Cilostazol ameliorates diabetic nephropathy by inhibiting highglucose- induced apoptosis
Diabetic nephropathy (DN) is a hyperglycemia-induced progressive development of renal insufficiency. Excessive glucose can increase mitochondrial reactive oxygen species (ROS) and induce cell damage, causing mitochondrial dysfunction. Our previous study indicated that cilostazol (CTZ) can reduce ROS...
Saved in:
Published in | The Korean journal of physiology & pharmacology Vol. 24; no. 5; pp. 403 - 412 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Korea (South)
대한약리학회
01.09.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1226-4512 2093-3827 |
DOI | 10.4196/kjpp.2020.24.5.403 |
Cover
Abstract | Diabetic nephropathy (DN) is a hyperglycemia-induced progressive development of renal insufficiency. Excessive glucose can increase mitochondrial reactive oxygen species (ROS) and induce cell damage, causing mitochondrial dysfunction. Our previous study indicated that cilostazol (CTZ) can reduce ROS levels and decelerate DN progression in streptozotocin (STZ)-induced type 1 diabetes. This study investigated the potential mechanisms of CTZ in rats with DN and in high glucose-treated mesangial cells. Male Sprague-Dawley rats were fed 5 mg/kg/day of CTZ after developing STZ-induced diabetes mellitus. Electron microscopy revealed that CTZ reduced the thickness of the glomerular basement membrane and improved mitochondrial morphology in mesangial cells of diabetic kidney. CTZ treatment reduced excessive kidney mitochondrial DNA copy numbers induced by hyperglycemia and interacted with the intrinsic pathway for regulating cell apoptosis as an antiapoptotic mechanism. In high-glucose-treated mesangial cells, CTZ reduced ROS production, altered the apoptotic status, and down-regulated transforming growth factor beta (TGF-β) and nuclear factor kappa light chain enhancer of activated B cells (NF-κB). Base on the results of our previous and current studies, CTZ deceleration of hyperglycemia-induced DN is attributable to ROS reduction and thereby maintenance of the mitochondrial function and reduction in TGF-β and NF-κB levels. |
---|---|
AbstractList | Diabetic nephropathy (DN) is a hyperglycemia-induced progressive development of renal insufficiency. Excessive glucose can increase mitochondrial reactive oxygen species (ROS) and induce cell damage, causing mitochondrial dysfunction. Our previous study indicated that cilostazol (CTZ) can reduce ROS levels and decelerate DN progression in streptozotocin (STZ)-induced type 1 diabetes. This study investigated the potential mechanisms of CTZ in rats with DN and in high glucose-treated mesangial cells. Male Sprague-Dawley rats were fed 5 mg/kg/day of CTZ after developing STZ-induced diabetes mellitus. Electron microscopy revealed that CTZ reduced the thickness of the glomerular basement membrane and improved mitochondrial morphology in mesangial cells of diabetic kidney. CTZ treatment reduced excessive kidney mitochondrial DNA copy numbers induced by hyperglycemia and interacted with the intrinsic pathway for regulating cell apoptosis as an antiapoptotic mechanism. In high-glucose-treated mesangial cells, CTZ reduced ROS production, altered the apoptotic status, and down-regulated transforming growth factor beta (TGF-β) and nuclear factor kappa light chain enhancer of activated B cells (NF-κB). Base on the results of our previous and current studies, CTZ deceleration of hyperglycemia-induced DN is attributable to ROS reduction and thereby maintenance of the mitochondrial function and reduction in TGF-β and NF-κB levels. Diabetic nephropathy (DN) is a hyperglycemia-induced progressive development of renal insufficiency. Excessive glucose can increase mitochondrial reactive oxygen species (ROS) and induce cell damage, causing mitochondrial dysfunction. Our previous study indicated that cilostazol (CTZ) can reduce ROS levels and decelerate DN progression in streptozotocin (STZ)-induced type 1 diabetes. This study investigated the potential mechanisms of CTZ in rats with DN and in high glucose-treated mesangial cells. Male Sprague-Dawley rats were fed 5 mg/kg/day of CTZ after developing STZ-induced diabetes mellitus. Electron microscopy revealed that CTZ reduced the thickness of the glomerular basement membrane and improved mitochondrial morphology in mesangial cells of diabetic kidney. CTZ treatment reduced excessive kidney mitochondrial DNA copy numbers induced by hyperglycemia and interacted with the intrinsic pathway for regulating cell apoptosis as an antiapoptotic mechanism. In high-glucose-treated mesangial cells, CTZ reduced ROS production, altered the apoptotic status, and down-regulated transforming growth factor beta (TGF-β) and nuclear factor kappa light chain enhancer of activated B cells (NF-κB). Base on the results of our previous and current studies, CTZ deceleration of hyperglycemia-induced DN is attributable to ROS reduction and thereby maintenance of the mitochondrial function and reduction in TGF-β and NF-κB levels.Diabetic nephropathy (DN) is a hyperglycemia-induced progressive development of renal insufficiency. Excessive glucose can increase mitochondrial reactive oxygen species (ROS) and induce cell damage, causing mitochondrial dysfunction. Our previous study indicated that cilostazol (CTZ) can reduce ROS levels and decelerate DN progression in streptozotocin (STZ)-induced type 1 diabetes. This study investigated the potential mechanisms of CTZ in rats with DN and in high glucose-treated mesangial cells. Male Sprague-Dawley rats were fed 5 mg/kg/day of CTZ after developing STZ-induced diabetes mellitus. Electron microscopy revealed that CTZ reduced the thickness of the glomerular basement membrane and improved mitochondrial morphology in mesangial cells of diabetic kidney. CTZ treatment reduced excessive kidney mitochondrial DNA copy numbers induced by hyperglycemia and interacted with the intrinsic pathway for regulating cell apoptosis as an antiapoptotic mechanism. In high-glucose-treated mesangial cells, CTZ reduced ROS production, altered the apoptotic status, and down-regulated transforming growth factor beta (TGF-β) and nuclear factor kappa light chain enhancer of activated B cells (NF-κB). Base on the results of our previous and current studies, CTZ deceleration of hyperglycemia-induced DN is attributable to ROS reduction and thereby maintenance of the mitochondrial function and reduction in TGF-β and NF-κB levels. Diabetic nephropathy (DN) is a hyperglycemia-induced progressive development of renal insufficiency. Excessive glucose can increase mitochondrial reactive oxygen species (ROS) and induce cell damage, causing mitochondrial dysfunction. Our previous study indicated that cilostazol (CTZ) can reduce ROS levels and decelerate DN progression in streptozotocin (STZ)-induced type 1 diabetes. This study investigated the potential mechanisms of CTZ in rats with DN and in high glucose-treated mesangial cells. Male Sprague–Dawley rats were fed 5 mg/kg/day of CTZ after developing STZ-induced diabetes mellitus. Electron microscopy revealed that CTZ reduced the thickness of the glomerular basement membrane and improved mitochondrial morphology in mesangial cells of diabetic kidney. CTZ treatment reduced excessive kidney mitochondrial DNA copy numbers induced by hyperglycemia and interacted with the intrinsic pathway for regulating cell apoptosis as an antiapoptotic mechanism. In high-glucose-treated mesangial cells, CTZ reduced ROS production, altered the apoptotic status, and down-regulated transforming growth factor beta (TGF-) and nuclear factor kappa light chain enhancer of activated B cells (NF-B). Base on the results of our previous and current studies, CTZ deceleration of hyperglycemia-induced DN is attributable to ROS reduction and thereby maintenance of the mitochondrial function and reduction in TGF- and NF-B levels KCI Citation Count: 0 |
Author | Lee, Yung-Shu Chian, Chien-Wen Chen, Ya-Hui Lee, Wen-Chin Wang, Chi-Ping Lee, Huei-Jane Lee, Yi-Ju |
Author_xml | – sequence: 1 givenname: Chien-Wen surname: Chian fullname: Chian, Chien-Wen organization: Division of Nephrology, Department of Paediatrics, Changhua Christian Hospital, Changhua 500, Taiwan – sequence: 2 givenname: Yung-Shu surname: Lee fullname: Lee, Yung-Shu organization: Department of Urology, Taipei City Hospital, Taipei 10341, Taiwan – sequence: 3 givenname: Yi-Ju surname: Lee fullname: Lee, Yi-Ju organization: Department of Pathology, Chung Shan Medical University Hospital, Taichung 40221, Taiwan – sequence: 4 givenname: Ya-Hui surname: Chen fullname: Chen, Ya-Hui organization: Department of Medical Research, Changhua Christian Hospital, Changhua 500, Taiwan – sequence: 5 givenname: Chi-Ping surname: Wang fullname: Wang, Chi-Ping organization: Department of Clinical Biochemistry, Chung Shan Medical University Hospital, Taichung 40221, Taiwan – sequence: 6 givenname: Wen-Chin surname: Lee fullname: Lee, Wen-Chin organization: Division of Nephropathy, Department of Internal Medicine, Chang Bing Show-Chwan Memborial Hospital, Changhua 505, Taiwan – sequence: 7 givenname: Huei-Jane surname: Lee fullname: Lee, Huei-Jane organization: Department of Clinical Biochemistry, Chung Shan Medical University Hospital, Taichung 40221, Taiwan, Institute of Biochemistry, Microbiology and Immunology, Medical College, Chung Shan Medical University, Taichung 40221, Taiwan, Department of Biochemistry, School of Medicine, College of Medicine, Chung Shan Medical University, Taichung 40221, Taiwan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32830147$$D View this record in MEDLINE/PubMed https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002620991$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kU1v1DAQhi1URJfSP8AB5QiHBH_HPlarQitVQkJF4mY5trMZNhsH2zksv55st3DgwGmk0fO-Gs3zGl1McQoIvSW44UTLj_sf89xQTHFDeSMajtkLtKFYs5op2l6gDaFU1lwQeomuc4YOYyWwUFi_QpeMKoYJbzfo-xbGmIv9FcfKHsIIMdkScuXBdqGAq6YwDynOtgzHqjtWMA3QQYFpVw2wG3bj4mIO9br3iwu-snOcS8yQ36CXvR1zuH6eV-jbp9vH7V398OXz_fbmoXbrfawWWgsdOJactpx2qvPWc8Jli3vKLfWekV63LfHcKyWk77V0FBPVESKZdZRdoQ_n3in1Zu_ARAtPcxfNPpmbr4_3RsuWC8FX9v2ZnVP8uYRczAGyC-NopxCXbChnUrWYKbyi757RpTsEb-YEB5uO5s_nVoCeAZdizin0fxGCzcmQORkyJ0NrrxFmNbSG1D8hB8UWiFNJFsb_RX8Du62WNQ |
CitedBy_id | crossref_primary_10_1007_s40203_024_00256_7 crossref_primary_10_3389_fcdhc_2023_1270028 crossref_primary_10_1111_nep_13906 crossref_primary_10_18632_aging_205535 crossref_primary_10_1016_j_jep_2020_113548 crossref_primary_10_1155_2021_7054434 crossref_primary_10_3390_ijms23158270 crossref_primary_10_1016_j_ecl_2022_08_002 crossref_primary_10_1007_s11259_023_10166_2 crossref_primary_10_1016_j_toxicon_2022_09_008 crossref_primary_10_7759_cureus_35736 |
Cites_doi | 10.1016/j.omtn.2018.10.003 10.1016/j.lfs.2016.02.002 10.1136/bmj.d6044 10.1152/japplphysiol.00380.2016 10.1186/s12906-018-2410-7 10.1152/ajprenal.00313.2016 10.1007/s00018-005-4533-5 10.1126/stke.2802005pe18 10.2337/diabetes.51.10.2944 10.1046/j.1523-1755.1999.00590.x 10.1158/1078-0432.CCR-04-0734 10.1007/978-981-13-8871-2_9 10.1016/j.jdiacomp.2015.12.018 10.1016/j.jval.2016.09.1007 10.1016/j.mito.2005.02.002 10.1016/j.biocel.2004.09.010 10.1007/s00125-016-3925-4 10.1002/dmrr.2841 10.1152/ajprenal.00079.2004 10.1097/MD.0000000000002717 10.1097/CAD.0b013e3280115111 10.1083/jcb.147.4.699 10.1186/s12929-019-0550-9 10.1271/bbb.90938 10.1016/S0968-0004(00)01735-7 10.2174/1381612822666151204001234 10.1016/S0140-6736(04)17665-4 10.1111/jdi.12258 10.1096/fasebj.30.1_supplement.740.17 10.1289/EHP176 10.1016/S0955-0674(99)00073-3 10.33549/physiolres.933254 10.1016/j.cbi.2018.07.011 10.1016/j.ejphar.2017.11.035 10.1152/ajpheart.00303.2005 10.1016/j.bbrc.2004.05.025 10.1152/ajpregu.00615.2005 10.1155/2013/754946 10.1038/ki.1995.139 10.1093/hmg/ddi270 10.1093/embo-reports/kvf113 10.1152/ajprenal.00137.2002 10.1007/s00125-015-3796-0 10.1152/ajpheart.00866.2004 10.1385/CBB:41:2:193 10.1007/s00439-014-1458-9 10.1038/aps.2012.207 10.1016/j.tem.2016.07.002 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 ACYCR |
DOI | 10.4196/kjpp.2020.24.5.403 |
DatabaseName | CrossRef PubMed MEDLINE - Academic Korean Citation Index |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2093-3827 |
EndPage | 412 |
ExternalDocumentID | oai_kci_go_kr_ARTI_9674554 32830147 10_4196_kjpp_2020_24_5_403 |
Genre | Journal Article |
GroupedDBID | --- 5-W 5GY 8JR 8XY 9ZL AAYXX ABDBF ACUHS ADBBV AENEX ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL CITATION DIK E3Z EBD EF. ESX F5P GX1 HYE MK0 OK1 P2P P5Y P6G RPM TR2 TUS .UV NPM 7X8 53G ABPTK ACYCR KVFHK |
ID | FETCH-LOGICAL-c2263-59959e40642742b8bdad414670f24a2dd31f9771d4d8856df96c2018b1163ac23 |
ISSN | 1226-4512 |
IngestDate | Tue Nov 21 21:47:12 EST 2023 Fri Jul 11 06:54:59 EDT 2025 Thu Jan 02 22:46:41 EST 2025 Tue Jul 01 02:33:17 EDT 2025 Thu Apr 24 23:12:56 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Oxidative stress Diabetic nephropathy Cilostazol Mitochondrial DNA Mesangial cell |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2263-59959e40642742b8bdad414670f24a2dd31f9771d4d8856df96c2018b1163ac23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.kjpp.net/journal/download_pdf.php?doi=10.4196/kjpp.2020.24.5.403 |
PMID | 32830147 |
PQID | 2436870380 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_9674554 proquest_miscellaneous_2436870380 pubmed_primary_32830147 crossref_primary_10_4196_kjpp_2020_24_5_403 crossref_citationtrail_10_4196_kjpp_2020_24_5_403 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 2020-Sep-01 20200901 2020-09 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Korea (South) |
PublicationPlace_xml | – name: Korea (South) |
PublicationTitle | The Korean journal of physiology & pharmacology |
PublicationTitleAlternate | Korean J Physiol Pharmacol |
PublicationYear | 2020 |
Publisher | 대한약리학회 |
Publisher_xml | – name: 대한약리학회 |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
References_xml | – ident: ref22 doi: 10.1016/j.omtn.2018.10.003 – ident: ref32 doi: 10.1016/j.lfs.2016.02.002 – ident: ref45 doi: 10.1136/bmj.d6044 – ident: ref44 doi: 10.1152/japplphysiol.00380.2016 – ident: ref29 doi: 10.1186/s12906-018-2410-7 – ident: ref4 doi: 10.1152/ajprenal.00313.2016 – ident: ref17 doi: 10.1007/s00018-005-4533-5 – ident: ref38 doi: 10.1126/stke.2802005pe18 – ident: ref43 doi: 10.2337/diabetes.51.10.2944 – ident: ref24 doi: 10.1046/j.1523-1755.1999.00590.x – ident: ref48 doi: 10.1158/1078-0432.CCR-04-0734 – ident: ref27 doi: 10.1007/978-981-13-8871-2_9 – ident: ref34 doi: 10.1016/j.jdiacomp.2015.12.018 – ident: ref1 doi: 10.1016/j.jval.2016.09.1007 – ident: ref47 doi: 10.1016/j.mito.2005.02.002 – ident: ref14 doi: 10.1016/j.biocel.2004.09.010 – ident: ref3 doi: 10.1007/s00125-016-3925-4 – ident: ref2 doi: 10.1002/dmrr.2841 – ident: ref20 doi: 10.1152/ajprenal.00079.2004 – ident: ref15 doi: 10.1097/MD.0000000000002717 – ident: ref46 doi: 10.1097/CAD.0b013e3280115111 – ident: ref35 doi: 10.1083/jcb.147.4.699 – ident: ref30 doi: 10.1186/s12929-019-0550-9 – ident: ref9 doi: 10.1271/bbb.90938 – ident: ref40 doi: 10.1016/S0968-0004(00)01735-7 – ident: ref26 doi: 10.2174/1381612822666151204001234 – ident: ref42 doi: 10.1016/S0140-6736(04)17665-4 – ident: ref11 doi: 10.1111/jdi.12258 – ident: ref5 doi: 10.1096/fasebj.30.1_supplement.740.17 – ident: ref13 doi: 10.1289/EHP176 – ident: ref18 doi: 10.1016/S0955-0674(99)00073-3 – ident: ref6 doi: 10.33549/physiolres.933254 – ident: ref28 doi: 10.1016/j.cbi.2018.07.011 – ident: ref19 – ident: ref50 doi: 10.1016/j.ejphar.2017.11.035 – ident: ref21 doi: 10.1152/ajpheart.00303.2005 – ident: ref23 doi: 10.1016/j.bbrc.2004.05.025 – ident: ref33 doi: 10.1152/ajpregu.00615.2005 – ident: ref16 doi: 10.1155/2013/754946 – ident: ref25 doi: 10.1038/ki.1995.139 – ident: ref36 doi: 10.1093/hmg/ddi270 – ident: ref41 doi: 10.1093/embo-reports/kvf113 – ident: ref49 doi: 10.1152/ajprenal.00137.2002 – ident: ref7 doi: 10.1007/s00125-015-3796-0 – ident: ref39 doi: 10.1152/ajpheart.00866.2004 – ident: ref37 doi: 10.1385/CBB:41:2:193 – ident: ref12 doi: 10.1007/s00439-014-1458-9 – ident: ref10 doi: 10.1038/aps.2012.207 – ident: ref8 doi: 10.1016/j.tem.2016.07.002 – ident: ref31 |
SSID | ssib008505809 ssj0064464 |
Score | 2.1686714 |
Snippet | Diabetic nephropathy (DN) is a hyperglycemia-induced progressive development of renal insufficiency. Excessive glucose can increase mitochondrial reactive... |
SourceID | nrf proquest pubmed crossref |
SourceType | Open Website Aggregation Database Index Database Enrichment Source |
StartPage | 403 |
SubjectTerms | 약리학 |
Title | Cilostazol ameliorates diabetic nephropathy by inhibiting highglucose- induced apoptosis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32830147 https://www.proquest.com/docview/2436870380 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002620991 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | The Korean Journal of Physiology & Pharmacology, 2020, 24(5), , pp.403-412 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFB6l5cIFAWUJmwzCXKIJXsbbMXWDSlmERCvSkzUej4lJaluJfUh_Gr-O92zHdgpFhYtljcfbvM9vvjd-8w0hr4URIVYYFSYLIUBhgnIhOQ25xZwolnpY5eZ8-mwfn7GTmTUbDH72spbKIhyLyz_OK_kfq0IZ2BVnyf6DZduLQgHsg31hCxaG7Y1s7OMyBAW_zJYjfiGXONseh1Hr8dREjFKZ4yoIQPI2SDOTdJ6ESZXnjCrFTbY6hfKoxDQAnmd5ka2TdZ-xIo4-ZKvtgH1DXqsBkVq-CbGTdwLY7RC9PwevQb_JFNM9Ogyeg3ehX-fl6KNsMXWe0JPdAk6PywRObCaqNcMSEINu865qIKnTQ9X1MVtjeqR6lur56tTHncMjPDSx1Ym_PeRVOxOo33PEQAsps5oUa1mVGZpnUtOttQQah8s0s9d3s7r-1W6BgZsBWy5-5KhQamhjg42tcXtqX4P7St-4o8K9EEnwPQsWqwBijfeBZzsMyNgeuWU4wNtwovms85UuUMtKGq1mBUA7Kymz9r3qCVz4ZG9_f64dkrSXruLr45-KB53eJXeaAEaZ1Gi8RwYyvU8OJikvsouN8kb50iLjgMw6gCo9gCpbgCo9gCrhRukAqvQBqjQAVVqAPiBn76an_jFtlvKgAl7YpJWsnWQY7TrMCN0w4hHDTlqLDcaNKDL1GCIRPWKR61p2FHu2AGrqhjrEC1wY5kOyn2apfEwUR-KfZ88FYslZDHQqkiKWGrgcPTZNIYZE37ZdIBqde1xuZRlAvIvtHWB7B9jegcECK4D2HpJRe05eq7z8tfYrMEkFh-thMSQvtxYLwGPjbzieyqxcw2VMG3pJ09WG5FFtyvamJurx6cx5cpNbPCW3uy_vGdkvVqV8DhS5CF9UWPwFTNC2SA |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cilostazol+ameliorates+diabetic+nephropathy+by+inhibiting+highglucose-+induced+apoptosis&rft.jtitle=The+Korean+journal+of+physiology+%26+pharmacology&rft.au=Chien-Wen+Chian&rft.au=Yung-Shu+Lee&rft.au=Yi-Ju+Lee&rft.au=Ya-Hui+Chen&rft.date=2020-09-01&rft.pub=%EB%8C%80%ED%95%9C%EC%95%BD%EB%A6%AC%ED%95%99%ED%9A%8C&rft.issn=1226-4512&rft.eissn=2093-3827&rft.spage=403&rft.epage=412&rft_id=info:doi/10.4196%2Fkjpp.2020.24.5.403&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_9674554 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-4512&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-4512&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-4512&client=summon |