Impact of inertia weight strategies in particle swarm optimization for solving economic dispatch problem
Particle Swarm Optimization (PSO) is a population based stochastic optimization technique inspired by the social learning of birds or fish. Some of the appealing facts of PSO are its convenience, simplicity and easiness of implementation requiring but few parameters adjustments. Inertia Weight (ω) i...
        Saved in:
      
    
          | Published in | Indonesian Journal of Electrical Engineering and Computer Science Vol. 13; no. 1; p. 377 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
          
        01.01.2019
     | 
| Online Access | Get full text | 
| ISSN | 2502-4752 2502-4760 2502-4760  | 
| DOI | 10.11591/ijeecs.v13.i1.pp377-383 | 
Cover
| Abstract | Particle Swarm Optimization (PSO) is a population based stochastic optimization technique inspired by the social learning of birds or fish. Some of the appealing facts of PSO are its convenience, simplicity and easiness of implementation requiring but few parameters adjustments. Inertia Weight (ω) is one of the essential parameters in PSO, which often significantly the affects convergence and the balance between the exploration and exploitation characteristics of PSO. Since the adoption of this parameter, there have been large proposals for determining the value of Inertia Weight Strategy. In order to show the efficiency of this parameter in the Economic Dispatch problem(ED), this paper presents a comprehensive review of one or more than one recent and popular inertia weight strategies reported in the related literature. Among this five recent inertia weight four were randomly chosen for application and subject to empirical studies in this research, namely, Constant (ω), Random (ω), Global-Local Best (ω), Linearly Decreasing (ω), which are then compared in term of performance within the confines of the discussed optimization problem. Morever, the results are compared to those reported in the recent literature and data from SONELGAZ. The study results are quite encouraging showing the good applicability of PSO with adaptive inertia weight for solving economic dispatch problem. | 
    
|---|---|
| AbstractList | Particle Swarm Optimization (PSO) is a population based stochastic optimization technique inspired by the social learning of birds or fish. Some of the appealing facts of PSO are its convenience, simplicity and easiness of implementation requiring but few parameters adjustments. Inertia Weight (ω) is one of the essential parameters in PSO, which often significantly the affects convergence and the balance between the exploration and exploitation characteristics of PSO. Since the adoption of this parameter, there have been large proposals for determining the value of Inertia Weight Strategy. In order to show the efficiency of this parameter in the Economic Dispatch problem(ED), this paper presents a comprehensive review of one or more than one recent and popular inertia weight strategies reported in the related literature. Among this five recent inertia weight four were randomly chosen for application and subject to empirical studies in this research, namely, Constant (ω), Random (ω), Global-Local Best (ω), Linearly Decreasing (ω), which are then compared in term of performance within the confines of the discussed optimization problem. Morever, the results are compared to those reported in the recent literature and data from SONELGAZ. The study results are quite encouraging showing the good applicability of PSO with adaptive inertia weight for solving economic dispatch problem. | 
    
| Author | Mouloudi, Youssef Bouchiba, Bousmaha MEZIANE, Mohammed Amine Laoufi, Abdellah  | 
    
| Author_xml | – sequence: 1 givenname: Mohammed Amine surname: MEZIANE fullname: MEZIANE, Mohammed Amine – sequence: 2 givenname: Youssef surname: Mouloudi fullname: Mouloudi, Youssef – sequence: 3 givenname: Bousmaha surname: Bouchiba fullname: Bouchiba, Bousmaha – sequence: 4 givenname: Abdellah surname: Laoufi fullname: Laoufi, Abdellah  | 
    
| BookMark | eNqNkMtqwzAQRUVJoWmaf9AP2JUs-bUplNBHINBNuxayPE6m2JaQ1IT062uS0kVXWc3A4d5hzi2ZjXYEQihnKed5ze_xE8CEdM9Fijx1TpRlIipxReZZzrJElgWb_e15dkOWIWDDBOP1xMSc7NaD0yZS21EcwUfU9AC43UUaotcRtghhItTpiZkeaDhoP1DrIg74rSPakXbW02D7PY5bCsaOdkBDWwxOR7Ojztumh-GOXHe6D7D8nQvy8fz0vnpNNm8v69XjJjFZJkUCsmCcySyHDqqyAdlA2eWNblooqqrWTVkzCbUuQQpTMFaB7soKZN0WGgxrxYLU596v0enjQfe9ch4H7Y-KM3Wyps7W1GRNIVcna2qyNmUfzlnjbQgeOmUwnn6cXGB_SUH1r-Di2z9XRZHG | 
    
| CitedBy_id | crossref_primary_10_1155_2019_4085725 | 
    
| ContentType | Journal Article | 
    
| DBID | AAYXX CITATION ADTOC UNPAY  | 
    
| DOI | 10.11591/ijeecs.v13.i1.pp377-383 | 
    
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | CrossRef | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| EISSN | 2502-4760 | 
    
| ExternalDocumentID | 10.11591/ijeecs.v13.i1.pp377-383 10_11591_ijeecs_v13_i1_pp377_383  | 
    
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION ADTOC ARCSS UNPAY  | 
    
| ID | FETCH-LOGICAL-c2243-e46010425efe87be4be7f5babde6889ab7904e9a7e43c6008eaf78e49d6aec0d3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 2502-4752 2502-4760  | 
    
| IngestDate | Sun Oct 26 02:01:04 EDT 2025 Thu Apr 24 23:11:21 EDT 2025 Tue Jul 01 02:46:25 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | false | 
    
| Issue | 1 | 
    
| Language | English | 
    
| License | http://creativecommons.org/licenses/by-nc/4.0 cc-by-nc  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c2243-e46010425efe87be4be7f5babde6889ab7904e9a7e43c6008eaf78e49d6aec0d3 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://ijeecs.iaescore.com/index.php/IJEECS/article/download/14849/10306 | 
    
| ParticipantIDs | unpaywall_primary_10_11591_ijeecs_v13_i1_pp377_383 crossref_citationtrail_10_11591_ijeecs_v13_i1_pp377_383 crossref_primary_10_11591_ijeecs_v13_i1_pp377_383  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2019-01-01 | 
    
| PublicationDateYYYYMMDD | 2019-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | Indonesian Journal of Electrical Engineering and Computer Science | 
    
| PublicationYear | 2019 | 
    
| SSID | ssib030194763 ssib044739472 ssib052605909  | 
    
| Score | 1.7472064 | 
    
| Snippet | Particle Swarm Optimization (PSO) is a population based stochastic optimization technique inspired by the social learning of birds or fish. Some of the... | 
    
| SourceID | unpaywall crossref  | 
    
| SourceType | Open Access Repository Enrichment Source Index Database  | 
    
| StartPage | 377 | 
    
| Title | Impact of inertia weight strategies in particle swarm optimization for solving economic dispatch problem | 
    
| URI | http://ijeecs.iaescore.com/index.php/IJEECS/article/download/14849/10306 | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 13 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2502-4760 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib044739472 issn: 2502-4752 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA66Hjz5QEVFlxy8dvtKm_a4yMrugiLogp5KHlOsrrtlHy568Lc7aVNRvIjeCs20NDOZfEkz30fImZaICQT3HMkD7bBcBo4Ict-RXqoDniglE1ONfHkV90dseBfdrZFGbbR4BFDzTiFgXrM4YqquaAMNV4Q7GPZ65zeu7VNXGzr5qdAuQnqWukYwK14nG3GEqLxFNkZX1917oy0X4aBnvBLfsdex1xzqiVK_eemLH3YKTFxlyHHcJeG3mWpzOSnF60qMx1-mn4ttUjRFPPWpk6fOciE76u0np-O_v2yHbFmMSrt1s12yBpM98jCo6inpNKemXhATA11V26p0vmjoJvAOLe3T6XwlZs90iinp2dZ6UgTIFGPd7GFQsBXRVBeY1DB2qNW22Seji97ted-xMg2Owvk_dIBVi7ogghwSLoFJ4HkkhdQQJ0kqJE89BqngwEKF-CoBkfMEWKpjAcrT4QFpTaYTOCQ0ik1DnfPc_Hr2PJFqHjHwQq18FShxRHjjkkxZDnMjpTHOqrUMOjOr-xnX_mFW-FnlzAydeUT8T8uy5vH4hU3w6fVfGx3_xeiEtBazJZwivlnINlm_fO-1bQB_AJgOAgE | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7revDkAxUVlRy8dvtKm_YossuuoAi6oKeSxxSr-yj7cNFf76RNRfGy6K3QTEszk8mXNPN9hFxoiZhAcM-RPNAOy2XgiCD3HemlOuCJUjIx1cg3t3F_yK4fo8cWadRGixcANe8UAuY1iyOm6oo20HBFuIPrbvfq3rV96mpDJz8V2kVIz1LXCGbFG2QzjhCVt8nm8Pbu8sloy0U46BmvxHfsdew1h3qi1G9e-uaHnQITVxlyHHdJ-GOm2lpOSvG-EqPRt-mnt0OKpoinPnXy2lkuZEd9_OZ0_PeX7ZJti1HpZd1sj7Rgsk-eB1U9JZ3m1NQLYmKgq2pblc4XDd0E3qGlfTqdr8RsTKeYksa21pMiQKYY62YPg4KtiKa6wKSGsUOtts0BGfa6D1d9x8o0OArn_9ABVi3qgghySLgEJoHnkRRSQ5wkqZA89RikggMLFeKrBETOE2CpjgUoT4eHpD2ZTuCI0Cg2DXXOc_Pr2fNEqnnEwAu18lWgxDHhjUsyZTnMjZTGKKvWMujMrO5nXPuHWeFnlTMzdOYx8b8sy5rHYw2b4Mvraxud_MXolLQXsyWcIb5ZyHMbup-Q3gDQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+inertia+weight+strategies+in+particle+swarm+optimization+for+solving+economic+dispatch+problem&rft.jtitle=Indonesian+Journal+of+Electrical+Engineering+and+Computer+Science&rft.au=MEZIANE%2C+Mohammed+Amine&rft.au=Mouloudi%2C+Youssef&rft.au=Bouchiba%2C+Bousmaha&rft.au=Laoufi%2C+Abdellah&rft.date=2019-01-01&rft.issn=2502-4752&rft.eissn=2502-4760&rft.volume=13&rft.issue=1&rft.spage=377&rft_id=info:doi/10.11591%2Fijeecs.v13.i1.pp377-383&rft.externalDBID=n%2Fa&rft.externalDocID=10_11591_ijeecs_v13_i1_pp377_383 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2502-4752&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2502-4752&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2502-4752&client=summon |