary_10_1049_tje2_12226_TJE212226 |
| PublicationCentury | 2000 |
| PublicationDate | January 2023 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: January 2023 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Journal of engineering (Stevenage, England) |
| PublicationYear | 2023 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | 2021; 25 2021; 24 2021; 20 2021; 64 2021; 23 2022; 71 2022; 72 2021; 28 2020; 126 2020; 128 2020; 11 2020; 10 2020; 19 2021; 36 2022; 123 2021; 31 2020; 53 2020; 52 2022; 34 2022; 37 2020; 46 2021; 153 2022; 32 2021; 2021 2021; 7 2021; 44 2020; 40 2020; 181 1995 2022; 119 2016; 16 2021; 14 2021; 15 2021; 98 2022; 2022 2021; 11 2020; 75 2022 2020; 30 2021; 134 2020; 196 2021 2021; 137 2020 2020; 71 2021; 19 2020; 26 2018 2022; 14 2020; 68 2021; 571 2022; 10 2022; 16 2022; 225 2022; 149 e_1_2_14_73_1 e_1_2_14_75_1 e_1_2_14_52_1 e_1_2_14_50_1 e_1_2_14_71_1 e_1_2_14_35_1 e_1_2_14_56_1 e_1_2_14_12_1 e_1_2_14_33_1 e_1_2_14_54_1 e_1_2_14_14_1 e_1_2_14_39_1 e_1_2_14_77_1 e_1_2_14_16_1 e_1_2_14_37_1 e_1_2_14_58_1 e_1_2_14_79_1 e_1_2_14_6_1 e_1_2_14_8_1 e_1_2_14_60_1 e_1_2_14_2_1 e_1_2_14_20_1 e_1_2_14_4_1 e_1_2_14_62_1 e_1_2_14_81_1 e_1_2_14_45_1 e_1_2_14_68_1 e_1_2_14_43_1 e_1_2_14_66_1 e_1_2_14_22_1 e_1_2_14_28_1 e_1_2_14_49_1 e_1_2_14_26_1 e_1_2_14_47_1 e_1_2_14_19_1 Sheela M.S. (e_1_2_14_25_1) 2022 Yang Y. (e_1_2_14_10_1) 2020 e_1_2_14_72_1 e_1_2_14_74_1 e_1_2_14_30_1 e_1_2_14_53_1 e_1_2_14_51_1 e_1_2_14_70_1 e_1_2_14_11_1 e_1_2_14_34_1 e_1_2_14_57_1 e_1_2_14_13_1 e_1_2_14_32_1 e_1_2_14_55_1 e_1_2_14_15_1 e_1_2_14_38_1 e_1_2_14_76_1 e_1_2_14_17_1 e_1_2_14_36_1 e_1_2_14_59_1 e_1_2_14_78_1 e_1_2_14_29_1 e_1_2_14_5_1 Gaur P. (e_1_2_14_31_1) 2021 Padhye N.S (e_1_2_14_41_1) 2021 e_1_2_14_9_1 Singh B. (e_1_2_14_24_1) 2022 e_1_2_14_42_1 e_1_2_14_63_1 e_1_2_14_80_1 e_1_2_14_3_1 Lyng G.D (e_1_2_14_7_1) 2020; 26 e_1_2_14_40_1 e_1_2_14_61_1 e_1_2_14_23_1 e_1_2_14_46_1 e_1_2_14_67_1 e_1_2_14_21_1 e_1_2_14_44_1 e_1_2_14_65_1 e_1_2_14_27_1 e_1_2_14_48_1 e_1_2_14_69_1 e_1_2_14_18_1 Liang C. (e_1_2_14_64_1) 2018 |
| References_xml | – volume: 26 start-page: 672 issue: 5 year: 2020 end-page: 675 article-title: Identifying optimal COVID‐19 testing strategies for schools and businesses: Balancing testing publication-title: Nat. Med – volume: 25 start-page: 1336 issue: 5 year: 2021 end-page: 1346 article-title: Multiscale attention guided network for COVID‐19 diagnosis using chest X‐ray images publication-title: IEEE J. Biomed. Health Inform – volume: 196 year: 2020 article-title: Explainable deep learning for pulmonary disease and Coronavirus COVID‐19 detection from X‐rays publication-title: Comput. Methods Programs Biomed – volume: 149 year: 2022 article-title: COVID‐19 diagnosis via chest X‐ray image classification based on multiscale class residual attention publication-title: Comput. Biol. Med – volume: 128 year: 2020 article-title: Comparison of seven commercial RT‐PCR diagnostic kits for COVID‐19 publication-title: J. Clin. Virol – volume: 181 start-page: 1423 issue: 6 year: 2020 end-page: 1433 article-title: Clinically applicable AI system for accurate diagnosis, quantitative measurements, and prognosis of COVID‐19 pneumonia using computed tomography publication-title: Cell – volume: 19 start-page: 1 issue: 1 year: 2020 end-page: 14 article-title: Differentiating novel coronavirus pneumonia from general pneumonia based on machine learning publication-title: Biomed. Eng. Online – volume: 28 start-page: 497 issue: 3 year: 2021 end-page: 505 article-title: Diagnosis of COVID‐19 using CT scan images and deep learning techniques publication-title: Emerg. Radiol – volume: 71 year: 2022 article-title: A deep learning based approach for automatic detection of COVID‐19 cases using chest X‐ray images publication-title: Biomed. Signal Process. Control – year: 2021 – volume: 71 year: 2022 article-title: COVID‐19 disease identification from chest CT images using empirical wavelet transformation and transfer learning publication-title: Biomed. Signal Process. Control – start-page: 2018 year: 2018 article-title: Prediction of compressive strength of concrete in wet‐dry environment by BP artificial neural networks publication-title: Adv. Mater. Sci. Eng – year: 2021 article-title: Automatic diagnosis of Covid‐19 from CT images using cyclegan and transfer learning – volume: 14 start-page: 5820 issue: 10 year: 2022 article-title: Deep learning models for COVID‐19 detection publication-title: Sustainability – volume: 75 start-page: 1809 issue: 7 year: 2020 end-page: 1812 article-title: Distinct characteristics of COVID‐19 patients with initial rRT‐PCR‐positive and rRT‐PCR‐negative results for SARS‐CoV‐2 publication-title: Allergy – volume: 71 start-page: 2249 issue: 16 year: 2020 end-page: 2251 article-title: Profile of RT‐PCR for SARS‐CoV‐2: A preliminary study from 56 COVID‐19 patients publication-title: Clin. Infectious Dis – volume: 28 start-page: 11672 issue: 9 year: 2021 end-page: 11682 article-title: Prediction of the confirmed cases and deaths of global COVID‐19 using artificial intelligence publication-title: Environ. Sci. Poll. Res – volume: 2022 year: 2022 article-title: A hybrid feature extraction method for Nepali COVID‐19‐related tweets classification publication-title: Comput. Intell. Neurosci – volume: 11 start-page: 1 issue: 1 year: 2021 end-page: 13 article-title: A multi‐scale gated multi‐head attention depthwise separable CNN model for recognizing COVID‐19 publication-title: Sci. Rep – year: 2020 article-title: Automatic diagnosis of COVID‐19 and pneumonia using FBD method – volume: 16 start-page: 2101 issue: 8 year: 2022 end-page: 2113 article-title: A COVID‐19 CXR image recognition method based on MSA‐DDCovidNet publication-title: IET Image Process – volume: 64 year: 2021 article-title: Application of deep learning techniques for detection of COVID‐19 cases using chest X‐ray images: A comprehensive study publication-title: Biomed. Signal Process. Control – volume: 15 start-page: 2604 issue: 11 year: 2021 end-page: 2613 article-title: A multi‐class COVID‐19 segmentation network with pyramid attention and edge loss in CT images publication-title: IET Image Process – volume: 10 start-page: 34207 year: 2022 end-page: 34220 article-title: Low‐complexity PSO‐based resource allocation scheme for cooperative non‐linear SWIPT‐enabled NOMA publication-title: IEEE Access – volume: 31 start-page: 2819 issue: 5 year: 2021 end-page: 2824 article-title: The sensitivity and specificity of chest CT in the diagnosis of COVID‐19 publication-title: Euro. Radiol – volume: 23 issue: 2 year: 2021 article-title: COVID‐19: Virology, biology and novel laboratory diagnosis publication-title: J. Gene Med. – volume: 98 year: 2021 article-title: CNN‐based transfer learning–BiLSTM network: A novel approach for COVID‐19 infection detection publication-title: Appl. Soft Comput – year: 2022 – volume: 46 start-page: 1642 issue: 8 year: 2020 end-page: 1644 article-title: Rapidly scalable mechanical ventilator for the COVID‐19 pandemic publication-title: Intensive Care Med – start-page: 635 year: 2022 end-page: 650 – volume: 10 start-page: 3233 issue: 9 year: 2020 article-title: Transfer learning with deep convolutional neural network (CNN) for pneumonia detection using chest X‐ray publication-title: Applied Sciences – volume: 119 year: 2022 article-title: Detection of COVID19 from X‐ray images using multiscale deep convolutional neural network publication-title: Appl. Soft Comput – year: 2021 article-title: Hybrid deep learning model for diagnosis of Covid‐19 using Ct scans and clinical/demographic data – volume: 34 start-page: 8933 issue: 11 year: 2022 end-page: 8957 article-title: Hybridization of soft‐computing algorithms with neural network for prediction obstructive sleep apnea using biomedical sensor measurements publication-title: Neural Comput. Appl – volume: 24 start-page: 327 issue: 2 year: 2021 end-page: 352 article-title: Covid CT‐net: A deep learning framework for COVID‐19 prognosis using CT images publication-title: J. Interdisciplinary Math – start-page: 1 year: 2022 end-page: 8 article-title: Hybrid PSO–SVM algorithm for Covid‐19 Screeniwcng and quantification publication-title: Int. J. Inf. Technol – start-page: 2097 end-page: 2106 article-title: Chestx‐ray8: Hospital‐scale chest x‐ray database and benchmarks on weakly‐supervised classification and localization of common thorax diseases – volume: 20 year: 2021 article-title: Predicting mortality risk in patients with COVID‐19 using machine learning to help medical decision‐making publication-title: Smart Health – volume: 98 year: 2021 article-title: An optimized deep learning architecture for the diagnosis of COVID‐19 disease based on gravitational search optimization publication-title: Appl. Soft Comput – volume: 52 start-page: 549 issue: 11 year: 2020 end-page: 557 article-title: The COVID‐19 pandemic: A global health crisis publication-title: Physiol. Genom – volume: 19 start-page: 141 issue: 3 year: 2021 end-page: 154 article-title: Characteristics of SARS‐CoV‐2 and COVID‐19 publication-title: Nat. Rev. Microbiol – volume: 11 start-page: 1 issue: 1 year: 2021 end-page: 12 article-title: Fusion of multi‐scale bag of deep visual words features of chest X‐ray images to detect COVID‐19 infection publication-title: Sci. Rep – year: 1995 article-title: Introduction to artificial neural networks – volume: 30 start-page: 6485 issue: 12 year: 2020 end-page: 6496 article-title: Comparison of the computed tomography findings in COVID‐19 and other viral pneumonia in immunocompetent adults: A systematic review and meta‐analysis publication-title: Euro. Radiol – volume: 37 start-page: 1572 issue: 2 year: 2022 end-page: 1598 article-title: NAGNN: Classification of COVID‐19 based on neighboring aware representation from deep graph neural network publication-title: Int. J. Intell. Syst – volume: 137 year: 2021 article-title: Accurate detection of COVID‐19 using deep features based on X‐ray images and feature selection methods publication-title: Comput. Biol. Med – volume: 44 start-page: 304 issue: 3 year: 2021 end-page: 316 article-title: Artificial neural network and logistic regression modelling to characterize COVID‐19 infected patients in local areas of Iran publication-title: Biomed. J – volume: 153 start-page: 363 year: 2021 end-page: 375 article-title: Deep learning model for forecasting COVID‐19 outbreak in Egypt publication-title: Process Safety Environ. Protect – volume: 16 start-page: 333 issue: 2 year: 2022 end-page: 343 article-title: A coarse‐refine segmentation network for COVID‐19 CT images publication-title: IET Image Process – volume: 34 issue: 03 year: 2022 article-title: Diagnosis of Covid‐19 based on artificial intelligence models and physiological sensors publication-title: Biomed. Eng. Appl. Basis Commun. – volume: 14 start-page: 643 issue: 5 year: 2021 end-page: 652 article-title: Assessing and predicting air quality in northern Jordan during the lockdown due to the COVID‐19 virus pandemic using artificial neural network publication-title: Air Quality Atmos. Health – volume: 14 start-page: 811 issue: 7 year: 2021 end-page: 816 article-title: COVID‐19 prevalence forecasting using autoregressive integrated moving average (ARIMA) and artificial neural networks (ANN): Case of Turkey publication-title: J. Infect. Public Health – volume: 32 start-page: 205 issue: 1 year: 2022 end-page: 212 article-title: Artificial intelligence for prediction of COVID‐19 progression using CT imaging and clinical data publication-title: Euro. Radiol – year: 2021 article-title: Reconstructed diagnostic sensitivity and specificity of the RT‐PCR test for COVID‐19 publication-title: MedRxiv – year: 2021 article-title: COVID‐19 detection using transfer learning with convolutional neural network – volume: 134 year: 2021 article-title: FBSED based automatic diagnosis of COVID‐19 using X‐ray and CT images publication-title: Comput. Biol. Med – volume: 126 year: 2020 article-title: Diagnosis of the Coronavirus disease (COVID‐19): rRT‐PCR or CT? publication-title: Eur. J. Radiol – volume: 32 start-page: 2235 issue: 4 year: 2022 end-page: 2245 article-title: Artificial intelligence for stepwise diagnosis and monitoring of COVID‐19 publication-title: Eur. Radiol – volume: 7 issue: 10 year: 2021 article-title: Application of machine learning in the prediction of COVID‐19 daily new cases: A scoping review publication-title: Heliyon – volume: 40 start-page: 2586 issue: 11 year: 2020 end-page: 2597 article-title: COVID‐19 and respiratory system disorders: Current knowledge, future clinical and translational research questions publication-title: Arterioscler. Thromb. Vasc. Biol – start-page: 379 year: 2021 – year: 2020 article-title: Time course of lung changes on chest CT during recovery from 2019 novel coronavirus (COVID‐19) pneumonia publication-title: Radiology – volume: 19 start-page: 1 issue: 1 year: 2020 end-page: 13 article-title: Rapid identification of COVID‐19 severity in CT scans through classification of deep features publication-title: BioMed. Eng. Online – volume: 16 start-page: 1043 issue: 8 year: 2016 article-title: A wireless sensor network with soft computing localization techniques for track cycling applications publication-title: Sensors – volume: 2021 year: 2021 article-title: Research on classification of COVID‐19 chest X‐ray image modal feature fusion based on deep learning publication-title: J. Healthcare Eng – volume: 36 start-page: 4033 issue: 8 year: 2021 end-page: 4064 article-title: Learning to learn by yourself: Unsupervised meta‐learning with self‐knowledge distillation for COVID‐19 diagnosis from pneumonia cases publication-title: Int. J. Intell. Syst – volume: 123 year: 2022 article-title: Explainable artificial intelligence‐based edge fuzzy images for COVID‐19 detection and identification publication-title: Appl. Soft Comput – volume: 68 year: 2020 article-title: When pandemics impact economies and climate change: Exploring the impacts of COVID‐19 on oil and electricity demand in China publication-title: Energy Res. Social Sci – volume: 72 year: 2022 article-title: COVID‐19 diagnosis from routine blood tests using artificial intelligence techniques publication-title: Biomed. Signal Process. Control – volume: 11 year: 2020 article-title: A methodological approach for predicting COVID‐19 epidemic using EEMD‐ANN hybrid model publication-title: Internet of Things – year: 1995 – volume: 53 start-page: 404 issue: 3 year: 2020 end-page: 412 article-title: Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2): Facts and myths publication-title: J. Microbiol. Immunol. Infect. – volume: 15 start-page: 1814 issue: 8 year: 2021 end-page: 1824 article-title: COVID‐19 disease severity assessment using CNN model publication-title: IET Image Process – year: 2020 article-title: Evaluating the accuracy of different respiratory specimens in the laboratory diagnosis and monitoring the viral shedding of 2019‐nCoV infections publication-title: MedRxiv – volume: 571 start-page: 676 year: 2021 end-page: 692 article-title: CoV2‐detect‐net: Design of COVID‐19 prediction model based on hybrid DE‐PSO with SVM using chest X‐ray images publication-title: Inform. Sci – volume: 36 start-page: 5085 issue: 9 year: 2021 end-page: 5115 article-title: Machine learning for medical imaging‐based COVID‐19 detection and diagnosis publication-title: Int. J. Intell. Syst – volume: 225 year: 2022 article-title: Classification of lungs infected COVID‐19 images based on inception‐ResNet publication-title: Comput. Methods Programs Biomed – volume: 2022 year: 2022 article-title: COVID‐19 detection based on lung Ct scan using deep learning techniques publication-title: Comput. Math. Methods Med – ident: e_1_2_14_46_1 doi: 10.1148/radiol.2020200370 – ident: e_1_2_14_49_1 doi: 10.1016/j.psep.2021.07.034 – ident: e_1_2_14_66_1 doi: 10.1016/j.jiph.2021.04.015 – ident: e_1_2_14_45_1 doi: 10.1016/j.ejrad.2020.108961 – ident: e_1_2_14_53_1 doi: 10.1007/s11356-020-11930-6 – ident: e_1_2_14_20_1 doi: 10.1007/s00330-021-08049-8 – ident: e_1_2_14_15_1 doi: 10.1016/j.cell.2020.04.045 – ident: e_1_2_14_74_1 doi: 10.1049/ipr2.12153 – start-page: 379 volume-title: Biomedical Signal and Image Processing with Artificial Intelligence year: 2021 ident: e_1_2_14_31_1 – ident: e_1_2_14_40_1 doi: 10.1080/09720502.2020.1857905 – ident: e_1_2_14_65_1 doi: 10.1016/j.heliyon.2021.e08143 – ident: e_1_2_14_34_1 doi: 10.1109/JBHI.2021.3058293 – ident: e_1_2_14_55_1 doi: 10.1007/s00521-022-06919-w – ident: e_1_2_14_4_1 doi: 10.1002/jgm.3303 – ident: e_1_2_14_8_1 doi: 10.1007/s00134-020-06113-3 – ident: e_1_2_14_21_1 doi: 10.1016/j.smhl.2020.100178 – ident: e_1_2_14_61_1 – ident: e_1_2_14_54_1 doi: 10.1016/j.asoc.2020.106742 – ident: e_1_2_14_79_1 doi: 10.3390/su14105820 – ident: e_1_2_14_47_1 doi: 10.1016/j.iot.2020.100228 – ident: e_1_2_14_3_1 doi: 10.1016/j.jmii.2020.02.012 – ident: e_1_2_14_52_1 doi: 10.1007/s11869-020-00968-7 – ident: e_1_2_14_29_1 doi: 10.1109/BIBM49941.2020.9313252 – ident: e_1_2_14_56_1 – ident: e_1_2_14_27_1 doi: 10.1016/j.compbiomed.2021.104454 – ident: e_1_2_14_36_1 doi: 10.1016/j.compbiomed.2022.106065 – ident: e_1_2_14_73_1 doi: 10.1155/2021/6799202 – ident: e_1_2_14_14_1 doi: 10.1049/ipr2.12249 – ident: e_1_2_14_57_1 doi: 10.1016/j.ins.2021.03.062 – ident: e_1_2_14_23_1 doi: 10.1186/s12938-020-00807-x – year: 2021 ident: e_1_2_14_41_1 article-title: Reconstructed diagnostic sensitivity and specificity of the RT‐PCR test for COVID‐19 publication-title: MedRxiv – ident: e_1_2_14_33_1 doi: 10.1038/s41598-021-94944-5 – ident: e_1_2_14_72_1 doi: 10.1016/j.cmpb.2020.105608 – ident: e_1_2_14_35_1 doi: 10.1038/s41598-021-03287-8 – ident: e_1_2_14_50_1 doi: 10.1016/j.bj.2021.02.006 – ident: e_1_2_14_71_1 doi: 10.1002/int.22449 – ident: e_1_2_14_81_1 doi: 10.1049/ipr2.12474 – ident: e_1_2_14_11_1 doi: 10.1038/s41579-020-00459-7 – ident: e_1_2_14_78_1 doi: 10.1016/j.asoc.2022.108966 – ident: e_1_2_14_32_1 doi: 10.1016/j.asoc.2022.108610 – ident: e_1_2_14_59_1 doi: 10.3390/s16081043 – volume: 26 start-page: 672 issue: 5 year: 2020 ident: e_1_2_14_7_1 article-title: Identifying optimal COVID‐19 testing strategies for schools and businesses: Balancing testing publication-title: Nat. Med – ident: e_1_2_14_43_1 doi: 10.1093/cid/ciaa460 – ident: e_1_2_14_69_1 doi: 10.1155/2022/5681574 – ident: e_1_2_14_22_1 doi: 10.1186/s12938-020-00809-9 – ident: e_1_2_14_38_1 – ident: e_1_2_14_39_1 doi: 10.1109/CVPR.2017.369 – ident: e_1_2_14_58_1 doi: 10.1016/j.compbiomed.2021.104771 – ident: e_1_2_14_6_1 doi: 10.1152/physiolgenomics.00089.2020 – ident: e_1_2_14_9_1 doi: 10.1016/j.jcv.2020.104412 – ident: e_1_2_14_16_1 doi: 10.1002/int.22504 – ident: e_1_2_14_63_1 doi: 10.4015/S1016237222500065 – ident: e_1_2_14_2_1 – ident: e_1_2_14_13_1 doi: 10.1007/s00330-020-07018-x – ident: e_1_2_14_19_1 doi: 10.1109/ICIP42928.2021.9506661 – start-page: 2018 year: 2018 ident: e_1_2_14_64_1 article-title: Prediction of compressive strength of concrete in wet‐dry environment by BP artificial neural networks publication-title: Adv. Mater. Sci. Eng – ident: e_1_2_14_62_1 doi: 10.21203/rs.3.rs-790321/v1 – ident: e_1_2_14_75_1 doi: 10.1016/j.cmpb.2022.107053 – ident: e_1_2_14_70_1 doi: 10.1049/ipr2.12278 – ident: e_1_2_14_80_1 doi: 10.1155/2022/7672196 – ident: e_1_2_14_48_1 doi: 10.1016/j.erss.2020.101654 – ident: e_1_2_14_51_1 doi: 10.1016/j.asoc.2020.106912 – ident: e_1_2_14_60_1 doi: 10.1109/ACCESS.2022.3162838 – ident: e_1_2_14_44_1 doi: 10.1007/s10140-020-01886-y – ident: e_1_2_14_77_1 doi: 10.1007/s00330-021-08334-6 – ident: e_1_2_14_37_1 doi: 10.1016/j.bspc.2020.102365 – ident: e_1_2_14_28_1 – ident: e_1_2_14_68_1 doi: 10.1002/int.22686 – ident: e_1_2_14_12_1 doi: 10.1007/s00330-020-07347-x – ident: e_1_2_14_30_1 doi: 10.1016/j.bspc.2021.103076 – ident: e_1_2_14_67_1 doi: 10.3390/app10093233 – start-page: 635 volume-title: A Hybrid MSVM COVID‐19 Image Classification Enhanced with Swarm Feature Optimization. Computational Intelligence in Data Mining year: 2022 ident: e_1_2_14_24_1 – ident: e_1_2_14_42_1 doi: 10.1111/all.14316 – ident: e_1_2_14_76_1 doi: 10.1016/j.bspc.2021.103263 – year: 2020 ident: e_1_2_14_10_1 article-title: Evaluating the accuracy of different respiratory specimens in the laboratory diagnosis and monitoring the viral shedding of 2019‐nCoV infections publication-title: MedRxiv – ident: e_1_2_14_18_1 doi: 10.1109/ICREST51555.2021.9331029 – ident: e_1_2_14_5_1 doi: 10.1161/ATVBAHA.120.314515 – ident: e_1_2_14_17_1 doi: 10.1109/ICASSP39728.2021.9414745 – start-page: 1 year: 2022 ident: e_1_2_14_25_1 article-title: Hybrid PSO–SVM algorithm for Covid‐19 Screeniwcng and quantification publication-title: Int. J. Inf. Technol – ident: e_1_2_14_26_1 doi: 10.1016/j.bspc.2021.103182 |
| SSID | ssj0001342041 |
| Score | 2.2397814 |
| Snippet | The 2019 coronavirus disease began in Wuhan, China, and spread worldwide. This pandemic was concerning, given its significant and worrying impact on human... |
| SourceID | unpaywall proquest crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| SubjectTerms | Accuracy Algorithms ANN Artificial intelligence Artificial neural networks clinical parameters Computed tomography Coronaviruses COVID-19 CT scan Deep learning Diagnosis Disease prevention Disease transmission D‐dimer Genomes Heart rate Infections Laboratories Medical imaging Neural networks Pandemics Parameters Particle swarm optimization Patients Pneumonia Polymerase chain reaction Principal components analysis PSO Respiratory failure Support vector machines Tomography Viral diseases X-rays |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwEB6V7QE4IMqPWCiVJXpCCrVjJ1kfKgTtVksPC0It6i3y37agTbJ0U1XtiUfooU_IkzD2Ol162VukRHbibzwzGc_MB7CNNpxnQuP-5ponwsk8Uf5nRcpCDYSx0uiQIDvOR8fi8CQ7WYNxVwvj0yo7nRgUtW2Mj5HvcIquyIAzJj_OfieeNcqfrnYUGipSK9jd0GLsAaynvjNWD9Y_D8ffvi-jLlykNNBZpiiN-II063qWCrnT_nLpB4YWM79vpZau58OLeqauLtV0et-ZDdbo4Ck8iW4k-bTAfQPWXP0MHv_XXPA53I6ufDVWrLMkzYTMopiQ-aU6r0iD2qLqbqvpKX5te1YRH5klvs0ljl8vksQJerZk7-uPL_t__9wwSXyy_CkxkRDi57WzpG2q2PyazBEtompLuqpLP7GqfN7N_AUcHwyP9kZJ5GBIDC5Dnkgj_MFiITVCl3GFxksYVAp8wo3haPaYtQW1OVWTgRWZQu_LOsZyrVE4aKH5S-jVTe1eASlclhpqGFM6FY5yTbXMpLCTTPFB7oo-vOvWvJwtWm2U4YhcyNIjUwZk-rDZwVHG7TYvl8LRh-07iFaO8j6gt-KR8uhwmIar16unfAOPPAf9Ii6zCb32_MK9RU-l1VtR_P4BiY7pFg priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT9wwFH4qw6Fw6EarDtDKUjkhZRqP7WR8RCwaONAeGASnyFuAdpKMZjJCcOpP6KG_kF_CcxZgekCVeouU2LH9ts_2WwC20IYzwTXKN9Ms4E5GgfKbFSljNeDGSqMrB9njaDjiR2fi7EkUf50f4uHAzUtGpa-9gE9sWuv5etfJ5dfyh-v3KJq4aAmWI4FovAPLo-PvO-e-phzyGw4hFG1W0oUGi3boEVy-nOcTdXOtxuNFuFrZm4PXoNqR1m4mP3vzUvfM7V9JHP9nKm_gVQNGyU7NPW_hhcvfweqTFIVr8Gd442O6mmhNUqRk0jAbmV2raUYK1DlZ-1qNL4rpVXmZEX--S3yyTOw_r13NCeJjsvvt9HDv7tdvKol3ub8gpikrcXXrLCmLrEmhTWZIc6JyS9rYTf9jlXnvndl7GB3sn-wOg6aSQ2BwQlEgDffXk7HUyACCKTSB3KBqYSkzhqHxpNbGoY1ClQ4sFwoxnHWURloji4WxZh-gkxe5-wgkdqJvQkOp0n3uQqZDLYXkNhWKDSIXd-FLS9dkUifsSKqLdi4Tv8ZJtcZd2GxJnjRCO0tYiGh3wCiVXdh6YINne9muyPrMJ8nJ0X6_elr_tz43YMVXtK9PeTahU07n7hPinlJ_blj7HoFrBXs priority: 102 providerName: Unpaywall |
| Title | Hybridization of particle swarm optimization algorithm with neural network for COVID‐19 using computerized tomography scan and clinical parameters |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Ftje2.12226 https://www.proquest.com/docview/3092383119 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/tje2.12226 |
| UnpaywallVersion | publishedVersion |
| Volume | 2023 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2051-3305 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001342041 issn: 2051-3305 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2051-3305 dateEnd: 20241231 omitProxy: true ssIdentifier: ssj0001342041 issn: 2051-3305 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2051-3305 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001342041 issn: 2051-3305 databaseCode: ADMLS dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBHI databaseName: IET Digital Library Open Access customDbUrl: eissn: 2051-3305 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001342041 issn: 2051-3305 databaseCode: IDLOA dateStart: 20130601 isFulltext: true titleUrlDefault: https://digital-library.theiet.org/content/collections providerName: Institution of Engineering and Technology – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2051-3305 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001342041 issn: 2051-3305 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2051-3305 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001342041 issn: 2051-3305 databaseCode: BENPR dateStart: 20210201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 2051-3305 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001342041 issn: 2051-3305 databaseCode: AVUZU dateStart: 20130601 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2051-3305 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001342041 issn: 2051-3305 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKewAOCGgRC2VliZ4qpdix87DEZWl3WSq6XdFuVU6RX1uKNslqN1VVTvwEDvxCfgljJ-nSSyUueSiJHfmb8YzH80BoB2Q4i7gC_maKBdyKOJBusSJEIlOujdDKO8iO4uGEH55H52vofRsLU-eHuDW4Oc7w87VjcKnqKiSg1AKI1Xcb7lEQb_EDtAE9CkffIR-vLCyMh8SXrgyB8uBnSNTmJ-Xi3erzuxJppWY-vCrm8uZazmZ3FVcveQZP0ZNGZcS9GuNnaM0Wz9HjfxIJbqLfwxsXedXEVOJyiucNSeDltVzkuISZIW8fy9lFubisvuXYWWGxS2kJ7Re1QzgGLRbvH599Ovjz8xcV2DnGX2DdFH-4_GENrsq8SXSNl4AMloXBbYSl61jmzsdmuYUmg_7p_jBo6i0EGoYhDoTmbhMxEQpgipgEQcU1TABsyrRmIOKoMQkxMZHT1PBIgqZlLKWxUkAIJFHsBVovysK-RDixUaiJplSqkFvCFFEiEtxMI8nS2CYd9LYd82xep9XI_HY4F5lDJvPIdNB2C0fWsNYyYwR00pRRKjpo5xaie1vZ9ejd80p2etgP_dWr_3n5NXrkqs_XFplttF4truwb0FEq1fWkCMd08LGLNnoHR59P4PyhPxp_6fp1P9xNRuPe178ci-oH |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFB2VdlFYIJ4iUGAkygbJdF62M4sKQZsqaUtAKEXdmXmlgGI71K6isOITWPA9fAxfwh1nTOgmu-4s2Rrbc8_ce-bOfSC0DTacx0LD-uaaR8LJJFJ-syJlqrrCWGl0EyA7TPon4vA0Pl1Dv9tcGB9W2erERlHb0ngf-Q4nQEW6nFL5avot8l2j_Olq20JDhdYKdrcpMRYSO47cfAZbuGp3sA_yfs7YQW-0149Cl4HIAPVIImmEPzpLpYaPi7kC9SwMwJ6PuTEcFDu1NiU2IWrctSJWwC-sozTRGn6fpJrDuNfQhuBCwuZv401v-P7D0svDBSNN-0wG6IcJIXFbI1XInfqrYy8pWOjkslVcUt3Ni2Kq5jM1mVwmz431O7iFbgbail8vcHYbrbniDrrxXzHDu-hXf-6zv0JeJy7HeBpgiauZOs9xCdopb2-ryRnMbv05x94TjH1ZTRi_WASlY2DSeO_dx8H-nx8_qcQ-OP8Mm9CA4st3Z3Fd5qHYNq4AHVgVFrdZnv7FKvdxPtU9dHIl0riP1ouycA8QTl3MDDGUKs2EI1wTLWMp7DhWvJu4tIOetXOeTRelPbLmSF7IzEsmayTTQVutOLKwvKtsCcYO2v4nopWjvGikt-KRbHTYY83Vw9WvfIo2-6O3x9nxYHj0CF1nwLoWPqEttF6fX7jHwJJq_SRAEaNPV43-v58eJNU |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BVuJxQDzVhQKW6AkpYMdOsj5WbVfbggqHblVxifxKabVJVrupqnLiJ3DgF_aXdJw4XXqpxC1SLCfyN-P5PJ4HwCbacJ4IjfrNNY-Ek2mk_GFFykyNhLHS6DZA9iCdTMX-cXIcYnN8LkxXH-LG4eY1o92vvYK7uS26A6fwRTKbMxd_Ymjf0vuwhoacigGsbR1Nf0xXThYuYtp2r4xR-PB_aNKXKBXy82qC20ZpxTQfnldzdXmhZrPb3LU1PuOn8CSwRrLVwfwM7rnqOTz-p5bgC_g7ufTJVyGtktQFmQepIMsLtShJjZtD2b9Ws5N6cdr8LIl3xBJf1RLnr7qYcIJElmx_O9rbufr9h0niY-NPiAn9H05_OUuaugy1rskSwSGqsqRPsvQfVqUPs1m-hOl493B7EoWWC5HBZUgjaYS_R8ykRqQSrtBWCYN7AC-4MRytHLM2ozalqhhZkSgkW9YxlmqNskAzzV_BoKortw4kc0lsqGFM6Vg4yjXVMpHCFonio9RlQ_jQr3k-7ypr5O2NuJC5RyZvkRnCRg9HHrRrmXOKtHTEGZND2LyB6M5ZPrbo3TEkP9zfjdun1_8z-D08-L4zzr_uHXx5A498L_rOP7MBg2Zx7t4iY2n0uyCX1ysE6A4 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT9wwFH4qw6Fw6EarDtDKUjkhZRqP7WR8RCwaONAeGASnyFuAdpKMZjJCcOpP6KG_kF_CcxZgekCVeouU2LH9ts_2WwC20IYzwTXKN9Ms4E5GgfKbFSljNeDGSqMrB9njaDjiR2fi7EkUf50f4uHAzUtGpa-9gE9sWuv5etfJ5dfyh-v3KJq4aAmWI4FovAPLo-PvO-e-phzyGw4hFG1W0oUGi3boEVy-nOcTdXOtxuNFuFrZm4PXoNqR1m4mP3vzUvfM7V9JHP9nKm_gVQNGyU7NPW_hhcvfweqTFIVr8Gd442O6mmhNUqRk0jAbmV2raUYK1DlZ-1qNL4rpVXmZEX--S3yyTOw_r13NCeJjsvvt9HDv7tdvKol3ub8gpikrcXXrLCmLrEmhTWZIc6JyS9rYTf9jlXnvndl7GB3sn-wOg6aSQ2BwQlEgDffXk7HUyACCKTSB3KBqYSkzhqHxpNbGoY1ClQ4sFwoxnHWURloji4WxZh-gkxe5-wgkdqJvQkOp0n3uQqZDLYXkNhWKDSIXd-FLS9dkUifsSKqLdi4Tv8ZJtcZd2GxJnjRCO0tYiGh3wCiVXdh6YINne9muyPrMJ8nJ0X6_elr_tz43YMVXtK9PeTahU07n7hPinlJ_blj7HoFrBXs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybridization+of+particle+swarm+optimization+algorithm+with+neural+network+for+COVID%E2%80%9019+using+computerized+tomography+scan+and+clinical+parameters&rft.jtitle=Journal+of+engineering+%28Stevenage%2C+England%29&rft.au=Sameer%2C+Humam+Adnan&rft.au=Gharghan%2C+Sadik+Kamel&rft.au=Mutlag%2C+Ammar+Hussein&rft.date=2023-01-01&rft.issn=2051-3305&rft.eissn=2051-3305&rft.volume=2023&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1049%2Ftje2.12226&rft.externalDBID=10.1049%252Ftje2.12226&rft.externalDocID=TJE212226 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-3305&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-3305&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-3305&client=summon |