A 186μW Photoplethysmography-Based Noninvasive Glucose Sensing SoC
Recent trends in research and the market show high demand for frequent monitoring of glucose to estimate the blood sugar level non-invasively which can replace the conventional finger-prick glucometer for daily use. This paper presents a high precision near-infrared Photoplethysmography (PPG) based...
Saved in:
Published in | IEEE sensors journal Vol. 22; no. 14; pp. 14185 - 14195 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
15.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1530-437X 1558-1748 |
DOI | 10.1109/JSEN.2022.3180893 |
Cover
Abstract | Recent trends in research and the market show high demand for frequent monitoring of glucose to estimate the blood sugar level non-invasively which can replace the conventional finger-prick glucometer for daily use. This paper presents a high precision near-infrared Photoplethysmography (PPG) based noninvasive glucose monitoring System on Chip (SoC). The proposed system implements a fully differential Analog Frontend (AFE) with nonlinear medium Gaussian support-vector-regression (NMG-SVR) for glucose estimation. The AFE design incorporates chopping which enables the reduction of the integrated input-referred current noise to 9.4pArms thus achieving a dynamic range of 115dB. The glucose prediction processor (GPP) removes noise from the PPG signal, extracts ten unique features, and estimates the blood glucose level using a trained customized NMG-SVR model that minimizes the hardware cost by 25%. The extracted features are carefully designed and implemented to ensure inter-feature dependency, which helps to reduce the overall area by more than 40%. Moreover, GPP is implemented using power and clock gating techniques to minimize both static and dynamic power consumption. The proposed SoC is realized with <inline-formula> <tex-math notation="LaTeX">0.18~\mu \text{m} </tex-math></inline-formula> CMOS technology and occupies an area of 6 mm 2 . It dissipates a power of <inline-formula> <tex-math notation="LaTeX">186~\mu \text{W} </tex-math></inline-formula> and achieves a mean absolute relative difference (mARD) of 6.9% verified on 200 subjects. |
---|---|
AbstractList | Recent trends in research and the market show high demand for frequent monitoring of glucose to estimate the blood sugar level non-invasively which can replace the conventional finger-prick glucometer for daily use. This paper presents a high precision near-infrared Photoplethysmography (PPG) based noninvasive glucose monitoring System on Chip (SoC). The proposed system implements a fully differential Analog Frontend (AFE) with nonlinear medium Gaussian support-vector-regression (NMG-SVR) for glucose estimation. The AFE design incorporates chopping which enables the reduction of the integrated input-referred current noise to 9.4pArms thus achieving a dynamic range of 115dB. The glucose prediction processor (GPP) removes noise from the PPG signal, extracts ten unique features, and estimates the blood glucose level using a trained customized NMG-SVR model that minimizes the hardware cost by 25%. The extracted features are carefully designed and implemented to ensure inter-feature dependency, which helps to reduce the overall area by more than 40%. Moreover, GPP is implemented using power and clock gating techniques to minimize both static and dynamic power consumption. The proposed SoC is realized with <inline-formula> <tex-math notation="LaTeX">0.18~\mu \text{m} </tex-math></inline-formula> CMOS technology and occupies an area of 6 mm 2 . It dissipates a power of <inline-formula> <tex-math notation="LaTeX">186~\mu \text{W} </tex-math></inline-formula> and achieves a mean absolute relative difference (mARD) of 6.9% verified on 200 subjects. Recent trends in research and the market show high demand for frequent monitoring of glucose to estimate the blood sugar level non-invasively which can replace the conventional finger-prick glucometer for daily use. This paper presents a high precision near-infrared Photoplethysmography (PPG) based noninvasive glucose monitoring System on Chip (SoC). The proposed system implements a fully differential Analog Frontend (AFE) with nonlinear medium Gaussian support-vector-regression (NMG-SVR) for glucose estimation. The AFE design incorporates chopping which enables the reduction of the integrated input-referred current noise to 9.4pArms thus achieving a dynamic range of 115dB. The glucose prediction processor (GPP) removes noise from the PPG signal, extracts ten unique features, and estimates the blood glucose level using a trained customized NMG-SVR model that minimizes the hardware cost by 25%. The extracted features are carefully designed and implemented to ensure inter-feature dependency, which helps to reduce the overall area by more than 40%. Moreover, GPP is implemented using power and clock gating techniques to minimize both static and dynamic power consumption. The proposed SoC is realized with [Formula Omitted] CMOS technology and occupies an area of 6 mm2. It dissipates a power of [Formula Omitted] and achieves a mean absolute relative difference (mARD) of 6.9% verified on 200 subjects. |
Author | Hina, Aminah Saadeh, Wala |
Author_xml | – sequence: 1 givenname: Aminah orcidid: 0000-0003-2112-1816 surname: Hina fullname: Hina, Aminah organization: Electrical Engineering Department, Lahore University of Management Sciences, Lahore, Pakistan – sequence: 2 givenname: Wala orcidid: 0000-0002-6084-6396 surname: Saadeh fullname: Saadeh, Wala email: wala.saadeh@lums.edu.pk organization: Electrical Engineering Department, Lahore University of Management Sciences, Lahore, Pakistan |
BookMark | eNp9kEFLwzAYhoNMcJv-APFS8NyZL0mb5DjLnMpQYQO9lTRNt4yuqU032H_zN_ibXNnw4MHT9x3e533hGaBe5SqD0DXgEQCWd8_zycuIYEJGFAQWkp6hPkSRCIEz0et-ikNG-ccFGni_xhgkj3gfJeMARPz99R68rVzr6tK0q73fuGWj6tU-vFfe5MGLq2y1U97uTDAtt9p5E8xN5W21DOYuuUTnhSq9uTrdIVo8TBbJYzh7nT4l41moCaFtKIscmNJRVmhGFCZMaMk1BR2BkVkW8wxDTBkTEEOmWM7B5DkDkxUsjjClQ3R7rK0b97k1vk3XbttUh8WUxEIKzGMcHVJwTOnGed-YIq0bu1HNPgWcdqrSTlXaqUpPqg4M_8No26rWuqptlC3_JW-OpDXG_C5JLpkkQH8A4Hx4Kw |
CODEN | ISJEAZ |
CitedBy_id | crossref_primary_10_1109_JSEN_2023_3284818 crossref_primary_10_1109_JSEN_2024_3420170 crossref_primary_10_2478_joeb_2024_0020 crossref_primary_10_1109_JMW_2024_3518757 crossref_primary_10_1109_JSEN_2024_3378115 crossref_primary_10_35784_acs_2024_39 crossref_primary_10_3390_s24134097 crossref_primary_10_3390_chemosensors11050304 crossref_primary_10_1109_JSEN_2024_3515893 |
Cites_doi | 10.1007/s12046-019-1118-9 10.1109/BIOCAS.2018.8584756 10.1117/1.1920212 10.1016/j.procs.2015.10.082 10.1109/ACCESS.2021.3079182 10.1109/A-SSCC48613.2020.9336124 10.1166/jnn.2019.17005 10.1109/IECBES.2014.7047655 10.1080/03091900410001720247 10.1109/TBCAS.2020.2979514 10.1109/RTEICT42901.2018.9012611 10.1109/JSSC.2016.2639536 10.1109/ICEEI.2015.7352586 10.1109/JSSC.2018.2815653 10.1016/j.snb.2019.01.121 10.1080/10691898.2011.11889611 10.1109/EMBC.2015.7320243 10.1007/s11082-019-1766-3 10.1109/TCE.2020.3011966 10.1109/JSSC.2011.2170633 10.1109/ISSCC.2019.8662520 10.3390/s19040789 10.1007/978-3-319-12898-6_4 10.1109/TBME.2016.2619333 10.3390/s19051151 10.1109/ISCAS.2019.8702747 10.1109/JSSC.2016.2605660 10.1109/TBCAS.2019.2921875 10.1109/ISSCC.2018.8310300 10.1109/SPIN.2014.6777023 10.1109/NEWCAS52662.2022.9842163 10.1016/j.bios.2014.09.042 10.1109/JSSC.2016.2642205 10.1109/TBME.2014.2308552 10.1038/ncomms14997 10.1016/j.artmed.2011.05.001 10.1016/j.diabres.2019.107839 10.1109/TBCAS.2019.2945114 10.1007/978-3-642-19475-7_34 10.1038/s41598-018-19340-y 10.1109/JSSC.2014.2384037 10.1109/ISCAS.2019.8702241 10.1109/BIOCAS.2018.8584660 10.1038/s41598-017-13018-7 10.1089/152091501750220046 10.1016/j.bios.2015.12.014 10.1109/ASSCC.2013.6691035 10.1089/dia.2005.7.776 10.1063/1.5017169 10.2174/157340312801215782 10.1038/s41598-019-53680-7 10.1016/j.talanta.2017.08.077 10.2337/dc13-1374 10.1109/CICC.2017.7993704 10.1088/0031-9155/51/5/N02 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/JSEN.2022.3180893 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1558-1748 |
EndPage | 14195 |
ExternalDocumentID | 10_1109_JSEN_2022_3180893 9794921 |
Genre | orig-research |
GrantInformation_xml | – fundername: Syed Babar Ali Research Awards (SBARA) 2021–2022 funderid: 10.13039/100010139 – fundername: Higher Education Commission (HEC), Pakistan grantid: 7982/Punjab/NRPU/R&D/HEC/2017 funderid: 10.13039/501100004681 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c223t-9fd14ac5bfc42a0248c97c31c51e9bb67b0163448161ba4d71edd41ebf465033 |
IEDL.DBID | RIE |
ISSN | 1530-437X |
IngestDate | Mon Jun 30 10:01:43 EDT 2025 Tue Jul 01 04:26:53 EDT 2025 Thu Apr 24 23:09:33 EDT 2025 Wed Aug 27 02:25:42 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c223t-9fd14ac5bfc42a0248c97c31c51e9bb67b0163448161ba4d71edd41ebf465033 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6084-6396 0000-0003-2112-1816 |
PQID | 2689807605 |
PQPubID | 75733 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1109_JSEN_2022_3180893 ieee_primary_9794921 proquest_journals_2689807605 crossref_citationtrail_10_1109_JSEN_2022_3180893 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-15 |
PublicationDateYYYYMMDD | 2022-07-15 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE sensors journal |
PublicationTitleAbbrev | JSEN |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref15 ref14 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 (ref1) 2021 ref8 ref7 ref9 ref4 ref3 ref6 (ref56) 2022 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
References_xml | – ident: ref35 doi: 10.1007/s12046-019-1118-9 – ident: ref49 doi: 10.1109/BIOCAS.2018.8584756 – ident: ref14 doi: 10.1117/1.1920212 – ident: ref30 doi: 10.1016/j.procs.2015.10.082 – ident: ref34 doi: 10.1109/ACCESS.2021.3079182 – ident: ref39 doi: 10.1109/A-SSCC48613.2020.9336124 – ident: ref19 doi: 10.1166/jnn.2019.17005 – ident: ref26 doi: 10.1109/IECBES.2014.7047655 – ident: ref8 doi: 10.1080/03091900410001720247 – ident: ref38 doi: 10.1109/TBCAS.2020.2979514 – ident: ref54 doi: 10.1109/RTEICT42901.2018.9012611 – ident: ref51 doi: 10.1109/JSSC.2016.2639536 – volume-title: WMA Declaration of Helsinki—Ethical Principles for Medical Research Involving Human Subjects year: 2022 ident: ref56 – ident: ref27 doi: 10.1109/ICEEI.2015.7352586 – ident: ref43 doi: 10.1109/JSSC.2018.2815653 – ident: ref28 doi: 10.1016/j.snb.2019.01.121 – ident: ref52 doi: 10.1080/10691898.2011.11889611 – ident: ref17 doi: 10.1109/EMBC.2015.7320243 – ident: ref29 doi: 10.1007/s11082-019-1766-3 – ident: ref31 doi: 10.1109/TCE.2020.3011966 – ident: ref9 doi: 10.1109/JSSC.2011.2170633 – ident: ref46 doi: 10.1109/ISSCC.2019.8662520 – ident: ref22 doi: 10.3390/s19040789 – ident: ref32 doi: 10.1007/978-3-319-12898-6_4 – ident: ref4 doi: 10.1109/TBME.2016.2619333 – ident: ref15 doi: 10.3390/s19051151 – ident: ref37 doi: 10.1109/ISCAS.2019.8702747 – ident: ref42 doi: 10.1109/JSSC.2016.2605660 – ident: ref53 doi: 10.1109/TBCAS.2019.2921875 – ident: ref47 doi: 10.1109/ISSCC.2018.8310300 – ident: ref25 doi: 10.1109/SPIN.2014.6777023 – ident: ref50 doi: 10.1109/NEWCAS52662.2022.9842163 – ident: ref12 doi: 10.1016/j.bios.2014.09.042 – ident: ref44 doi: 10.1109/JSSC.2016.2642205 – ident: ref6 doi: 10.1109/TBME.2014.2308552 – ident: ref10 doi: 10.1038/ncomms14997 – ident: ref33 doi: 10.1016/j.artmed.2011.05.001 – ident: ref2 doi: 10.1016/j.diabres.2019.107839 – ident: ref45 doi: 10.1109/TBCAS.2019.2945114 – ident: ref55 doi: 10.1007/978-3-642-19475-7_34 – ident: ref16 doi: 10.1038/s41598-018-19340-y – ident: ref5 doi: 10.1109/JSSC.2014.2384037 – ident: ref40 doi: 10.1109/ISCAS.2019.8702241 – ident: ref11 doi: 10.1109/BIOCAS.2018.8584660 – ident: ref18 doi: 10.1038/s41598-017-13018-7 – ident: ref24 doi: 10.1089/152091501750220046 – ident: ref13 doi: 10.1016/j.bios.2015.12.014 – ident: ref41 doi: 10.1109/ASSCC.2013.6691035 – ident: ref57 doi: 10.1089/dia.2005.7.776 – ident: ref20 doi: 10.1063/1.5017169 – ident: ref21 doi: 10.2174/157340312801215782 – ident: ref3 doi: 10.1038/s41598-019-53680-7 – ident: ref7 doi: 10.1016/j.talanta.2017.08.077 – ident: ref23 doi: 10.2337/dc13-1374 – volume-title: WHO Diabetes Fact sheet year: 2021 ident: ref1 – ident: ref48 doi: 10.1109/CICC.2017.7993704 – ident: ref36 doi: 10.1088/0031-9155/51/5/N02 |
SSID | ssj0019757 |
Score | 2.4107037 |
Snippet | Recent trends in research and the market show high demand for frequent monitoring of glucose to estimate the blood sugar level non-invasively which can replace... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 14185 |
SubjectTerms | Blood Cutting Diabetes Feature extraction Frequent glucose monitoring Glucose Light emitting diodes Microprocessors Monitoring near-infrared (NIR) Noise prediction photoplethysmography (PPG) Power consumption Power management Sensors Signal processing Skin support vector regression (SVR) System on chip |
Title | A 186μW Photoplethysmography-Based Noninvasive Glucose Sensing SoC |
URI | https://ieeexplore.ieee.org/document/9794921 https://www.proquest.com/docview/2689807605 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8NAFH7UXtSDS6tYrZKDJ3HaLJNljrW0SqFFaMXeQmaJBbUVTQX9bf4Gf5PzkmlxQ7wFMhOG997kLd9bAI5RxSmaUpJq_UBoSAOSJNIm-ZTyyKduKhDR7Q-CiyvaG_vjEpwua2GUUnnymWrgY47ly5mYY6isybTwMKwaX9FiVtRqLREDFuZdPfUFtgn1wrFBMB2bNXvDzkB7gq6rHdTIjpj3RQflQ1V-_Ilz9dLdhP7iYEVWyW1jnvGGeP3Ws_G_J9-CDWNnWq1CMLahpKYVWP_UfbACq2YA-uSlCu2W5UTB-9u1dTmZZZhUjgy8N-_JmdZ10hpg6PY5wYR367xIdbeGmAA_vbGGs_YOjLqdUfuCmPkKRGijICMslQ5NhM9TQd0Em5sJFgrPEb6jGOdByLU96Gn_TVuFPKEydJSU1FE8pQGin7tQns6mag8s3040pUWURq522CRnoac86SZcMSaEK2pgLwgeC9N7HEdg3MW5D2KzGHkUI49iw6ManCy3PBSNN_5aXEWaLxcactegvuBqbK7mU-wGEYsQj_T3f991AGv4bQzgOn4dytnjXB1qyyPjR7nIfQAzo9M_ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB0hOAAHdkRZc-CEcMniJPaxVIWytEJqEb1F8RKQgBZBigTfxjfwTXgSt2IT4hYptmLNjDPLmwVgF1WcphklmdEPhMY0ImmqXFJMKWch9TOJiG6rHTUv6Wkv7E3A_rgWRmtdJJ_pKj4WWL4ayCGGyg64ER6OVeNTofEqWFmtNcYMeFz09TRX2CU0iHsWw_RcfnDaabSNL-j7xkVlLuPBFy1UjFX58S8uFMzRPLRGRyvzSm6rw1xU5eu3ro3_PfsCzFlL06mVorEIE7q_BLOf-g8uwbQdgX7zsgz1muOx6P3tyrm4GeSYVo4svLfvyaHRdsppY_D2OcWUd-e4THZ3OpgC3792OoP6CnSPGt16k9gJC0QasyAnPFMeTWUoMkn9FNubSR7LwJOhp7kQUSyMRRgYWhu7UKRUxZ5WinpaZDRC_HMVJvuDvl4DJ3RTQ2nJMuYbl00JHgc6UH4qNOdS-rIC7ojgibTdx3EIxl1SeCEuT5BHCfIosTyqwN54y0PZeuOvxctI8_FCS-4KbI64mtjL-ZT4EeMMEclw_fddOzDd7LbOk_OT9tkGzOB3MJzrhZswmT8O9ZaxQ3KxXYjfB3zm1pI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+186%CE%BCW+Photoplethysmography-Based+Noninvasive+Glucose+Sensing+SoC&rft.jtitle=IEEE+sensors+journal&rft.au=Hina%2C+Aminah&rft.au=Saadeh%2C+Wala&rft.date=2022-07-15&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=22&rft.issue=14&rft.spage=14185&rft.epage=14195&rft_id=info:doi/10.1109%2FJSEN.2022.3180893&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2022_3180893 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |