Real-Time Cloud-Based Patient-Centric Monitoring Using Computational Health Systems

In many sectors, including healthcare services, Internet of Things (IoT) systems are growing rapidly, providing promising technological, economical, and social potential. Healthcare services can be improved with IoT capabilities, including remote patient monitoring, diagnosis of medical issues in re...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on computational social systems Vol. 9; no. 6; pp. 1613 - 1623
Main Authors Chakraborty, Chinmay, Kishor, Amit
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2329-924X
2373-7476
DOI10.1109/TCSS.2022.3170375

Cover

Abstract In many sectors, including healthcare services, Internet of Things (IoT) systems are growing rapidly, providing promising technological, economical, and social potential. Healthcare services can be improved with IoT capabilities, including remote patient monitoring, diagnosis of medical issues in real-time, and more, all of which improves both the quality and the satisfaction of human users. The Internet of Medical Things (IoMT) is gaining momentum as wearable devices, and their numerous health monitoring applications increase popularity. The IoMT plays a significant role in reducing death rates by detecting diseases early. Prediction of heart disease is an essential challenge in clinical dataset analysis. The proposed research aim is to employ machine learning (ML) classification algorithms to predict heart disease. The IoMT-based cloud-fog diagnostics for heart disease have been proposed. Fog layer is used to quickly analyze patient data using ML classification techniques. The performance of the healthcare model is evaluated with different simulations and achieves 97.32% accuracy, 97.58% recall, 97.16% precision, 97.37% <inline-formula> <tex-math notation="LaTeX">F1 </tex-math></inline-formula>-measure, 96.87% specificity, and 97.22% <inline-formula> <tex-math notation="LaTeX">G </tex-math></inline-formula>-mean, which has significant improvement as compared with previous models.
AbstractList In many sectors, including healthcare services, Internet of Things (IoT) systems are growing rapidly, providing promising technological, economical, and social potential. Healthcare services can be improved with IoT capabilities, including remote patient monitoring, diagnosis of medical issues in real-time, and more, all of which improves both the quality and the satisfaction of human users. The Internet of Medical Things (IoMT) is gaining momentum as wearable devices, and their numerous health monitoring applications increase popularity. The IoMT plays a significant role in reducing death rates by detecting diseases early. Prediction of heart disease is an essential challenge in clinical dataset analysis. The proposed research aim is to employ machine learning (ML) classification algorithms to predict heart disease. The IoMT-based cloud-fog diagnostics for heart disease have been proposed. Fog layer is used to quickly analyze patient data using ML classification techniques. The performance of the healthcare model is evaluated with different simulations and achieves 97.32% accuracy, 97.58% recall, 97.16% precision, 97.37% <inline-formula> <tex-math notation="LaTeX">F1 </tex-math></inline-formula>-measure, 96.87% specificity, and 97.22% <inline-formula> <tex-math notation="LaTeX">G </tex-math></inline-formula>-mean, which has significant improvement as compared with previous models.
In many sectors, including healthcare services, Internet of Things (IoT) systems are growing rapidly, providing promising technological, economical, and social potential. Healthcare services can be improved with IoT capabilities, including remote patient monitoring, diagnosis of medical issues in real-time, and more, all of which improves both the quality and the satisfaction of human users. The Internet of Medical Things (IoMT) is gaining momentum as wearable devices, and their numerous health monitoring applications increase popularity. The IoMT plays a significant role in reducing death rates by detecting diseases early. Prediction of heart disease is an essential challenge in clinical dataset analysis. The proposed research aim is to employ machine learning (ML) classification algorithms to predict heart disease. The IoMT-based cloud-fog diagnostics for heart disease have been proposed. Fog layer is used to quickly analyze patient data using ML classification techniques. The performance of the healthcare model is evaluated with different simulations and achieves 97.32% accuracy, 97.58% recall, 97.16% precision, 97.37% [Formula Omitted]-measure, 96.87% specificity, and 97.22% [Formula Omitted]-mean, which has significant improvement as compared with previous models.
Author Kishor, Amit
Chakraborty, Chinmay
Author_xml – sequence: 1
  givenname: Chinmay
  orcidid: 0000-0002-4385-0975
  surname: Chakraborty
  fullname: Chakraborty, Chinmay
  organization: Department of Electronics and Communication Engineering, Birla Institute of Technology, Mesra, Ranchi, India
– sequence: 2
  givenname: Amit
  orcidid: 0000-0002-4829-818X
  surname: Kishor
  fullname: Kishor, Amit
  email: amit_kishor@rediffmail.com
  organization: Department of Computer Science and Information Technology, Subharti Institute of Technology and Engineering, Swami Vivekanand Subharti University, Meerut, India
BookMark eNp9kD9PwzAQxS0EEqX0AyCWSMwu_hPbyQgRUKQiEGklNst1HHCVxMV2hn57ErViYGC5u-G9d3e_C3Dauc4AcIXRHGOU366KspwTRMicYoGoYCdgQqigUKSCn44zyWFO0o9zMAthixDChDFB0ASU70Y1cGVbkxSN6yt4r4KpkjcVrekiLIbirU5eXGej87b7TNZhrIVrd30cVK5TTbIYQuJXUu5DNG24BGe1aoKZHfsUrB8fVsUCLl-fnou7JdSE0AgVN4zVHAnMucKMaUYUzrUwmdmkmTDpJqtorUmqKNZM5RyhlHGGq5oqWmecTsHNIXfn3XdvQpRb1_vhniCJSIlAXFA0qPBBpb0LwZta7rxtld9LjOSIT4745IhPHvENHvHHo-3h2eiVbf51Xh-c1hjzuykXApEc0x-iMX5B
CODEN ITCSGL
CitedBy_id crossref_primary_10_1007_s43621_024_00273_8
crossref_primary_10_1080_21681163_2023_2300257
crossref_primary_10_1049_tje2_12189
crossref_primary_10_1016_j_heliyon_2024_e26416
crossref_primary_10_2174_0118741207281491240118060019
crossref_primary_10_1016_j_iot_2024_101061
crossref_primary_10_1007_s00521_023_09293_3
crossref_primary_10_1186_s12859_022_05032_y
crossref_primary_10_1109_TCSS_2023_3303331
crossref_primary_10_1007_s42979_024_03158_9
crossref_primary_10_1109_TCSS_2023_3244188
crossref_primary_10_3390_diagnostics13122071
crossref_primary_10_1007_s11042_023_14694_6
crossref_primary_10_4108_eetpht_10_5523
crossref_primary_10_1049_tje2_12178
crossref_primary_10_3233_JIFS_222385
crossref_primary_10_1016_j_procs_2024_09_535
crossref_primary_10_1111_exsy_13742
crossref_primary_10_1007_s40747_023_01004_8
crossref_primary_10_1088_1361_6579_ad133b
crossref_primary_10_1016_j_heliyon_2024_e27177
crossref_primary_10_1007_s11042_022_14227_7
crossref_primary_10_1049_cit2_12246
crossref_primary_10_7717_peerj_cs_2232
crossref_primary_10_1016_j_iot_2023_100907
crossref_primary_10_1145_3637213
crossref_primary_10_1016_j_eswa_2024_124689
crossref_primary_10_1016_j_measurement_2024_116226
crossref_primary_10_1049_tje2_12203
crossref_primary_10_3390_s24196322
crossref_primary_10_1109_TCSS_2024_3406528
crossref_primary_10_1109_TCE_2024_3358803
crossref_primary_10_1016_j_knosys_2025_113233
crossref_primary_10_3390_math11010096
crossref_primary_10_1007_s00542_023_05413_0
crossref_primary_10_32604_cmc_2024_047438
crossref_primary_10_1016_j_slast_2024_100159
crossref_primary_10_1080_23080477_2024_2370211
crossref_primary_10_1080_21681163_2024_2335959
crossref_primary_10_1186_s12859_023_05196_1
crossref_primary_10_1080_10255842_2025_2480686
crossref_primary_10_3390_electronics13010163
crossref_primary_10_1109_TCSS_2022_3233300
crossref_primary_10_1049_tje2_12193
crossref_primary_10_3390_healthcare11162240
crossref_primary_10_1007_s11042_023_15480_0
crossref_primary_10_1016_j_bspc_2024_107417
crossref_primary_10_1080_10447318_2023_2175160
crossref_primary_10_21015_vtse_v12i4_1930
crossref_primary_10_1007_s13198_023_02059_z
crossref_primary_10_1016_j_inffus_2023_101984
crossref_primary_10_1080_0952813X_2023_2217813
crossref_primary_10_1109_TCSS_2022_3221933
crossref_primary_10_1109_MDAT_2024_3432862
crossref_primary_10_1002_adma_202417193
crossref_primary_10_3390_s23020828
Cites_doi 10.1504/IJESMS.2021.115533
10.1109/JSAC.2020.3020645
10.1016/j.compbiomed.2017.09.011
10.1109/ICRAECC43874.2019.8994985
10.3923/jas.2011.26.35
10.1109/ISMSIT50672.2020.9254501
10.1109/ACCESS.2017.2789329
10.1155/2018/3860146
10.3390/s22020476
10.1109/ACCESS.2019.2923707
10.1007/s12652-017-0659-1
10.1016/j.comcom.2020.12.003
10.12720/jcm.12.4.240-247
10.1109/PlatCon.2019.8669432
10.29303/ipr.v5i1.134
10.1109/EMBC.2019.8856631
10.1109/ICCT46177.2019.8969047
10.1016/j.procs.2017.11.283
10.1109/TII.2021.3088465
10.1007/s13198-021-01174-z
10.1056/NEJMra1601705
10.1109/ACCESS.2019.2904800
10.5120/ijca2017913773
10.1155/2017/5907264
10.1109/ACCESS.2020.3006424
10.1007/978-981-16-0733-2_49
10.1038/s41598-020-76635-9
10.9781/ijimai.2020.12.004
10.1016/j.eswa.2016.10.020
10.1016/j.eswa.2017.11.001
10.1007/s12553-019-00396-3
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSS.2022.3170375
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Social Sciences (General)
EISSN 2373-7476
EndPage 1623
ExternalDocumentID 10_1109_TCSS_2022_3170375
9770291
Genre orig-research
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c223t-a6e55f607166a155c52a19c7e8eb487e4b8d3fc24a31c5a960045651df3a3f863
IEDL.DBID RIE
ISSN 2329-924X
IngestDate Mon Jun 30 06:25:16 EDT 2025
Thu Apr 24 23:02:35 EDT 2025
Tue Oct 07 10:03:09 EDT 2025
Wed Aug 27 02:18:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c223t-a6e55f607166a155c52a19c7e8eb487e4b8d3fc24a31c5a960045651df3a3f863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4829-818X
0000-0002-4385-0975
PQID 2742706730
PQPubID 2040411
PageCount 11
ParticipantIDs proquest_journals_2742706730
crossref_citationtrail_10_1109_TCSS_2022_3170375
ieee_primary_9770291
crossref_primary_10_1109_TCSS_2022_3170375
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on computational social systems
PublicationTitleAbbrev TCSS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
ref30
(ref5) 2018
ref33
ref11
ref32
kishor (ref34) 2021
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
yang (ref20) 2021
References_xml – ident: ref7
  doi: 10.1504/IJESMS.2021.115533
– year: 2021
  ident: ref20
  article-title: An intelligent trust cloud management method for secure clustering in 5G enabled Internet of Medical Things
  publication-title: IEEE Trans Ind Informat
– ident: ref31
  doi: 10.1109/JSAC.2020.3020645
– ident: ref10
  doi: 10.1016/j.compbiomed.2017.09.011
– year: 2018
  ident: ref5
  publication-title: Medtech Internet Med Things
– ident: ref21
  doi: 10.1109/ICRAECC43874.2019.8994985
– ident: ref33
  doi: 10.3923/jas.2011.26.35
– ident: ref24
  doi: 10.1109/ISMSIT50672.2020.9254501
– ident: ref1
  doi: 10.1109/ACCESS.2017.2789329
– ident: ref15
  doi: 10.1155/2018/3860146
– ident: ref29
  doi: 10.3390/s22020476
– ident: ref14
  doi: 10.1109/ACCESS.2019.2923707
– ident: ref4
  doi: 10.1007/s12652-017-0659-1
– ident: ref30
  doi: 10.1016/j.comcom.2020.12.003
– ident: ref19
  doi: 10.12720/jcm.12.4.240-247
– ident: ref3
  doi: 10.1109/PlatCon.2019.8669432
– ident: ref28
  doi: 10.29303/ipr.v5i1.134
– ident: ref22
  doi: 10.1109/EMBC.2019.8856631
– ident: ref23
  doi: 10.1109/ICCT46177.2019.8969047
– ident: ref26
  doi: 10.1016/j.procs.2017.11.283
– ident: ref32
  doi: 10.1109/TII.2021.3088465
– ident: ref9
  doi: 10.1007/s13198-021-01174-z
– ident: ref2
  doi: 10.1056/NEJMra1601705
– ident: ref13
  doi: 10.1109/ACCESS.2019.2904800
– ident: ref12
  doi: 10.5120/ijca2017913773
– ident: ref17
  doi: 10.1155/2017/5907264
– ident: ref18
  doi: 10.1109/ACCESS.2020.3006424
– ident: ref8
  doi: 10.1007/978-981-16-0733-2_49
– ident: ref25
  doi: 10.1038/s41598-020-76635-9
– ident: ref6
  doi: 10.9781/ijimai.2020.12.004
– start-page: 1
  year: 2021
  ident: ref34
  article-title: Artificial intelligence and Internet of Things based healthcare 4.0 monitoring system
  publication-title: Wirel Pers Commun
– ident: ref27
  doi: 10.1016/j.eswa.2016.10.020
– ident: ref11
  doi: 10.1016/j.eswa.2017.11.001
– ident: ref16
  doi: 10.1007/s12553-019-00396-3
SSID ssj0001255720
Score 2.4814463
Snippet In many sectors, including healthcare services, Internet of Things (IoT) systems are growing rapidly, providing promising technological, economical, and social...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1613
SubjectTerms Algorithms
Artificial intelligence (AI)
Cardiovascular disease
Classification
Cloud computing
Computational modeling
Diseases
fog computing
health
Health care
Health services
Heart
Heart diseases
Internet of Medical Things (IoMT)
Internet of Things
Machine learning
machine learning (ML)
Medical diagnostic imaging
Medical electronics
Medical services
Monitoring
Real time
Remote monitoring
Telemedicine
User satisfaction
Wearable technology
Title Real-Time Cloud-Based Patient-Centric Monitoring Using Computational Health Systems
URI https://ieeexplore.ieee.org/document/9770291
https://www.proquest.com/docview/2742706730
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2373-7476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001255720
  issn: 2329-924X
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA61Jy--qrhaJQcPKqbdVx571GIpgiK2hd6WbDYBsbRidy_-evPa4gvxtodkCXxJ5pvJzDcAnFHOlTYNESIFlijNCENMUYGULLT51_Yn4Tbb4oGMpundDM9a4GpdCyOltMlnsmc-7Vt-uRS1CZX1NVcJY1OqvkEZcbVan-IpGNO4ebiMwqw_GYzH2gGMY-2XUtPq9Yvpsb1UflzA1qoMt8F9sx6XTPLSq6uiJ96_STX-d8E7YMvTS3jt9sMuaMnFHghcDS7053gFz73Y9EUHjJ80U0SmEAQO5su6RDfarJXw0cmtIhv8fRbQHX0TA4Q2yQC6bhA-kghdMRP08uf7YDq8nQxGyDdaQEKzgwpxIjFWRmmOEK4JhsAxjzJBJdOIMSrTgpWJEnHKk0hgrp0eSwSjUiU8UYwkB6C9WC7kIYAmm1U7UYRzJtO04IXKUiZFaVQpaSHKAIQNBrnwKuSmGcY8t95ImOUGttzAlnvYAnC5nvLqJDj-GtwxMKwHegQC0G2Azv0hXeXmlZqaRj3h0e-zjsGm-bfLXumCdvVWyxPNQari1G6-DwcM2Is
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4QPOjFFxpR1B48qLGwj3YfRyUSVCBGIOG26Xa7iZGAEfbir7evJb5ivO2hzTb52s4305lvAM5CxnJpGlwcpFRgEgcRjvKQ41yk0vxL--MznW0xCLpjcj-hkwpcrWphhBA6-Uw01ad-y8_mvFChspbkKo6nStXXKCGEmmqtTxEVSkOvfLp0nbg1ag-H0gX0POmZhqrZ6xfjo7up_LiCtV3pbEG_XJFJJ3lpFsu0yd-_iTX-d8nbsGkJJro2O2IHKmK2C3VThYvsSV6gcys3fVGD4ZPkiliVgqD2dF5k-EYatgw9GsFVrMO_zxyZw6-igEinGSDTD8LGEpEpZ0JWAH0Pxp3bUbuLbasFzCU_WGIWCEpzpTUXBExSDE495sY8FJHELAoFSaPMz7lHmO9yyqTbo6mgm-U-8_Mo8PehOpvPxAEglc8q3aiAsUgQkrI0j0kkeKZ0KcOUZ3VwSgwSbnXIVTuMaaL9ESdOFGyJgi2xsNXhcjXl1Yhw_DW4pmBYDbQI1KFRAp3YY7pI1Dt1qFr1OIe_zzqF9e6o30t6d4OHI9hQ_zG5LA2oLt8KcSwZyTI90RvxA4X529g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-Time+Cloud-Based+Patient-Centric+Monitoring+Using+Computational+Health+Systems&rft.jtitle=IEEE+transactions+on+computational+social+systems&rft.au=Chakraborty%2C+Chinmay&rft.au=Kishor%2C+Amit&rft.date=2022-12-01&rft.issn=2329-924X&rft.eissn=2373-7476&rft.volume=9&rft.issue=6&rft.spage=1613&rft.epage=1623&rft_id=info:doi/10.1109%2FTCSS.2022.3170375&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCSS_2022_3170375
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2329-924X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2329-924X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2329-924X&client=summon