Real-Time Cloud-Based Patient-Centric Monitoring Using Computational Health Systems
In many sectors, including healthcare services, Internet of Things (IoT) systems are growing rapidly, providing promising technological, economical, and social potential. Healthcare services can be improved with IoT capabilities, including remote patient monitoring, diagnosis of medical issues in re...
Saved in:
| Published in | IEEE transactions on computational social systems Vol. 9; no. 6; pp. 1613 - 1623 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2329-924X 2373-7476 |
| DOI | 10.1109/TCSS.2022.3170375 |
Cover
| Abstract | In many sectors, including healthcare services, Internet of Things (IoT) systems are growing rapidly, providing promising technological, economical, and social potential. Healthcare services can be improved with IoT capabilities, including remote patient monitoring, diagnosis of medical issues in real-time, and more, all of which improves both the quality and the satisfaction of human users. The Internet of Medical Things (IoMT) is gaining momentum as wearable devices, and their numerous health monitoring applications increase popularity. The IoMT plays a significant role in reducing death rates by detecting diseases early. Prediction of heart disease is an essential challenge in clinical dataset analysis. The proposed research aim is to employ machine learning (ML) classification algorithms to predict heart disease. The IoMT-based cloud-fog diagnostics for heart disease have been proposed. Fog layer is used to quickly analyze patient data using ML classification techniques. The performance of the healthcare model is evaluated with different simulations and achieves 97.32% accuracy, 97.58% recall, 97.16% precision, 97.37% <inline-formula> <tex-math notation="LaTeX">F1 </tex-math></inline-formula>-measure, 96.87% specificity, and 97.22% <inline-formula> <tex-math notation="LaTeX">G </tex-math></inline-formula>-mean, which has significant improvement as compared with previous models. |
|---|---|
| AbstractList | In many sectors, including healthcare services, Internet of Things (IoT) systems are growing rapidly, providing promising technological, economical, and social potential. Healthcare services can be improved with IoT capabilities, including remote patient monitoring, diagnosis of medical issues in real-time, and more, all of which improves both the quality and the satisfaction of human users. The Internet of Medical Things (IoMT) is gaining momentum as wearable devices, and their numerous health monitoring applications increase popularity. The IoMT plays a significant role in reducing death rates by detecting diseases early. Prediction of heart disease is an essential challenge in clinical dataset analysis. The proposed research aim is to employ machine learning (ML) classification algorithms to predict heart disease. The IoMT-based cloud-fog diagnostics for heart disease have been proposed. Fog layer is used to quickly analyze patient data using ML classification techniques. The performance of the healthcare model is evaluated with different simulations and achieves 97.32% accuracy, 97.58% recall, 97.16% precision, 97.37% <inline-formula> <tex-math notation="LaTeX">F1 </tex-math></inline-formula>-measure, 96.87% specificity, and 97.22% <inline-formula> <tex-math notation="LaTeX">G </tex-math></inline-formula>-mean, which has significant improvement as compared with previous models. In many sectors, including healthcare services, Internet of Things (IoT) systems are growing rapidly, providing promising technological, economical, and social potential. Healthcare services can be improved with IoT capabilities, including remote patient monitoring, diagnosis of medical issues in real-time, and more, all of which improves both the quality and the satisfaction of human users. The Internet of Medical Things (IoMT) is gaining momentum as wearable devices, and their numerous health monitoring applications increase popularity. The IoMT plays a significant role in reducing death rates by detecting diseases early. Prediction of heart disease is an essential challenge in clinical dataset analysis. The proposed research aim is to employ machine learning (ML) classification algorithms to predict heart disease. The IoMT-based cloud-fog diagnostics for heart disease have been proposed. Fog layer is used to quickly analyze patient data using ML classification techniques. The performance of the healthcare model is evaluated with different simulations and achieves 97.32% accuracy, 97.58% recall, 97.16% precision, 97.37% [Formula Omitted]-measure, 96.87% specificity, and 97.22% [Formula Omitted]-mean, which has significant improvement as compared with previous models. |
| Author | Kishor, Amit Chakraborty, Chinmay |
| Author_xml | – sequence: 1 givenname: Chinmay orcidid: 0000-0002-4385-0975 surname: Chakraborty fullname: Chakraborty, Chinmay organization: Department of Electronics and Communication Engineering, Birla Institute of Technology, Mesra, Ranchi, India – sequence: 2 givenname: Amit orcidid: 0000-0002-4829-818X surname: Kishor fullname: Kishor, Amit email: amit_kishor@rediffmail.com organization: Department of Computer Science and Information Technology, Subharti Institute of Technology and Engineering, Swami Vivekanand Subharti University, Meerut, India |
| BookMark | eNp9kD9PwzAQxS0EEqX0AyCWSMwu_hPbyQgRUKQiEGklNst1HHCVxMV2hn57ErViYGC5u-G9d3e_C3Dauc4AcIXRHGOU366KspwTRMicYoGoYCdgQqigUKSCn44zyWFO0o9zMAthixDChDFB0ASU70Y1cGVbkxSN6yt4r4KpkjcVrekiLIbirU5eXGej87b7TNZhrIVrd30cVK5TTbIYQuJXUu5DNG24BGe1aoKZHfsUrB8fVsUCLl-fnou7JdSE0AgVN4zVHAnMucKMaUYUzrUwmdmkmTDpJqtorUmqKNZM5RyhlHGGq5oqWmecTsHNIXfn3XdvQpRb1_vhniCJSIlAXFA0qPBBpb0LwZta7rxtld9LjOSIT4745IhPHvENHvHHo-3h2eiVbf51Xh-c1hjzuykXApEc0x-iMX5B |
| CODEN | ITCSGL |
| CitedBy_id | crossref_primary_10_1007_s43621_024_00273_8 crossref_primary_10_1080_21681163_2023_2300257 crossref_primary_10_1049_tje2_12189 crossref_primary_10_1016_j_heliyon_2024_e26416 crossref_primary_10_2174_0118741207281491240118060019 crossref_primary_10_1016_j_iot_2024_101061 crossref_primary_10_1007_s00521_023_09293_3 crossref_primary_10_1186_s12859_022_05032_y crossref_primary_10_1109_TCSS_2023_3303331 crossref_primary_10_1007_s42979_024_03158_9 crossref_primary_10_1109_TCSS_2023_3244188 crossref_primary_10_3390_diagnostics13122071 crossref_primary_10_1007_s11042_023_14694_6 crossref_primary_10_4108_eetpht_10_5523 crossref_primary_10_1049_tje2_12178 crossref_primary_10_3233_JIFS_222385 crossref_primary_10_1016_j_procs_2024_09_535 crossref_primary_10_1111_exsy_13742 crossref_primary_10_1007_s40747_023_01004_8 crossref_primary_10_1088_1361_6579_ad133b crossref_primary_10_1016_j_heliyon_2024_e27177 crossref_primary_10_1007_s11042_022_14227_7 crossref_primary_10_1049_cit2_12246 crossref_primary_10_7717_peerj_cs_2232 crossref_primary_10_1016_j_iot_2023_100907 crossref_primary_10_1145_3637213 crossref_primary_10_1016_j_eswa_2024_124689 crossref_primary_10_1016_j_measurement_2024_116226 crossref_primary_10_1049_tje2_12203 crossref_primary_10_3390_s24196322 crossref_primary_10_1109_TCSS_2024_3406528 crossref_primary_10_1109_TCE_2024_3358803 crossref_primary_10_1016_j_knosys_2025_113233 crossref_primary_10_3390_math11010096 crossref_primary_10_1007_s00542_023_05413_0 crossref_primary_10_32604_cmc_2024_047438 crossref_primary_10_1016_j_slast_2024_100159 crossref_primary_10_1080_23080477_2024_2370211 crossref_primary_10_1080_21681163_2024_2335959 crossref_primary_10_1186_s12859_023_05196_1 crossref_primary_10_1080_10255842_2025_2480686 crossref_primary_10_3390_electronics13010163 crossref_primary_10_1109_TCSS_2022_3233300 crossref_primary_10_1049_tje2_12193 crossref_primary_10_3390_healthcare11162240 crossref_primary_10_1007_s11042_023_15480_0 crossref_primary_10_1016_j_bspc_2024_107417 crossref_primary_10_1080_10447318_2023_2175160 crossref_primary_10_21015_vtse_v12i4_1930 crossref_primary_10_1007_s13198_023_02059_z crossref_primary_10_1016_j_inffus_2023_101984 crossref_primary_10_1080_0952813X_2023_2217813 crossref_primary_10_1109_TCSS_2022_3221933 crossref_primary_10_1109_MDAT_2024_3432862 crossref_primary_10_1002_adma_202417193 crossref_primary_10_3390_s23020828 |
| Cites_doi | 10.1504/IJESMS.2021.115533 10.1109/JSAC.2020.3020645 10.1016/j.compbiomed.2017.09.011 10.1109/ICRAECC43874.2019.8994985 10.3923/jas.2011.26.35 10.1109/ISMSIT50672.2020.9254501 10.1109/ACCESS.2017.2789329 10.1155/2018/3860146 10.3390/s22020476 10.1109/ACCESS.2019.2923707 10.1007/s12652-017-0659-1 10.1016/j.comcom.2020.12.003 10.12720/jcm.12.4.240-247 10.1109/PlatCon.2019.8669432 10.29303/ipr.v5i1.134 10.1109/EMBC.2019.8856631 10.1109/ICCT46177.2019.8969047 10.1016/j.procs.2017.11.283 10.1109/TII.2021.3088465 10.1007/s13198-021-01174-z 10.1056/NEJMra1601705 10.1109/ACCESS.2019.2904800 10.5120/ijca2017913773 10.1155/2017/5907264 10.1109/ACCESS.2020.3006424 10.1007/978-981-16-0733-2_49 10.1038/s41598-020-76635-9 10.9781/ijimai.2020.12.004 10.1016/j.eswa.2016.10.020 10.1016/j.eswa.2017.11.001 10.1007/s12553-019-00396-3 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TCSS.2022.3170375 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Social Sciences (General) |
| EISSN | 2373-7476 |
| EndPage | 1623 |
| ExternalDocumentID | 10_1109_TCSS_2022_3170375 9770291 |
| Genre | orig-research |
| GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c223t-a6e55f607166a155c52a19c7e8eb487e4b8d3fc24a31c5a960045651df3a3f863 |
| IEDL.DBID | RIE |
| ISSN | 2329-924X |
| IngestDate | Mon Jun 30 06:25:16 EDT 2025 Thu Apr 24 23:02:35 EDT 2025 Tue Oct 07 10:03:09 EDT 2025 Wed Aug 27 02:18:29 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c223t-a6e55f607166a155c52a19c7e8eb487e4b8d3fc24a31c5a960045651df3a3f863 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4829-818X 0000-0002-4385-0975 |
| PQID | 2742706730 |
| PQPubID | 2040411 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_2742706730 crossref_citationtrail_10_1109_TCSS_2022_3170375 ieee_primary_9770291 crossref_primary_10_1109_TCSS_2022_3170375 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-12-01 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on computational social systems |
| PublicationTitleAbbrev | TCSS |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref31 ref30 (ref5) 2018 ref33 ref11 ref32 kishor (ref34) 2021 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 yang (ref20) 2021 |
| References_xml | – ident: ref7 doi: 10.1504/IJESMS.2021.115533 – year: 2021 ident: ref20 article-title: An intelligent trust cloud management method for secure clustering in 5G enabled Internet of Medical Things publication-title: IEEE Trans Ind Informat – ident: ref31 doi: 10.1109/JSAC.2020.3020645 – ident: ref10 doi: 10.1016/j.compbiomed.2017.09.011 – year: 2018 ident: ref5 publication-title: Medtech Internet Med Things – ident: ref21 doi: 10.1109/ICRAECC43874.2019.8994985 – ident: ref33 doi: 10.3923/jas.2011.26.35 – ident: ref24 doi: 10.1109/ISMSIT50672.2020.9254501 – ident: ref1 doi: 10.1109/ACCESS.2017.2789329 – ident: ref15 doi: 10.1155/2018/3860146 – ident: ref29 doi: 10.3390/s22020476 – ident: ref14 doi: 10.1109/ACCESS.2019.2923707 – ident: ref4 doi: 10.1007/s12652-017-0659-1 – ident: ref30 doi: 10.1016/j.comcom.2020.12.003 – ident: ref19 doi: 10.12720/jcm.12.4.240-247 – ident: ref3 doi: 10.1109/PlatCon.2019.8669432 – ident: ref28 doi: 10.29303/ipr.v5i1.134 – ident: ref22 doi: 10.1109/EMBC.2019.8856631 – ident: ref23 doi: 10.1109/ICCT46177.2019.8969047 – ident: ref26 doi: 10.1016/j.procs.2017.11.283 – ident: ref32 doi: 10.1109/TII.2021.3088465 – ident: ref9 doi: 10.1007/s13198-021-01174-z – ident: ref2 doi: 10.1056/NEJMra1601705 – ident: ref13 doi: 10.1109/ACCESS.2019.2904800 – ident: ref12 doi: 10.5120/ijca2017913773 – ident: ref17 doi: 10.1155/2017/5907264 – ident: ref18 doi: 10.1109/ACCESS.2020.3006424 – ident: ref8 doi: 10.1007/978-981-16-0733-2_49 – ident: ref25 doi: 10.1038/s41598-020-76635-9 – ident: ref6 doi: 10.9781/ijimai.2020.12.004 – start-page: 1 year: 2021 ident: ref34 article-title: Artificial intelligence and Internet of Things based healthcare 4.0 monitoring system publication-title: Wirel Pers Commun – ident: ref27 doi: 10.1016/j.eswa.2016.10.020 – ident: ref11 doi: 10.1016/j.eswa.2017.11.001 – ident: ref16 doi: 10.1007/s12553-019-00396-3 |
| SSID | ssj0001255720 |
| Score | 2.4814463 |
| Snippet | In many sectors, including healthcare services, Internet of Things (IoT) systems are growing rapidly, providing promising technological, economical, and social... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1613 |
| SubjectTerms | Algorithms Artificial intelligence (AI) Cardiovascular disease Classification Cloud computing Computational modeling Diseases fog computing health Health care Health services Heart Heart diseases Internet of Medical Things (IoMT) Internet of Things Machine learning machine learning (ML) Medical diagnostic imaging Medical electronics Medical services Monitoring Real time Remote monitoring Telemedicine User satisfaction Wearable technology |
| Title | Real-Time Cloud-Based Patient-Centric Monitoring Using Computational Health Systems |
| URI | https://ieeexplore.ieee.org/document/9770291 https://www.proquest.com/docview/2742706730 |
| Volume | 9 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2373-7476 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001255720 issn: 2329-924X databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA61Jy--qrhaJQcPKqbdVx571GIpgiK2hd6WbDYBsbRidy_-evPa4gvxtodkCXxJ5pvJzDcAnFHOlTYNESIFlijNCENMUYGULLT51_Yn4Tbb4oGMpundDM9a4GpdCyOltMlnsmc-7Vt-uRS1CZX1NVcJY1OqvkEZcbVan-IpGNO4ebiMwqw_GYzH2gGMY-2XUtPq9Yvpsb1UflzA1qoMt8F9sx6XTPLSq6uiJ96_STX-d8E7YMvTS3jt9sMuaMnFHghcDS7053gFz73Y9EUHjJ80U0SmEAQO5su6RDfarJXw0cmtIhv8fRbQHX0TA4Q2yQC6bhA-kghdMRP08uf7YDq8nQxGyDdaQEKzgwpxIjFWRmmOEK4JhsAxjzJBJdOIMSrTgpWJEnHKk0hgrp0eSwSjUiU8UYwkB6C9WC7kIYAmm1U7UYRzJtO04IXKUiZFaVQpaSHKAIQNBrnwKuSmGcY8t95ImOUGttzAlnvYAnC5nvLqJDj-GtwxMKwHegQC0G2Azv0hXeXmlZqaRj3h0e-zjsGm-bfLXumCdvVWyxPNQari1G6-DwcM2Is |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4QPOjFFxpR1B48qLGwj3YfRyUSVCBGIOG26Xa7iZGAEfbir7evJb5ivO2hzTb52s4305lvAM5CxnJpGlwcpFRgEgcRjvKQ41yk0vxL--MznW0xCLpjcj-hkwpcrWphhBA6-Uw01ad-y8_mvFChspbkKo6nStXXKCGEmmqtTxEVSkOvfLp0nbg1ag-H0gX0POmZhqrZ6xfjo7up_LiCtV3pbEG_XJFJJ3lpFsu0yd-_iTX-d8nbsGkJJro2O2IHKmK2C3VThYvsSV6gcys3fVGD4ZPkiliVgqD2dF5k-EYatgw9GsFVrMO_zxyZw6-igEinGSDTD8LGEpEpZ0JWAH0Pxp3bUbuLbasFzCU_WGIWCEpzpTUXBExSDE495sY8FJHELAoFSaPMz7lHmO9yyqTbo6mgm-U-8_Mo8PehOpvPxAEglc8q3aiAsUgQkrI0j0kkeKZ0KcOUZ3VwSgwSbnXIVTuMaaL9ESdOFGyJgi2xsNXhcjXl1Yhw_DW4pmBYDbQI1KFRAp3YY7pI1Dt1qFr1OIe_zzqF9e6o30t6d4OHI9hQ_zG5LA2oLt8KcSwZyTI90RvxA4X529g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-Time+Cloud-Based+Patient-Centric+Monitoring+Using+Computational+Health+Systems&rft.jtitle=IEEE+transactions+on+computational+social+systems&rft.au=Chakraborty%2C+Chinmay&rft.au=Kishor%2C+Amit&rft.date=2022-12-01&rft.issn=2329-924X&rft.eissn=2373-7476&rft.volume=9&rft.issue=6&rft.spage=1613&rft.epage=1623&rft_id=info:doi/10.1109%2FTCSS.2022.3170375&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCSS_2022_3170375 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2329-924X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2329-924X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2329-924X&client=summon |