Zero-sample text classification algorithm based on BERT and graph convolutional neural network
In this study, we undertake a comprehensive examination of zero-shot text classification and its associated implications. We propose the adoption of the BERT model as a method for text feature representation. Subsequently, we utilize the Pointwise Mutual Information (PMI) metric to adjust the weight...
Saved in:
| Published in | Applied mathematics and nonlinear sciences Vol. 9; no. 1 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Beirut
Sciendo
01.01.2024
De Gruyter Brill Sp. z o.o., Paradigm Publishing Services |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2444-8656 2444-8656 |
| DOI | 10.2478/amns-2024-1560 |
Cover
| Abstract | In this study, we undertake a comprehensive examination of zero-shot text classification and its associated implications. We propose the adoption of the BERT model as a method for text feature representation. Subsequently, we utilize the Pointwise Mutual Information (PMI) metric to adjust the weight values within a graph convolutional neural network, thereby facilitating the construction of a text graph. Additionally, we incorporate an attention mechanism to transform this text graph, enabling it to represent the output labels of zero-shot text classification effectively. The experimental environment is set up, and the comparison and ablation experiments of the text classification model based on BERT and graph convolutional neural network with the baseline models are carried out in several different types of datasets, and the parameter settings of
are adjusted according to the experimental results, and the convergence of the BERT model is compared to test the robustness of the model performance and the classification effect. When
was set to 0.60, the model achieved the best results in each dataset. When the task is set to 5-way-5-shot, the convergence rate of the model for the Snippets dataset using the penultimate layer of features can reach 74%-80% of the training accuracy at the 5,000th step. The training accuracy gradually flattens out in the first 10,000 steps, and the model achieves classification accuracy in all four learning scenarios, with good stability. |
|---|---|
| AbstractList | In this study, we undertake a comprehensive examination of zero-shot text classification and its associated implications. We propose the adoption of the BERT model as a method for text feature representation. Subsequently, we utilize the Pointwise Mutual Information (PMI) metric to adjust the weight values within a graph convolutional neural network, thereby facilitating the construction of a text graph. Additionally, we incorporate an attention mechanism to transform this text graph, enabling it to represent the output labels of zero-shot text classification effectively. The experimental environment is set up, and the comparison and ablation experiments of the text classification model based on BERT and graph convolutional neural network with the baseline models are carried out in several different types of datasets, and the parameter settings of λ are adjusted according to the experimental results, and the convergence of the BERT model is compared to test the robustness of the model performance and the classification effect. When λ was set to 0.60, the model achieved the best results in each dataset. When the task is set to 5-way-5-shot, the convergence rate of the model for the Snippets dataset using the penultimate layer of features can reach 74%-80% of the training accuracy at the 5,000th step. The training accuracy gradually flattens out in the first 10,000 steps, and the model achieves classification accuracy in all four learning scenarios, with good stability. In this study, we undertake a comprehensive examination of zero-shot text classification and its associated implications. We propose the adoption of the BERT model as a method for text feature representation. Subsequently, we utilize the Pointwise Mutual Information (PMI) metric to adjust the weight values within a graph convolutional neural network, thereby facilitating the construction of a text graph. Additionally, we incorporate an attention mechanism to transform this text graph, enabling it to represent the output labels of zero-shot text classification effectively. The experimental environment is set up, and the comparison and ablation experiments of the text classification model based on BERT and graph convolutional neural network with the baseline models are carried out in several different types of datasets, and the parameter settings of are adjusted according to the experimental results, and the convergence of the BERT model is compared to test the robustness of the model performance and the classification effect. When was set to 0.60, the model achieved the best results in each dataset. When the task is set to 5-way-5-shot, the convergence rate of the model for the Snippets dataset using the penultimate layer of features can reach 74%-80% of the training accuracy at the 5,000th step. The training accuracy gradually flattens out in the first 10,000 steps, and the model achieves classification accuracy in all four learning scenarios, with good stability. |
| Author | Li, Yu Qiao, Ying Shang, Xu Zhou, Liangzhi |
| Author_xml | – sequence: 1 givenname: Ying surname: Qiao fullname: Qiao, Ying organization: School of Computer Science and Software Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, China – sequence: 2 givenname: Yu surname: Li fullname: Li, Yu email: 202121000510@stu.swpu.edu.cn organization: School of Computer Science and Software Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, China – sequence: 3 givenname: Liangzhi surname: Zhou fullname: Zhou, Liangzhi organization: PetroChina Changqing Oilfield Company Oil Production PLANT NO.7, Xi’an, Shaanxi, 710000, China – sequence: 4 givenname: Xu surname: Shang fullname: Shang, Xu organization: PetroChina Changqing Oilfield Company Oil Production PLANT NO.7, Xi’an, Shaanxi, 710000, China |
| BookMark | eNqFkM1Lw0AQxRdRsNZePS94TrsfySY5aqkfUBCkXjy4TDabNnWbjbuJtf-9iRH0IHiax_DeY-Z3ho4rW2mELiiZsjBOZrCrfMAICwMaCXKERiwMwyARkTj-pU_RxPstIYRxyoVgI_TyrJ0NPOxqo3GjPxqsDHhfFqWCprQVBrO2rmw2O5yB1znuVteLxxWGKsdrB_UGK1u9W9P2bjC40q37Gs3eutdzdFKA8XryPcfo6Waxmt8Fy4fb-_nVMlCMCRrklBKAUMexCmkaE8UJEWkeZ4TyCApQaZEWOuJKCFEAUM1TrWMKJOcqSzLOx2g29LZVDYc9GCNrV-7AHSQlsicke0KyJyR7Ql3ickjUzr612jdya1vXfeAlpymlSZTEfe90cClnvXe6-L82GQLdDY12uV679tCJn_a_gynlny4Fi1Q |
| Cites_doi | 10.1007/s11063-022-10843-4 10.1155/2019/9151670 10.1016/j.neucom.2018.02.099 10.3390/rs14040906 10.3390/rs13163207 10.1117/1.JRS.16.038501 10.1142/S0129065721500350 10.1109/TCYB.2021.3133106 10.1007/s00521-023-08754-z 10.1155/2021/6665588 10.1080/13658816.2018.1555832 10.1016/j.neucom.2020.12.127 10.1021/acs.iecr.3c02489 10.1016/j.infrared.2019.103048 10.1007/s11227-021-04157-w 10.14311/NNW.2019.29.015 10.1049/iet-ipr.2018.6224 10.1016/j.eswa.2020.113455 10.1016/j.rse.2019.03.007 10.3389/fnhum.2022.815163 |
| ContentType | Journal Article |
| Copyright | 2024. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY |
| DOI | 10.2478/amns-2024-1560 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 2444-8656 |
| ExternalDocumentID | 10.2478/amns-2024-1560 10_2478_amns_2024_1560 10_2478_amns_2024_156091 |
| GroupedDBID | 9WM AATOW ABFKT ADBLJ AFKRA AHGSO ALMA_UNASSIGNED_HOLDINGS AMVHM ARCSS BENPR CCPQU EBS M~E OK1 PHGZM PHGZT PIMPY QD8 SLJYH AAYXX CITATION PUEGO ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS ADTOC AIKXB EJD UNPAY |
| ID | FETCH-LOGICAL-c2261-d110aa4e77c41970c30069d7b0135afac9f9fe53c666faa1e39ee71a0d3cb8b33 |
| IEDL.DBID | UNPAY |
| ISSN | 2444-8656 |
| IngestDate | Sun Sep 07 11:13:38 EDT 2025 Sun Oct 19 01:31:42 EDT 2025 Wed Oct 01 05:14:52 EDT 2025 Tue Oct 21 12:48:57 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | This work is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0 cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2261-d110aa4e77c41970c30069d7b0135afac9f9fe53c666faa1e39ee71a0d3cb8b33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.2478/amns-2024-1560 |
| PQID | 3191185873 |
| PQPubID | 6761185 |
| PageCount | 18 |
| ParticipantIDs | unpaywall_primary_10_2478_amns_2024_1560 proquest_journals_3191185873 crossref_primary_10_2478_amns_2024_1560 walterdegruyter_journals_10_2478_amns_2024_156091 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-01 20240101 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Beirut |
| PublicationPlace_xml | – name: Beirut |
| PublicationTitle | Applied mathematics and nonlinear sciences |
| PublicationYear | 2024 |
| Publisher | Sciendo De Gruyter Brill Sp. z o.o., Paradigm Publishing Services |
| Publisher_xml | – name: Sciendo – name: De Gruyter Brill Sp. z o.o., Paradigm Publishing Services |
| References | 2025091823285575393_j_amns-2024-1560_ref_020 2025091823285575393_j_amns-2024-1560_ref_009 2025091823285575393_j_amns-2024-1560_ref_007 2025091823285575393_j_amns-2024-1560_ref_018 2025091823285575393_j_amns-2024-1560_ref_008 2025091823285575393_j_amns-2024-1560_ref_019 2025091823285575393_j_amns-2024-1560_ref_005 2025091823285575393_j_amns-2024-1560_ref_016 2025091823285575393_j_amns-2024-1560_ref_006 2025091823285575393_j_amns-2024-1560_ref_017 2025091823285575393_j_amns-2024-1560_ref_003 2025091823285575393_j_amns-2024-1560_ref_014 2025091823285575393_j_amns-2024-1560_ref_004 2025091823285575393_j_amns-2024-1560_ref_015 2025091823285575393_j_amns-2024-1560_ref_001 2025091823285575393_j_amns-2024-1560_ref_012 2025091823285575393_j_amns-2024-1560_ref_002 2025091823285575393_j_amns-2024-1560_ref_013 2025091823285575393_j_amns-2024-1560_ref_010 2025091823285575393_j_amns-2024-1560_ref_021 2025091823285575393_j_amns-2024-1560_ref_011 2025091823285575393_j_amns-2024-1560_ref_022 |
| References_xml | – ident: 2025091823285575393_j_amns-2024-1560_ref_008 doi: 10.1007/s11063-022-10843-4 – ident: 2025091823285575393_j_amns-2024-1560_ref_001 doi: 10.1155/2019/9151670 – ident: 2025091823285575393_j_amns-2024-1560_ref_002 – ident: 2025091823285575393_j_amns-2024-1560_ref_013 doi: 10.1016/j.neucom.2018.02.099 – ident: 2025091823285575393_j_amns-2024-1560_ref_004 doi: 10.3390/rs14040906 – ident: 2025091823285575393_j_amns-2024-1560_ref_007 doi: 10.3390/rs13163207 – ident: 2025091823285575393_j_amns-2024-1560_ref_009 doi: 10.1117/1.JRS.16.038501 – ident: 2025091823285575393_j_amns-2024-1560_ref_020 doi: 10.1142/S0129065721500350 – ident: 2025091823285575393_j_amns-2024-1560_ref_010 doi: 10.1109/TCYB.2021.3133106 – ident: 2025091823285575393_j_amns-2024-1560_ref_017 doi: 10.1007/s00521-023-08754-z – ident: 2025091823285575393_j_amns-2024-1560_ref_003 doi: 10.1155/2021/6665588 – ident: 2025091823285575393_j_amns-2024-1560_ref_022 – ident: 2025091823285575393_j_amns-2024-1560_ref_005 doi: 10.1080/13658816.2018.1555832 – ident: 2025091823285575393_j_amns-2024-1560_ref_016 doi: 10.1016/j.neucom.2020.12.127 – ident: 2025091823285575393_j_amns-2024-1560_ref_019 doi: 10.1021/acs.iecr.3c02489 – ident: 2025091823285575393_j_amns-2024-1560_ref_011 doi: 10.1016/j.infrared.2019.103048 – ident: 2025091823285575393_j_amns-2024-1560_ref_012 doi: 10.1007/s11227-021-04157-w – ident: 2025091823285575393_j_amns-2024-1560_ref_021 doi: 10.14311/NNW.2019.29.015 – ident: 2025091823285575393_j_amns-2024-1560_ref_018 doi: 10.1049/iet-ipr.2018.6224 – ident: 2025091823285575393_j_amns-2024-1560_ref_014 doi: 10.1016/j.eswa.2020.113455 – ident: 2025091823285575393_j_amns-2024-1560_ref_006 doi: 10.1016/j.rse.2019.03.007 – ident: 2025091823285575393_j_amns-2024-1560_ref_015 doi: 10.3389/fnhum.2022.815163 |
| SSID | ssj0002313662 |
| Score | 2.266251 |
| Snippet | In this study, we undertake a comprehensive examination of zero-shot text classification and its associated implications. We propose the adoption of the BERT... |
| SourceID | unpaywall proquest crossref walterdegruyter |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| SubjectTerms | 97P10 Accuracy Attention mechanism Baseline model BERT model Classification Graph convolutional neural network Neural networks Text categorization Text classification |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dS8MwED90PqgP8xunU_Ig6EvY2qTN-iCisiGCQ2SD4YMlTdL5sHVzH4j_vbmsdSiiT4VCE3p3yf1yd_kdwJnS0rq5lFFhuE956hlqTdmnWgQp10x5YYS3kR_a4V2X3_eC3gq0i7swWFZZ7Iluo9YjhTHymjUVi4WDhmBX4zeKXaMwu1q00JB5awV96SjGVmHNR2asEqzdNNuPT19RF4tmWBj6C_ZGn4tGTQ6zqTUVn1O8U_zdOy0h5_o8G8uPdzkYbEL53SWytelP5h-zInHq_FFrG8o5kCTXC83vwIrJdmErB5UkX7LTPXh5NpMRnUpkASZY5kEUAmasEHJKIXLQt_85ex0S9Gia2Fc3zacOkZkmjs6aYGV6bqF2RmTAdA9XP74P3Vazc3tH86YKVPkYa9LW30vJjRCKe5GoK4ZkxVpgPDSQqVRRGqUmYMqea1IpPcMiY4Qn61ZxSSNh7ABK2Sgzh0D8xJ6sA56yhHtcJGGEVDYiUYkwSvAwrMB5Icx4vODOiO2ZA8Ueo9hjFHuMYq9AtZB1nK-habzUeAUuvuT_70jeD_UsB_z9i8g7-nv2Y9hw9uHiLlUozSZzc2KRyCw5zc3rE5mt380 priority: 102 providerName: ProQuest |
| Title | Zero-sample text classification algorithm based on BERT and graph convolutional neural network |
| URI | https://www.degruyter.com/doi/10.2478/amns-2024-1560 https://www.proquest.com/docview/3191185873 https://doi.org/10.2478/amns-2024-1560 |
| UnpaywallVersion | publishedVersion |
| Volume | 9 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 2444-8656 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002313662 issn: 2444-8656 databaseCode: AMVHM dateStart: 20170701 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2444-8656 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002313662 issn: 2444-8656 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2444-8656 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002313662 issn: 2444-8656 databaseCode: BENPR dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVJWN databaseName: Sciendo customDbUrl: eissn: 2444-8656 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002313662 issn: 2444-8656 databaseCode: 9WM dateStart: 20160630 isFulltext: true titleUrlDefault: https://content.sciendo.com/ providerName: Sciendo – providerCode: PRVJWN databaseName: Sciendo:Open Access customDbUrl: eissn: 2444-8656 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002313662 issn: 2444-8656 databaseCode: ADBLJ dateStart: 20180630 isFulltext: true titleUrlDefault: https://www.sciendo.com/ providerName: Sciendo – providerCode: PRVAZK databaseName: Walter De Gruyter: Open Access Journals customDbUrl: eissn: 2444-8656 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002313662 issn: 2444-8656 databaseCode: AHGSO dateStart: 20160630 isFulltext: true titleUrlDefault: https://www.degruyterbrill.com providerName: Walter de Gruyter |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH7odhAPzp840ZGDoJeobdJmPapMh-AYY8PpwZKk6RS3TraOoX-9eV3njyHoqVBoGt73kve95OULwKGOpA1zMaPCcJfy2DHUurJLI-HFPGLa8QM8jXzb8OsdftP1unmBLJ6F-bZ_73JRPZWDZGyRdDnFI7_LUPQ9y7kLUOw0muf3eHMc55xWLSuZKTL-8tHPiPNFI1cmyat8m8p-fxXWptnmdGR6o8lbOt8MzWLMVQmu572blZa8nExSdaLfF4Qb_-7-OqzlNJOcz_xiA5ZMsgmlnHKSfECPt-DxwYyGdCxRI5hgEQjRSKexfiiDjMh-bzh6Tp8GBONdROyri1qrTWQSkUzsmmDdeu6_9o-oj5k9surybehc1dqXdZpfuUC1iytRkWUDUnIjhOZOIM40QynjSOBqqSdjqYM4iI3HtM16YikdwwJjhCPPLKyqqhjbgUIyTMwuEFfZvNvjMVPc4UL5AQrdCKWVMFpw3y_D0RyW8HWmrBHajATNFqLZQjRbiGYrw_4ctTAfYePQTh02N_KqgpXh-BPJP1tyFoD-avD3LwJn7__N70MhHU3MgaUpqarY2fbutgLFi1qj2arkHvsB2UHp1g |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9swFH9CcGA7sG-tjDEfNm0XC2I7cXNA04CiMqCaUJHQDguO7bBDSUvTquo_t79t77kJFdO0nThFihRb-flnvw-_D4D31hkUc4Xk2ivBVRF5jlQW3Om4UE7aKEkpG_msl3Qv1NfL-HIFfjW5MBRW2ZyJ4aB2Q0s-8h2kCurCcVvLz6NbTl2j6Ha1aaFh6tYKbi-UGKsTO078fIYmXLV3fIjr_UGIo07_oMvrLgPcCnK-OBSAxiivtVVRqnetpOq9TpODMDaFsWmRFj6WFhX9wpjIy9R7HZld_JO8nZNDFEXAmpIqReNvbb_T-3Z-5-VB7UkmiVhUixRKt3fMTVkhNYXilMN8XxouVdz1aTky85kZDB7DxixcnDt_PZ7OJ81FbZB_R09ho1Zc2ZcF057Bii-fw5NaiWX1EVG9gB_f_XjIK0NVhxmFlTBLCjpFJAUSMDO4RlwnP28YSVDH8NV-57zPTOlYKJ_NKBK-3hE4I1XcDI8Qr_4SLh4E3lewWg5L_xqYyNGSj1UhcxUpnScplc7Ruc21t1olSQs-NmBmo0WtjgxtHII9I9gzgj0j2Fuw1WCd1Xu2ypYMa8GnO_z_O1L0x_IsB_z7F2m0-e_Z38F6t392mp0e907ewKPAleDz2YLVyXjq36IWNMm3a6oxuHpodv8GZWUdDA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFH5oBZdD3bGucxD0Emwyk0xzdKt1F60gHgyTWapQ09KF4r933jRVlILgKRB4E_jem7x1vgHYlUpYN2eoxzULPGZ87VlTDjzFQ8MUlX4U42nk65uo9sgunsKnPFHEszDuv69ct_KgrYwbVWa8ciDes67VaMA8PPo7CVPIwx4WYOqwdvZw-1VVsdEKjaJgyM44RvCn9_kOKWf6WVt8DESzOQfFgWtUK93o9D96o8ao8zfVBSjmgSI5HGp2ESZ0tgTzedBI8i3ZXYaXZ91peV2BLL8ExziIxIAYJ4Ac6EQ0G63OW-_1naDHUsS-Ojq9rxORKeLoqglOnucWaL-IDJfu4ebDV-Cxelo_rnn5pQmeDLCWpKw_F4JpziXzY16WFMmIFcd6ZyiMkLGJjQ6ptHmLEcLXNNaa-6JsFZNWUkpXoZC1Mr0GJEht5hwyQ1PmM55GMVLV8FSmXEvOoqgEeyMwk_aQGyOxOQXCniDsCcKeIOwl2BxhneR7pJvYzW-zm7DCaQn2v_D_cyX_l3q-FxwvEfvr_5DZgem7k2pydX5zuQGzzn5c3WUTCr1OX2_ZSKSXbufm9wm7ONwi |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH7oPIiH-RsnKjkIeonaJm3a45TpEBwiG0wPliRNpzg72TrG_OvN6zqnY6CnQiFpeN9L3_eSly8AxzqWNswljArDXcoTx1Dryi6NhZfwmGnHD_E08l3Dr7f4bdtrFwWyeBbmx_69y0VwLt_TgUXS5RSP_C7Diu9Zzl2ClVbjvvqIN8dxzmlgWclEkXFBo98RZ0YjV4fphxyPZLe7BuVRvjkdm05_OM6mm6F5jLleh5vp6CalJW9nw0yd6c854ca_h78B5YJmkurELzZhyaRbsF5QTlJM6ME2PD-Zfo8OJGoEEywCIRrpNNYP5ZAR2e30-q_ZyzvBeBcT--qy9tAkMo1JLnZNsG698F_7RdTHzB95dfkOtK5rzas6La5coNrFlajYsgEpuRFCcycUF5qhlHEscLXUk4nUYRImxmPaZj2JlI5hoTHCkRcWVhUoxnahlPZSswfEVTbv9njCFHe4UH6IQjdCaSWMFtz3K3AyhSX6mChrRDYjQbNFaLYIzRah2SpwMEUtKmbYILK_DpsbeYFgFTj9RvLPnpw5oGcdLm4ROvv_7_4ASll_aA4tTcnUUeGjXyZr5z4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zero-sample+text+classification+algorithm+based+on+BERT+and+graph+convolutional+neural+network&rft.jtitle=Applied+mathematics+and+nonlinear+sciences&rft.au=Qiao%2C+Ying&rft.au=Li%2C+Yu&rft.au=Zhou%2C+Liangzhi&rft.au=Shang%2C+Xu&rft.date=2024-01-01&rft.issn=2444-8656&rft.eissn=2444-8656&rft.volume=9&rft.issue=1&rft_id=info:doi/10.2478%2Famns-2024-1560&rft.externalDBID=n%2Fa&rft.externalDocID=10_2478_amns_2024_1560 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2444-8656&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2444-8656&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2444-8656&client=summon |