Zero-sample text classification algorithm based on BERT and graph convolutional neural network

In this study, we undertake a comprehensive examination of zero-shot text classification and its associated implications. We propose the adoption of the BERT model as a method for text feature representation. Subsequently, we utilize the Pointwise Mutual Information (PMI) metric to adjust the weight...

Full description

Saved in:
Bibliographic Details
Published inApplied mathematics and nonlinear sciences Vol. 9; no. 1
Main Authors Qiao, Ying, Li, Yu, Zhou, Liangzhi, Shang, Xu
Format Journal Article
LanguageEnglish
Published Beirut Sciendo 01.01.2024
De Gruyter Brill Sp. z o.o., Paradigm Publishing Services
Subjects
Online AccessGet full text
ISSN2444-8656
2444-8656
DOI10.2478/amns-2024-1560

Cover

Abstract In this study, we undertake a comprehensive examination of zero-shot text classification and its associated implications. We propose the adoption of the BERT model as a method for text feature representation. Subsequently, we utilize the Pointwise Mutual Information (PMI) metric to adjust the weight values within a graph convolutional neural network, thereby facilitating the construction of a text graph. Additionally, we incorporate an attention mechanism to transform this text graph, enabling it to represent the output labels of zero-shot text classification effectively. The experimental environment is set up, and the comparison and ablation experiments of the text classification model based on BERT and graph convolutional neural network with the baseline models are carried out in several different types of datasets, and the parameter settings of are adjusted according to the experimental results, and the convergence of the BERT model is compared to test the robustness of the model performance and the classification effect. When was set to 0.60, the model achieved the best results in each dataset. When the task is set to 5-way-5-shot, the convergence rate of the model for the Snippets dataset using the penultimate layer of features can reach 74%-80% of the training accuracy at the 5,000th step. The training accuracy gradually flattens out in the first 10,000 steps, and the model achieves classification accuracy in all four learning scenarios, with good stability.
AbstractList In this study, we undertake a comprehensive examination of zero-shot text classification and its associated implications. We propose the adoption of the BERT model as a method for text feature representation. Subsequently, we utilize the Pointwise Mutual Information (PMI) metric to adjust the weight values within a graph convolutional neural network, thereby facilitating the construction of a text graph. Additionally, we incorporate an attention mechanism to transform this text graph, enabling it to represent the output labels of zero-shot text classification effectively. The experimental environment is set up, and the comparison and ablation experiments of the text classification model based on BERT and graph convolutional neural network with the baseline models are carried out in several different types of datasets, and the parameter settings of λ are adjusted according to the experimental results, and the convergence of the BERT model is compared to test the robustness of the model performance and the classification effect. When λ was set to 0.60, the model achieved the best results in each dataset. When the task is set to 5-way-5-shot, the convergence rate of the model for the Snippets dataset using the penultimate layer of features can reach 74%-80% of the training accuracy at the 5,000th step. The training accuracy gradually flattens out in the first 10,000 steps, and the model achieves classification accuracy in all four learning scenarios, with good stability.
In this study, we undertake a comprehensive examination of zero-shot text classification and its associated implications. We propose the adoption of the BERT model as a method for text feature representation. Subsequently, we utilize the Pointwise Mutual Information (PMI) metric to adjust the weight values within a graph convolutional neural network, thereby facilitating the construction of a text graph. Additionally, we incorporate an attention mechanism to transform this text graph, enabling it to represent the output labels of zero-shot text classification effectively. The experimental environment is set up, and the comparison and ablation experiments of the text classification model based on BERT and graph convolutional neural network with the baseline models are carried out in several different types of datasets, and the parameter settings of are adjusted according to the experimental results, and the convergence of the BERT model is compared to test the robustness of the model performance and the classification effect. When was set to 0.60, the model achieved the best results in each dataset. When the task is set to 5-way-5-shot, the convergence rate of the model for the Snippets dataset using the penultimate layer of features can reach 74%-80% of the training accuracy at the 5,000th step. The training accuracy gradually flattens out in the first 10,000 steps, and the model achieves classification accuracy in all four learning scenarios, with good stability.
Author Li, Yu
Qiao, Ying
Shang, Xu
Zhou, Liangzhi
Author_xml – sequence: 1
  givenname: Ying
  surname: Qiao
  fullname: Qiao, Ying
  organization: School of Computer Science and Software Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, China
– sequence: 2
  givenname: Yu
  surname: Li
  fullname: Li, Yu
  email: 202121000510@stu.swpu.edu.cn
  organization: School of Computer Science and Software Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, China
– sequence: 3
  givenname: Liangzhi
  surname: Zhou
  fullname: Zhou, Liangzhi
  organization: PetroChina Changqing Oilfield Company Oil Production PLANT NO.7, Xi’an, Shaanxi, 710000, China
– sequence: 4
  givenname: Xu
  surname: Shang
  fullname: Shang, Xu
  organization: PetroChina Changqing Oilfield Company Oil Production PLANT NO.7, Xi’an, Shaanxi, 710000, China
BookMark eNqFkM1Lw0AQxRdRsNZePS94TrsfySY5aqkfUBCkXjy4TDabNnWbjbuJtf-9iRH0IHiax_DeY-Z3ho4rW2mELiiZsjBOZrCrfMAICwMaCXKERiwMwyARkTj-pU_RxPstIYRxyoVgI_TyrJ0NPOxqo3GjPxqsDHhfFqWCprQVBrO2rmw2O5yB1znuVteLxxWGKsdrB_UGK1u9W9P2bjC40q37Gs3eutdzdFKA8XryPcfo6Waxmt8Fy4fb-_nVMlCMCRrklBKAUMexCmkaE8UJEWkeZ4TyCApQaZEWOuJKCFEAUM1TrWMKJOcqSzLOx2g29LZVDYc9GCNrV-7AHSQlsicke0KyJyR7Ql3ickjUzr612jdya1vXfeAlpymlSZTEfe90cClnvXe6-L82GQLdDY12uV679tCJn_a_gynlny4Fi1Q
Cites_doi 10.1007/s11063-022-10843-4
10.1155/2019/9151670
10.1016/j.neucom.2018.02.099
10.3390/rs14040906
10.3390/rs13163207
10.1117/1.JRS.16.038501
10.1142/S0129065721500350
10.1109/TCYB.2021.3133106
10.1007/s00521-023-08754-z
10.1155/2021/6665588
10.1080/13658816.2018.1555832
10.1016/j.neucom.2020.12.127
10.1021/acs.iecr.3c02489
10.1016/j.infrared.2019.103048
10.1007/s11227-021-04157-w
10.14311/NNW.2019.29.015
10.1049/iet-ipr.2018.6224
10.1016/j.eswa.2020.113455
10.1016/j.rse.2019.03.007
10.3389/fnhum.2022.815163
ContentType Journal Article
Copyright 2024. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOI 10.2478/amns-2024-1560
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2444-8656
ExternalDocumentID 10.2478/amns-2024-1560
10_2478_amns_2024_1560
10_2478_amns_2024_156091
GroupedDBID 9WM
AATOW
ABFKT
ADBLJ
AFKRA
AHGSO
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARCSS
BENPR
CCPQU
EBS
M~E
OK1
PHGZM
PHGZT
PIMPY
QD8
SLJYH
AAYXX
CITATION
PUEGO
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
AIKXB
EJD
UNPAY
ID FETCH-LOGICAL-c2261-d110aa4e77c41970c30069d7b0135afac9f9fe53c666faa1e39ee71a0d3cb8b33
IEDL.DBID UNPAY
ISSN 2444-8656
IngestDate Sun Sep 07 11:13:38 EDT 2025
Sun Oct 19 01:31:42 EDT 2025
Wed Oct 01 05:14:52 EDT 2025
Tue Oct 21 12:48:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2261-d110aa4e77c41970c30069d7b0135afac9f9fe53c666faa1e39ee71a0d3cb8b33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.2478/amns-2024-1560
PQID 3191185873
PQPubID 6761185
PageCount 18
ParticipantIDs unpaywall_primary_10_2478_amns_2024_1560
proquest_journals_3191185873
crossref_primary_10_2478_amns_2024_1560
walterdegruyter_journals_10_2478_amns_2024_156091
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Beirut
PublicationPlace_xml – name: Beirut
PublicationTitle Applied mathematics and nonlinear sciences
PublicationYear 2024
Publisher Sciendo
De Gruyter Brill Sp. z o.o., Paradigm Publishing Services
Publisher_xml – name: Sciendo
– name: De Gruyter Brill Sp. z o.o., Paradigm Publishing Services
References 2025091823285575393_j_amns-2024-1560_ref_020
2025091823285575393_j_amns-2024-1560_ref_009
2025091823285575393_j_amns-2024-1560_ref_007
2025091823285575393_j_amns-2024-1560_ref_018
2025091823285575393_j_amns-2024-1560_ref_008
2025091823285575393_j_amns-2024-1560_ref_019
2025091823285575393_j_amns-2024-1560_ref_005
2025091823285575393_j_amns-2024-1560_ref_016
2025091823285575393_j_amns-2024-1560_ref_006
2025091823285575393_j_amns-2024-1560_ref_017
2025091823285575393_j_amns-2024-1560_ref_003
2025091823285575393_j_amns-2024-1560_ref_014
2025091823285575393_j_amns-2024-1560_ref_004
2025091823285575393_j_amns-2024-1560_ref_015
2025091823285575393_j_amns-2024-1560_ref_001
2025091823285575393_j_amns-2024-1560_ref_012
2025091823285575393_j_amns-2024-1560_ref_002
2025091823285575393_j_amns-2024-1560_ref_013
2025091823285575393_j_amns-2024-1560_ref_010
2025091823285575393_j_amns-2024-1560_ref_021
2025091823285575393_j_amns-2024-1560_ref_011
2025091823285575393_j_amns-2024-1560_ref_022
References_xml – ident: 2025091823285575393_j_amns-2024-1560_ref_008
  doi: 10.1007/s11063-022-10843-4
– ident: 2025091823285575393_j_amns-2024-1560_ref_001
  doi: 10.1155/2019/9151670
– ident: 2025091823285575393_j_amns-2024-1560_ref_002
– ident: 2025091823285575393_j_amns-2024-1560_ref_013
  doi: 10.1016/j.neucom.2018.02.099
– ident: 2025091823285575393_j_amns-2024-1560_ref_004
  doi: 10.3390/rs14040906
– ident: 2025091823285575393_j_amns-2024-1560_ref_007
  doi: 10.3390/rs13163207
– ident: 2025091823285575393_j_amns-2024-1560_ref_009
  doi: 10.1117/1.JRS.16.038501
– ident: 2025091823285575393_j_amns-2024-1560_ref_020
  doi: 10.1142/S0129065721500350
– ident: 2025091823285575393_j_amns-2024-1560_ref_010
  doi: 10.1109/TCYB.2021.3133106
– ident: 2025091823285575393_j_amns-2024-1560_ref_017
  doi: 10.1007/s00521-023-08754-z
– ident: 2025091823285575393_j_amns-2024-1560_ref_003
  doi: 10.1155/2021/6665588
– ident: 2025091823285575393_j_amns-2024-1560_ref_022
– ident: 2025091823285575393_j_amns-2024-1560_ref_005
  doi: 10.1080/13658816.2018.1555832
– ident: 2025091823285575393_j_amns-2024-1560_ref_016
  doi: 10.1016/j.neucom.2020.12.127
– ident: 2025091823285575393_j_amns-2024-1560_ref_019
  doi: 10.1021/acs.iecr.3c02489
– ident: 2025091823285575393_j_amns-2024-1560_ref_011
  doi: 10.1016/j.infrared.2019.103048
– ident: 2025091823285575393_j_amns-2024-1560_ref_012
  doi: 10.1007/s11227-021-04157-w
– ident: 2025091823285575393_j_amns-2024-1560_ref_021
  doi: 10.14311/NNW.2019.29.015
– ident: 2025091823285575393_j_amns-2024-1560_ref_018
  doi: 10.1049/iet-ipr.2018.6224
– ident: 2025091823285575393_j_amns-2024-1560_ref_014
  doi: 10.1016/j.eswa.2020.113455
– ident: 2025091823285575393_j_amns-2024-1560_ref_006
  doi: 10.1016/j.rse.2019.03.007
– ident: 2025091823285575393_j_amns-2024-1560_ref_015
  doi: 10.3389/fnhum.2022.815163
SSID ssj0002313662
Score 2.266251
Snippet In this study, we undertake a comprehensive examination of zero-shot text classification and its associated implications. We propose the adoption of the BERT...
SourceID unpaywall
proquest
crossref
walterdegruyter
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
SubjectTerms 97P10
Accuracy
Attention mechanism
Baseline model
BERT model
Classification
Graph convolutional neural network
Neural networks
Text categorization
Text classification
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dS8MwED90PqgP8xunU_Ig6EvY2qTN-iCisiGCQ2SD4YMlTdL5sHVzH4j_vbmsdSiiT4VCE3p3yf1yd_kdwJnS0rq5lFFhuE956hlqTdmnWgQp10x5YYS3kR_a4V2X3_eC3gq0i7swWFZZ7Iluo9YjhTHymjUVi4WDhmBX4zeKXaMwu1q00JB5awV96SjGVmHNR2asEqzdNNuPT19RF4tmWBj6C_ZGn4tGTQ6zqTUVn1O8U_zdOy0h5_o8G8uPdzkYbEL53SWytelP5h-zInHq_FFrG8o5kCTXC83vwIrJdmErB5UkX7LTPXh5NpMRnUpkASZY5kEUAmasEHJKIXLQt_85ex0S9Gia2Fc3zacOkZkmjs6aYGV6bqF2RmTAdA9XP74P3Vazc3tH86YKVPkYa9LW30vJjRCKe5GoK4ZkxVpgPDSQqVRRGqUmYMqea1IpPcMiY4Qn61ZxSSNh7ABK2Sgzh0D8xJ6sA56yhHtcJGGEVDYiUYkwSvAwrMB5Icx4vODOiO2ZA8Ueo9hjFHuMYq9AtZB1nK-habzUeAUuvuT_70jeD_UsB_z9i8g7-nv2Y9hw9uHiLlUozSZzc2KRyCw5zc3rE5mt380
  priority: 102
  providerName: ProQuest
Title Zero-sample text classification algorithm based on BERT and graph convolutional neural network
URI https://www.degruyter.com/doi/10.2478/amns-2024-1560
https://www.proquest.com/docview/3191185873
https://doi.org/10.2478/amns-2024-1560
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 2444-8656
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002313662
  issn: 2444-8656
  databaseCode: AMVHM
  dateStart: 20170701
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2444-8656
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002313662
  issn: 2444-8656
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2444-8656
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002313662
  issn: 2444-8656
  databaseCode: BENPR
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVJWN
  databaseName: Sciendo
  customDbUrl:
  eissn: 2444-8656
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002313662
  issn: 2444-8656
  databaseCode: 9WM
  dateStart: 20160630
  isFulltext: true
  titleUrlDefault: https://content.sciendo.com/
  providerName: Sciendo
– providerCode: PRVJWN
  databaseName: Sciendo:Open Access
  customDbUrl:
  eissn: 2444-8656
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002313662
  issn: 2444-8656
  databaseCode: ADBLJ
  dateStart: 20180630
  isFulltext: true
  titleUrlDefault: https://www.sciendo.com/
  providerName: Sciendo
– providerCode: PRVAZK
  databaseName: Walter De Gruyter: Open Access Journals
  customDbUrl:
  eissn: 2444-8656
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002313662
  issn: 2444-8656
  databaseCode: AHGSO
  dateStart: 20160630
  isFulltext: true
  titleUrlDefault: https://www.degruyterbrill.com
  providerName: Walter de Gruyter
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH7odhAPzp840ZGDoJeobdJmPapMh-AYY8PpwZKk6RS3TraOoX-9eV3njyHoqVBoGt73kve95OULwKGOpA1zMaPCcJfy2DHUurJLI-HFPGLa8QM8jXzb8OsdftP1unmBLJ6F-bZ_73JRPZWDZGyRdDnFI7_LUPQ9y7kLUOw0muf3eHMc55xWLSuZKTL-8tHPiPNFI1cmyat8m8p-fxXWptnmdGR6o8lbOt8MzWLMVQmu572blZa8nExSdaLfF4Qb_-7-OqzlNJOcz_xiA5ZMsgmlnHKSfECPt-DxwYyGdCxRI5hgEQjRSKexfiiDjMh-bzh6Tp8GBONdROyri1qrTWQSkUzsmmDdeu6_9o-oj5k9surybehc1dqXdZpfuUC1iytRkWUDUnIjhOZOIM40QynjSOBqqSdjqYM4iI3HtM16YikdwwJjhCPPLKyqqhjbgUIyTMwuEFfZvNvjMVPc4UL5AQrdCKWVMFpw3y_D0RyW8HWmrBHajATNFqLZQjRbiGYrw_4ctTAfYePQTh02N_KqgpXh-BPJP1tyFoD-avD3LwJn7__N70MhHU3MgaUpqarY2fbutgLFi1qj2arkHvsB2UHp1g
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9swFH9CcGA7sG-tjDEfNm0XC2I7cXNA04CiMqCaUJHQDguO7bBDSUvTquo_t79t77kJFdO0nThFihRb-flnvw-_D4D31hkUc4Xk2ivBVRF5jlQW3Om4UE7aKEkpG_msl3Qv1NfL-HIFfjW5MBRW2ZyJ4aB2Q0s-8h2kCurCcVvLz6NbTl2j6Ha1aaFh6tYKbi-UGKsTO078fIYmXLV3fIjr_UGIo07_oMvrLgPcCnK-OBSAxiivtVVRqnetpOq9TpODMDaFsWmRFj6WFhX9wpjIy9R7HZld_JO8nZNDFEXAmpIqReNvbb_T-3Z-5-VB7UkmiVhUixRKt3fMTVkhNYXilMN8XxouVdz1aTky85kZDB7DxixcnDt_PZ7OJ81FbZB_R09ho1Zc2ZcF057Bii-fw5NaiWX1EVG9gB_f_XjIK0NVhxmFlTBLCjpFJAUSMDO4RlwnP28YSVDH8NV-57zPTOlYKJ_NKBK-3hE4I1XcDI8Qr_4SLh4E3lewWg5L_xqYyNGSj1UhcxUpnScplc7Ruc21t1olSQs-NmBmo0WtjgxtHII9I9gzgj0j2Fuw1WCd1Xu2ypYMa8GnO_z_O1L0x_IsB_z7F2m0-e_Z38F6t392mp0e907ewKPAleDz2YLVyXjq36IWNMm3a6oxuHpodv8GZWUdDA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFH5oBZdD3bGucxD0Emwyk0xzdKt1F60gHgyTWapQ09KF4r933jRVlILgKRB4E_jem7x1vgHYlUpYN2eoxzULPGZ87VlTDjzFQ8MUlX4U42nk65uo9sgunsKnPFHEszDuv69ct_KgrYwbVWa8ciDes67VaMA8PPo7CVPIwx4WYOqwdvZw-1VVsdEKjaJgyM44RvCn9_kOKWf6WVt8DESzOQfFgWtUK93o9D96o8ao8zfVBSjmgSI5HGp2ESZ0tgTzedBI8i3ZXYaXZ91peV2BLL8ExziIxIAYJ4Ac6EQ0G63OW-_1naDHUsS-Ojq9rxORKeLoqglOnucWaL-IDJfu4ebDV-Cxelo_rnn5pQmeDLCWpKw_F4JpziXzY16WFMmIFcd6ZyiMkLGJjQ6ptHmLEcLXNNaa-6JsFZNWUkpXoZC1Mr0GJEht5hwyQ1PmM55GMVLV8FSmXEvOoqgEeyMwk_aQGyOxOQXCniDsCcKeIOwl2BxhneR7pJvYzW-zm7DCaQn2v_D_cyX_l3q-FxwvEfvr_5DZgem7k2pydX5zuQGzzn5c3WUTCr1OX2_ZSKSXbufm9wm7ONwi
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH7oPIiH-RsnKjkIeonaJm3a45TpEBwiG0wPliRNpzg72TrG_OvN6zqnY6CnQiFpeN9L3_eSly8AxzqWNswljArDXcoTx1Dryi6NhZfwmGnHD_E08l3Dr7f4bdtrFwWyeBbmx_69y0VwLt_TgUXS5RSP_C7Diu9Zzl2ClVbjvvqIN8dxzmlgWclEkXFBo98RZ0YjV4fphxyPZLe7BuVRvjkdm05_OM6mm6F5jLleh5vp6CalJW9nw0yd6c854ca_h78B5YJmkurELzZhyaRbsF5QTlJM6ME2PD-Zfo8OJGoEEywCIRrpNNYP5ZAR2e30-q_ZyzvBeBcT--qy9tAkMo1JLnZNsG698F_7RdTHzB95dfkOtK5rzas6La5coNrFlajYsgEpuRFCcycUF5qhlHEscLXUk4nUYRImxmPaZj2JlI5hoTHCkRcWVhUoxnahlPZSswfEVTbv9njCFHe4UH6IQjdCaSWMFtz3K3AyhSX6mChrRDYjQbNFaLYIzRah2SpwMEUtKmbYILK_DpsbeYFgFTj9RvLPnpw5oGcdLm4ROvv_7_4ASll_aA4tTcnUUeGjXyZr5z4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zero-sample+text+classification+algorithm+based+on+BERT+and+graph+convolutional+neural+network&rft.jtitle=Applied+mathematics+and+nonlinear+sciences&rft.au=Qiao%2C+Ying&rft.au=Li%2C+Yu&rft.au=Zhou%2C+Liangzhi&rft.au=Shang%2C+Xu&rft.date=2024-01-01&rft.issn=2444-8656&rft.eissn=2444-8656&rft.volume=9&rft.issue=1&rft_id=info:doi/10.2478%2Famns-2024-1560&rft.externalDBID=n%2Fa&rft.externalDocID=10_2478_amns_2024_1560
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2444-8656&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2444-8656&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2444-8656&client=summon