A Few Discrete Lattice Systems and Their Hamiltonian Structures,Conservation Laws
With the help of three shift operators and r-matrix theory, a few discrete lattice systems are obtained which can be reduced to the well-known Toda lattice equation with a constraint whose Hamiltonian structures are generated by Poisson tensors of some induced Lie–Poisson bracket. The recursion oper...
Saved in:
| Published in | Communications in theoretical physics Vol. 67; no. 4; pp. 396 - 406 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
01.04.2017
|
| Online Access | Get full text |
| ISSN | 0253-6102 |
| DOI | 10.1088/0253-6102/67/4/396 |
Cover
| Abstract | With the help of three shift operators and r-matrix theory, a few discrete lattice systems are obtained which can be reduced to the well-known Toda lattice equation with a constraint whose Hamiltonian structures are generated by Poisson tensors of some induced Lie–Poisson bracket. The recursion operators of these lattice systems are constructed starting from Lax representations. Finally, reducing the given shift operators to get a simpler one and its expanding shift operators, we produce a lattice system with three vector fields whose recursion operator is given. Furthermore,we reduce the lattice system with three vector fields to get a lattice system whose Lax pair and conservation laws are obtained, respectively. |
|---|---|
| AbstractList | With the help of three shift operators and r-matrix theory, a few discrete lattice systems are obtained which can be reduced to the well-known Toda lattice equation with a constraint whose Hamiltonian structures are generated by Poisson tensors of some induced Lie–Poisson bracket. The recursion operators of these lattice systems are constructed starting from Lax representations. Finally, reducing the given shift operators to get a simpler one and its expanding shift operators, we produce a lattice system with three vector fields whose recursion operator is given. Furthermore,we reduce the lattice system with three vector fields to get a lattice system whose Lax pair and conservation laws are obtained, respectively. |
| Author | 郭秀荣 张玉峰 张祥芝 岳嵘 |
| AuthorAffiliation | College of Mathematics, China University of Mining and Technology, XuZhou 221116, China Basic Courses, Shandong University of Science and Technology, Taian 171019, China |
| Author_xml | – sequence: 1 fullname: 郭秀荣 张玉峰 张祥芝 岳嵘 |
| BookMark | eNo9kE1rAjEYhHOwULX9Az2FnrvdfKzJ5ii21sJCKXoPMftGUzTbJrHiv-9KxdPAwDPMzAgNQhcAoQdKnimp65KwCS8EJawUsqxKrsQADa_mLRql9EUIYVLQIfqc4jkc8YtPNkIG3JicvQW8PKUM-4RNaPFqCz7ihdn7Xe6CNwEvczzYfIiQnmZdSBB_TfZd6OljukM3zuwS3F90jFbz19VsUTQfb--zaVNYxia5qLmsK8WElUJVtqqrllPH14Ipzo1Rri_slJoQZYyFljhWryWHdS1aYKJ1fIzYf6yNXUoRnP6Ofm_iSVOizz_o82R9nqyF1JXuf-ihxwu07cLmx4fNlRKSUcE45fwPP-Jf6g |
| Cites_doi | 10.1016/0375-9601(94)90925-3 10.2977/prims/1195166743 10.1063/1.530807 10.1016/0378-4371(89)90398-1 10.1016/S0034-4877(99)80143-8 10.1063/1.1324651 10.1007/BF02884730 10.1007/BF01076717 10.1515/zna-2016-0347 10.1007/s11071-015-2089-y 10.1186/s13662-016-1039-4 10.22436/jnsa.009.12.18 10.1007/s11071-016-2941-8 10.1016/S0034-4877(01)80061-6 10.1142/S0129055X01000752 10.1016/j.apm.2015.03.019 10.1007/s11071-015-2406-5 |
| ContentType | Journal Article |
| DBID | 2RA 92L CQIGP ~WA AAYXX CITATION |
| DOI | 10.1088/0253-6102/67/4/396 |
| DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库- 镜像站点 CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Physics |
| DocumentTitleAlternate | A Few Discrete Lattice Systems and Their Hamiltonian Structures,Conservation Laws |
| EndPage | 406 |
| ExternalDocumentID | 10_1088_0253_6102_67_4_396 672162313 |
| GroupedDBID | 02O 042 1JI 1WK 2B. 2C. 2RA 4.4 5B3 5GY 5VR 5VS 7.M 92E 92I 92L 92Q 93N AAGCD AAJIO AALHV AATNI ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFUIB AFYNE AHSEE AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BBWZM CCEZO CCVFK CEBXE CHBEP CJUJL CQIGP CRLBU CS3 CW9 DU5 E3Z EBS EDWGO EJD EMSAF EPQRW EQZZN FA0 FEDTE FRP HAK HVGLF IJHAN IOP IZVLO JCGBZ KNG KOT M45 N5L NS0 NT- NT. P2P PJBAE Q02 RIN RNS RO9 ROL RPA RW3 S3P SY9 TCJ TGP UCJ W28 ~WA -SA -S~ AAYXX ACARI ADEQX AEINN AERVB AGQPQ AOAED ARNYC CAJEA CITATION Q-- U1G U5K |
| ID | FETCH-LOGICAL-c225t-83784926c7694c484d31f3b62933aa9f025f99509aaced0f28b73eb86de26df3 |
| ISSN | 0253-6102 |
| IngestDate | Wed Oct 01 02:22:01 EDT 2025 Wed Feb 14 10:00:40 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | http://iopscience.iop.org/info/page/text-and-data-mining http://iopscience.iop.org/page/copyright |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c225t-83784926c7694c484d31f3b62933aa9f025f99509aaced0f28b73eb86de26df3 |
| Notes | 11-2592/O3 With the help of three shift operators and r-matrix theory, a few discrete lattice systems are obtained which can be reduced to the well-known Toda lattice equation with a constraint whose Hamiltonian structures are generated by Poisson tensors of some induced Lie–Poisson bracket. The recursion operators of these lattice systems are constructed starting from Lax representations. Finally, reducing the given shift operators to get a simpler one and its expanding shift operators, we produce a lattice system with three vector fields whose recursion operator is given. Furthermore,we reduce the lattice system with three vector fields to get a lattice system whose Lax pair and conservation laws are obtained, respectively. discrete lattice system r-matrix Hamiltonian structure |
| PageCount | 11 |
| ParticipantIDs | crossref_primary_10_1088_0253_6102_67_4_396 chongqing_primary_672162313 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017-04-01 |
| PublicationDateYYYYMMDD | 2017-04-01 |
| PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Communications in theoretical physics |
| PublicationTitleAlternate | Communications in Theoretical Physics |
| PublicationYear | 2017 |
| References | 11 15 16 17 18 Zhang Y. F. (12) 2016; 9 Zhang Y. F. (13) 2016; 72 Zhang Y. F. (14) 2016 1 2 3 4 5 6 7 8 9 10 |
| References_xml | – ident: 8 doi: 10.1016/0375-9601(94)90925-3 – ident: 10 doi: 10.2977/prims/1195166743 – ident: 3 doi: 10.1063/1.530807 – ident: 9 doi: 10.1016/0378-4371(89)90398-1 – ident: 1 doi: 10.1016/S0034-4877(99)80143-8 – ident: 2 doi: 10.1063/1.1324651 – ident: 6 doi: 10.1007/BF02884730 – ident: 7 doi: 10.1007/BF01076717 – volume: 72 start-page: 77 issn: 0340-4811 year: 2016 ident: 13 publication-title: Z. Naturforsch. doi: 10.1515/zna-2016-0347 – ident: 16 doi: 10.1007/s11071-015-2089-y – year: 2016 ident: 14 publication-title: Commun. Theor. Phys. – ident: 11 doi: 10.1186/s13662-016-1039-4 – volume: 9 start-page: 6126 year: 2016 ident: 12 publication-title: J. Nonlinear Sci. Appl. doi: 10.22436/jnsa.009.12.18 – ident: 17 doi: 10.1007/s11071-016-2941-8 – ident: 4 doi: 10.1016/S0034-4877(01)80061-6 – ident: 5 doi: 10.1142/S0129055X01000752 – ident: 18 doi: 10.1016/j.apm.2015.03.019 – ident: 15 doi: 10.1007/s11071-015-2406-5 |
| SSID | ssj0002761 |
| Score | 2.0811498 |
| Snippet | With the help of three shift operators and r-matrix theory, a few discrete lattice systems are obtained which can be reduced to the well-known Toda lattice... |
| SourceID | crossref chongqing |
| SourceType | Index Database Publisher |
| StartPage | 396 |
| Title | A Few Discrete Lattice Systems and Their Hamiltonian Structures,Conservation Laws |
| URI | http://lib.cqvip.com/qk/83837X/201704/672162313.html |
| Volume | 67 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: IOP Science Platform issn: 0253-6102 databaseCode: IOP dateStart: 19820101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://iopscience.iop.org/ omitProxy: false ssIdentifier: ssj0002761 providerName: IOP Publishing |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELbKIiQusCwglmWRD_hUQtvYceyjs01VEOJHKtLeojhx4NQFmhUSj8OTMuM4aSoQAqQ2ssb2RPV8HY_t8Qwhz0QDk5zl6N1veSSStIks5jfRTayVEDpe1N7L941cfxCvLpPLyeTHyGvpurUvqu-_vVfyP1IFGsgVb8n-g2QHpkCAMsgXniBheP6VjM105b5hAE0w_Vo3fV226MrWRyH35wIbfxCwxm0MsPL8v9lHjL3-6vUD5uvst2VxQ3s3NlZZnjI9Z0qyXDGTs8wgRWlm9KhKe2cJE9qYFctXLLsIFJWxbMFyybRkKg3d1eA-63tzZpZYY1LkhJ2WzPApyxPkY-a-V44dkcJZNj-sMwl-sJ9hetnVxdgQCwnr0k_3OxswW-4dYjoFGCcclrbzA23dJe8IqBQj1cu1HM3iwscx-HWCAKXqY2kEzlCWeGYt4DswOAi_LTG6ERjB_Aa5GcPMgelBXr59N8z2QPNZGXuO4WIWvGc20GYynYkZ1z6Ax6er7ccvYJaMDKGRRbM5JnfCUoSaDlf3yMRtT8jdsCyhQenvTsgt7yVc7e6T94YC4GgPOBoARwPgKACOesDREeDoHnDPx3CjCLcHZLPKNxfrKOTkiCrQ_G2E-QcwxmSVSi0qoUTNFw23EqxGXpa6gd_caA1WaFlWrp43sbIpd1bJ2sWybvhDcrS92rpHhDpZV_6esxONKHllK8cXtY3TRMhacXtKzoaxKj53oVeKQRqnZNqP3lDp_SmUKnDcCxx3aF6IAsb98R95nZHbe_g9IUcwKu4cTM3WPvWy_gniVWBa |
| linkProvider | IOP Publishing |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Few+Discrete+Lattice+Systems+and+Their+Hamiltonian+Structures%2CConservation+Laws&rft.jtitle=%E7%90%86%E8%AE%BA%E7%89%A9%E7%90%86%E9%80%9A%E8%AE%AF%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E9%83%AD%E7%A7%80%E8%8D%A3+%E5%BC%A0%E7%8E%89%E5%B3%B0+%E5%BC%A0%E7%A5%A5%E8%8A%9D+%E5%B2%B3%E5%B5%98&rft.date=2017-04-01&rft.issn=0253-6102&rft.volume=67&rft.issue=4&rft.spage=396&rft.epage=406&rft_id=info:doi/10.1088%2F0253-6102%2F67%2F4%2F396&rft.externalDocID=672162313 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F83837X%2F83837X.jpg |