Impact of inertia weight strategies in particle swarm optimization for solving economic dispatch problem

Particle Swarm Optimization (PSO) is a population based stochastic optimization technique inspired by the social learning of birds or fish. Some of the appealing facts of PSO are its convenience, simplicity and easiness of implementation requiring but few parameters adjustments. Inertia Weight (ω) i...

Full description

Saved in:
Bibliographic Details
Published inIndonesian Journal of Electrical Engineering and Computer Science Vol. 13; no. 1; p. 377
Main Authors MEZIANE, Mohammed Amine, Mouloudi, Youssef, Bouchiba, Bousmaha, Laoufi, Abdellah
Format Journal Article
LanguageEnglish
Published 01.01.2019
Online AccessGet full text
ISSN2502-4752
2502-4760
2502-4760
DOI10.11591/ijeecs.v13.i1.pp377-383

Cover

Abstract Particle Swarm Optimization (PSO) is a population based stochastic optimization technique inspired by the social learning of birds or fish. Some of the appealing facts of PSO are its convenience, simplicity and easiness of implementation requiring but few parameters adjustments. Inertia Weight (ω) is one of the essential parameters in PSO, which often significantly the affects convergence and the balance between the exploration and exploitation characteristics of PSO. Since the adoption of this parameter, there have been large proposals for determining the value of Inertia Weight Strategy. In order to show the efficiency of this parameter in the Economic Dispatch problem(ED), this paper presents a comprehensive review of one or more than one recent and popular inertia weight strategies reported in the related literature. Among this five recent inertia weight four were randomly chosen for application and subject to empirical studies in this research, namely, Constant (ω), Random (ω), Global-Local Best (ω), Linearly Decreasing (ω), which are then compared in term of performance within the confines of the discussed optimization problem. Morever, the results are compared to those reported in the recent literature and data from SONELGAZ. The study results are quite encouraging showing the good applicability of PSO with adaptive inertia weight for solving economic dispatch problem.
AbstractList Particle Swarm Optimization (PSO) is a population based stochastic optimization technique inspired by the social learning of birds or fish. Some of the appealing facts of PSO are its convenience, simplicity and easiness of implementation requiring but few parameters adjustments. Inertia Weight (ω) is one of the essential parameters in PSO, which often significantly the affects convergence and the balance between the exploration and exploitation characteristics of PSO. Since the adoption of this parameter, there have been large proposals for determining the value of Inertia Weight Strategy. In order to show the efficiency of this parameter in the Economic Dispatch problem(ED), this paper presents a comprehensive review of one or more than one recent and popular inertia weight strategies reported in the related literature. Among this five recent inertia weight four were randomly chosen for application and subject to empirical studies in this research, namely, Constant (ω), Random (ω), Global-Local Best (ω), Linearly Decreasing (ω), which are then compared in term of performance within the confines of the discussed optimization problem. Morever, the results are compared to those reported in the recent literature and data from SONELGAZ. The study results are quite encouraging showing the good applicability of PSO with adaptive inertia weight for solving economic dispatch problem.
Author Mouloudi, Youssef
Bouchiba, Bousmaha
MEZIANE, Mohammed Amine
Laoufi, Abdellah
Author_xml – sequence: 1
  givenname: Mohammed Amine
  surname: MEZIANE
  fullname: MEZIANE, Mohammed Amine
– sequence: 2
  givenname: Youssef
  surname: Mouloudi
  fullname: Mouloudi, Youssef
– sequence: 3
  givenname: Bousmaha
  surname: Bouchiba
  fullname: Bouchiba, Bousmaha
– sequence: 4
  givenname: Abdellah
  surname: Laoufi
  fullname: Laoufi, Abdellah
BookMark eNqNkMtqwzAQRUVJoWmaf9AP2JUs-bUplNBHINBNuxayPE6m2JaQ1IT062uS0kVXWc3A4d5hzi2ZjXYEQihnKed5ze_xE8CEdM9Fijx1TpRlIipxReZZzrJElgWb_e15dkOWIWDDBOP1xMSc7NaD0yZS21EcwUfU9AC43UUaotcRtghhItTpiZkeaDhoP1DrIg74rSPakXbW02D7PY5bCsaOdkBDWwxOR7Ojztumh-GOXHe6D7D8nQvy8fz0vnpNNm8v69XjJjFZJkUCsmCcySyHDqqyAdlA2eWNblooqqrWTVkzCbUuQQpTMFaB7soKZN0WGgxrxYLU596v0enjQfe9ch4H7Y-KM3Wyps7W1GRNIVcna2qyNmUfzlnjbQgeOmUwnn6cXGB_SUH1r-Di2z9XRZHG
CitedBy_id crossref_primary_10_1155_2019_4085725
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.11591/ijeecs.v13.i1.pp377-383
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 2502-4760
ExternalDocumentID 10.11591/ijeecs.v13.i1.pp377-383
10_11591_ijeecs_v13_i1_pp377_383
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
ADTOC
ARCSS
UNPAY
ID FETCH-LOGICAL-c2243-e46010425efe87be4be7f5babde6889ab7904e9a7e43c6008eaf78e49d6aec0d3
IEDL.DBID UNPAY
ISSN 2502-4752
2502-4760
IngestDate Sun Oct 26 02:01:04 EDT 2025
Thu Apr 24 23:11:21 EDT 2025
Tue Jul 01 02:46:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 1
Language English
License http://creativecommons.org/licenses/by-nc/4.0
cc-by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2243-e46010425efe87be4be7f5babde6889ab7904e9a7e43c6008eaf78e49d6aec0d3
OpenAccessLink https://proxy.k.utb.cz/login?url=http://ijeecs.iaescore.com/index.php/IJEECS/article/download/14849/10306
ParticipantIDs unpaywall_primary_10_11591_ijeecs_v13_i1_pp377_383
crossref_citationtrail_10_11591_ijeecs_v13_i1_pp377_383
crossref_primary_10_11591_ijeecs_v13_i1_pp377_383
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationTitle Indonesian Journal of Electrical Engineering and Computer Science
PublicationYear 2019
SSID ssib030194763
ssib044739472
ssib052605909
Score 1.7472064
Snippet Particle Swarm Optimization (PSO) is a population based stochastic optimization technique inspired by the social learning of birds or fish. Some of the...
SourceID unpaywall
crossref
SourceType Open Access Repository
Enrichment Source
Index Database
StartPage 377
Title Impact of inertia weight strategies in particle swarm optimization for solving economic dispatch problem
URI http://ijeecs.iaescore.com/index.php/IJEECS/article/download/14849/10306
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2502-4760
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib044739472
  issn: 2502-4752
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA66Hjz5QEVFlxy8dvtKm_a4yMrugiLogp5KHlOsrrtlHy568Lc7aVNRvIjeCs20NDOZfEkz30fImZaICQT3HMkD7bBcBo4Ict-RXqoDniglE1ONfHkV90dseBfdrZFGbbR4BFDzTiFgXrM4YqquaAMNV4Q7GPZ65zeu7VNXGzr5qdAuQnqWukYwK14nG3GEqLxFNkZX1917oy0X4aBnvBLfsdex1xzqiVK_eemLH3YKTFxlyHHcJeG3mWpzOSnF60qMx1-mn4ttUjRFPPWpk6fOciE76u0np-O_v2yHbFmMSrt1s12yBpM98jCo6inpNKemXhATA11V26p0vmjoJvAOLe3T6XwlZs90iinp2dZ6UgTIFGPd7GFQsBXRVBeY1DB2qNW22Seji97ted-xMg2Owvk_dIBVi7ogghwSLoFJ4HkkhdQQJ0kqJE89BqngwEKF-CoBkfMEWKpjAcrT4QFpTaYTOCQ0ik1DnfPc_Hr2PJFqHjHwQq18FShxRHjjkkxZDnMjpTHOqrUMOjOr-xnX_mFW-FnlzAydeUT8T8uy5vH4hU3w6fVfGx3_xeiEtBazJZwivlnINlm_fO-1bQB_AJgOAgE
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7revDkAxUVlRy8dvtKm_YossuuoAi6oKeSxxSr-yj7cNFf76RNRfGy6K3QTEszk8mXNPN9hFxoiZhAcM-RPNAOy2XgiCD3HemlOuCJUjIx1cg3t3F_yK4fo8cWadRGixcANe8UAuY1iyOm6oo20HBFuIPrbvfq3rV96mpDJz8V2kVIz1LXCGbFG2QzjhCVt8nm8Pbu8sloy0U46BmvxHfsdew1h3qi1G9e-uaHnQITVxlyHHdJ-GOm2lpOSvG-EqPRt-mnt0OKpoinPnXy2lkuZEd9_OZ0_PeX7ZJti1HpZd1sj7Rgsk-eB1U9JZ3m1NQLYmKgq2pblc4XDd0E3qGlfTqdr8RsTKeYksa21pMiQKYY62YPg4KtiKa6wKSGsUOtts0BGfa6D1d9x8o0OArn_9ABVi3qgghySLgEJoHnkRRSQ5wkqZA89RikggMLFeKrBETOE2CpjgUoT4eHpD2ZTuCI0Cg2DXXOc_Pr2fNEqnnEwAu18lWgxDHhjUsyZTnMjZTGKKvWMujMrO5nXPuHWeFnlTMzdOYx8b8sy5rHYw2b4Mvraxud_MXolLQXsyWcIb5ZyHMbup-Q3gDQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+inertia+weight+strategies+in+particle+swarm+optimization+for+solving+economic+dispatch+problem&rft.jtitle=Indonesian+Journal+of+Electrical+Engineering+and+Computer+Science&rft.au=MEZIANE%2C+Mohammed+Amine&rft.au=Mouloudi%2C+Youssef&rft.au=Bouchiba%2C+Bousmaha&rft.au=Laoufi%2C+Abdellah&rft.date=2019-01-01&rft.issn=2502-4752&rft.eissn=2502-4760&rft.volume=13&rft.issue=1&rft.spage=377&rft_id=info:doi/10.11591%2Fijeecs.v13.i1.pp377-383&rft.externalDBID=n%2Fa&rft.externalDocID=10_11591_ijeecs_v13_i1_pp377_383
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2502-4752&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2502-4752&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2502-4752&client=summon