A 186μW Photoplethysmography-Based Noninvasive Glucose Sensing SoC

Recent trends in research and the market show high demand for frequent monitoring of glucose to estimate the blood sugar level non-invasively which can replace the conventional finger-prick glucometer for daily use. This paper presents a high precision near-infrared Photoplethysmography (PPG) based...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 22; no. 14; pp. 14185 - 14195
Main Authors Hina, Aminah, Saadeh, Wala
Format Journal Article
LanguageEnglish
Published New York IEEE 15.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1530-437X
1558-1748
DOI10.1109/JSEN.2022.3180893

Cover

Abstract Recent trends in research and the market show high demand for frequent monitoring of glucose to estimate the blood sugar level non-invasively which can replace the conventional finger-prick glucometer for daily use. This paper presents a high precision near-infrared Photoplethysmography (PPG) based noninvasive glucose monitoring System on Chip (SoC). The proposed system implements a fully differential Analog Frontend (AFE) with nonlinear medium Gaussian support-vector-regression (NMG-SVR) for glucose estimation. The AFE design incorporates chopping which enables the reduction of the integrated input-referred current noise to 9.4pArms thus achieving a dynamic range of 115dB. The glucose prediction processor (GPP) removes noise from the PPG signal, extracts ten unique features, and estimates the blood glucose level using a trained customized NMG-SVR model that minimizes the hardware cost by 25%. The extracted features are carefully designed and implemented to ensure inter-feature dependency, which helps to reduce the overall area by more than 40%. Moreover, GPP is implemented using power and clock gating techniques to minimize both static and dynamic power consumption. The proposed SoC is realized with <inline-formula> <tex-math notation="LaTeX">0.18~\mu \text{m} </tex-math></inline-formula> CMOS technology and occupies an area of 6 mm 2 . It dissipates a power of <inline-formula> <tex-math notation="LaTeX">186~\mu \text{W} </tex-math></inline-formula> and achieves a mean absolute relative difference (mARD) of 6.9% verified on 200 subjects.
AbstractList Recent trends in research and the market show high demand for frequent monitoring of glucose to estimate the blood sugar level non-invasively which can replace the conventional finger-prick glucometer for daily use. This paper presents a high precision near-infrared Photoplethysmography (PPG) based noninvasive glucose monitoring System on Chip (SoC). The proposed system implements a fully differential Analog Frontend (AFE) with nonlinear medium Gaussian support-vector-regression (NMG-SVR) for glucose estimation. The AFE design incorporates chopping which enables the reduction of the integrated input-referred current noise to 9.4pArms thus achieving a dynamic range of 115dB. The glucose prediction processor (GPP) removes noise from the PPG signal, extracts ten unique features, and estimates the blood glucose level using a trained customized NMG-SVR model that minimizes the hardware cost by 25%. The extracted features are carefully designed and implemented to ensure inter-feature dependency, which helps to reduce the overall area by more than 40%. Moreover, GPP is implemented using power and clock gating techniques to minimize both static and dynamic power consumption. The proposed SoC is realized with <inline-formula> <tex-math notation="LaTeX">0.18~\mu \text{m} </tex-math></inline-formula> CMOS technology and occupies an area of 6 mm 2 . It dissipates a power of <inline-formula> <tex-math notation="LaTeX">186~\mu \text{W} </tex-math></inline-formula> and achieves a mean absolute relative difference (mARD) of 6.9% verified on 200 subjects.
Recent trends in research and the market show high demand for frequent monitoring of glucose to estimate the blood sugar level non-invasively which can replace the conventional finger-prick glucometer for daily use. This paper presents a high precision near-infrared Photoplethysmography (PPG) based noninvasive glucose monitoring System on Chip (SoC). The proposed system implements a fully differential Analog Frontend (AFE) with nonlinear medium Gaussian support-vector-regression (NMG-SVR) for glucose estimation. The AFE design incorporates chopping which enables the reduction of the integrated input-referred current noise to 9.4pArms thus achieving a dynamic range of 115dB. The glucose prediction processor (GPP) removes noise from the PPG signal, extracts ten unique features, and estimates the blood glucose level using a trained customized NMG-SVR model that minimizes the hardware cost by 25%. The extracted features are carefully designed and implemented to ensure inter-feature dependency, which helps to reduce the overall area by more than 40%. Moreover, GPP is implemented using power and clock gating techniques to minimize both static and dynamic power consumption. The proposed SoC is realized with [Formula Omitted] CMOS technology and occupies an area of 6 mm2. It dissipates a power of [Formula Omitted] and achieves a mean absolute relative difference (mARD) of 6.9% verified on 200 subjects.
Author Hina, Aminah
Saadeh, Wala
Author_xml – sequence: 1
  givenname: Aminah
  orcidid: 0000-0003-2112-1816
  surname: Hina
  fullname: Hina, Aminah
  organization: Electrical Engineering Department, Lahore University of Management Sciences, Lahore, Pakistan
– sequence: 2
  givenname: Wala
  orcidid: 0000-0002-6084-6396
  surname: Saadeh
  fullname: Saadeh, Wala
  email: wala.saadeh@lums.edu.pk
  organization: Electrical Engineering Department, Lahore University of Management Sciences, Lahore, Pakistan
BookMark eNp9kEFLwzAYhoNMcJv-APFS8NyZL0mb5DjLnMpQYQO9lTRNt4yuqU032H_zN_ibXNnw4MHT9x3e533hGaBe5SqD0DXgEQCWd8_zycuIYEJGFAQWkp6hPkSRCIEz0et-ikNG-ccFGni_xhgkj3gfJeMARPz99R68rVzr6tK0q73fuGWj6tU-vFfe5MGLq2y1U97uTDAtt9p5E8xN5W21DOYuuUTnhSq9uTrdIVo8TBbJYzh7nT4l41moCaFtKIscmNJRVmhGFCZMaMk1BR2BkVkW8wxDTBkTEEOmWM7B5DkDkxUsjjClQ3R7rK0b97k1vk3XbttUh8WUxEIKzGMcHVJwTOnGed-YIq0bu1HNPgWcdqrSTlXaqUpPqg4M_8No26rWuqptlC3_JW-OpDXG_C5JLpkkQH8A4Hx4Kw
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1109_JSEN_2023_3284818
crossref_primary_10_1109_JSEN_2024_3420170
crossref_primary_10_2478_joeb_2024_0020
crossref_primary_10_1109_JMW_2024_3518757
crossref_primary_10_1109_JSEN_2024_3378115
crossref_primary_10_35784_acs_2024_39
crossref_primary_10_3390_s24134097
crossref_primary_10_3390_chemosensors11050304
crossref_primary_10_1109_JSEN_2024_3515893
Cites_doi 10.1007/s12046-019-1118-9
10.1109/BIOCAS.2018.8584756
10.1117/1.1920212
10.1016/j.procs.2015.10.082
10.1109/ACCESS.2021.3079182
10.1109/A-SSCC48613.2020.9336124
10.1166/jnn.2019.17005
10.1109/IECBES.2014.7047655
10.1080/03091900410001720247
10.1109/TBCAS.2020.2979514
10.1109/RTEICT42901.2018.9012611
10.1109/JSSC.2016.2639536
10.1109/ICEEI.2015.7352586
10.1109/JSSC.2018.2815653
10.1016/j.snb.2019.01.121
10.1080/10691898.2011.11889611
10.1109/EMBC.2015.7320243
10.1007/s11082-019-1766-3
10.1109/TCE.2020.3011966
10.1109/JSSC.2011.2170633
10.1109/ISSCC.2019.8662520
10.3390/s19040789
10.1007/978-3-319-12898-6_4
10.1109/TBME.2016.2619333
10.3390/s19051151
10.1109/ISCAS.2019.8702747
10.1109/JSSC.2016.2605660
10.1109/TBCAS.2019.2921875
10.1109/ISSCC.2018.8310300
10.1109/SPIN.2014.6777023
10.1109/NEWCAS52662.2022.9842163
10.1016/j.bios.2014.09.042
10.1109/JSSC.2016.2642205
10.1109/TBME.2014.2308552
10.1038/ncomms14997
10.1016/j.artmed.2011.05.001
10.1016/j.diabres.2019.107839
10.1109/TBCAS.2019.2945114
10.1007/978-3-642-19475-7_34
10.1038/s41598-018-19340-y
10.1109/JSSC.2014.2384037
10.1109/ISCAS.2019.8702241
10.1109/BIOCAS.2018.8584660
10.1038/s41598-017-13018-7
10.1089/152091501750220046
10.1016/j.bios.2015.12.014
10.1109/ASSCC.2013.6691035
10.1089/dia.2005.7.776
10.1063/1.5017169
10.2174/157340312801215782
10.1038/s41598-019-53680-7
10.1016/j.talanta.2017.08.077
10.2337/dc13-1374
10.1109/CICC.2017.7993704
10.1088/0031-9155/51/5/N02
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2022.3180893
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 14195
ExternalDocumentID 10_1109_JSEN_2022_3180893
9794921
Genre orig-research
GrantInformation_xml – fundername: Syed Babar Ali Research Awards (SBARA) 2021–2022
  funderid: 10.13039/100010139
– fundername: Higher Education Commission (HEC), Pakistan
  grantid: 7982/Punjab/NRPU/R&D/HEC/2017
  funderid: 10.13039/501100004681
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c223t-9fd14ac5bfc42a0248c97c31c51e9bb67b0163448161ba4d71edd41ebf465033
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Mon Jun 30 10:01:43 EDT 2025
Tue Jul 01 04:26:53 EDT 2025
Thu Apr 24 23:09:33 EDT 2025
Wed Aug 27 02:25:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c223t-9fd14ac5bfc42a0248c97c31c51e9bb67b0163448161ba4d71edd41ebf465033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6084-6396
0000-0003-2112-1816
PQID 2689807605
PQPubID 75733
PageCount 11
ParticipantIDs crossref_primary_10_1109_JSEN_2022_3180893
ieee_primary_9794921
proquest_journals_2689807605
crossref_citationtrail_10_1109_JSEN_2022_3180893
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-15
PublicationDateYYYYMMDD 2022-07-15
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref15
ref14
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
(ref1) 2021
ref8
ref7
ref9
ref4
ref3
ref6
(ref56) 2022
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref35
  doi: 10.1007/s12046-019-1118-9
– ident: ref49
  doi: 10.1109/BIOCAS.2018.8584756
– ident: ref14
  doi: 10.1117/1.1920212
– ident: ref30
  doi: 10.1016/j.procs.2015.10.082
– ident: ref34
  doi: 10.1109/ACCESS.2021.3079182
– ident: ref39
  doi: 10.1109/A-SSCC48613.2020.9336124
– ident: ref19
  doi: 10.1166/jnn.2019.17005
– ident: ref26
  doi: 10.1109/IECBES.2014.7047655
– ident: ref8
  doi: 10.1080/03091900410001720247
– ident: ref38
  doi: 10.1109/TBCAS.2020.2979514
– ident: ref54
  doi: 10.1109/RTEICT42901.2018.9012611
– ident: ref51
  doi: 10.1109/JSSC.2016.2639536
– volume-title: WMA Declaration of Helsinki—Ethical Principles for Medical Research Involving Human Subjects
  year: 2022
  ident: ref56
– ident: ref27
  doi: 10.1109/ICEEI.2015.7352586
– ident: ref43
  doi: 10.1109/JSSC.2018.2815653
– ident: ref28
  doi: 10.1016/j.snb.2019.01.121
– ident: ref52
  doi: 10.1080/10691898.2011.11889611
– ident: ref17
  doi: 10.1109/EMBC.2015.7320243
– ident: ref29
  doi: 10.1007/s11082-019-1766-3
– ident: ref31
  doi: 10.1109/TCE.2020.3011966
– ident: ref9
  doi: 10.1109/JSSC.2011.2170633
– ident: ref46
  doi: 10.1109/ISSCC.2019.8662520
– ident: ref22
  doi: 10.3390/s19040789
– ident: ref32
  doi: 10.1007/978-3-319-12898-6_4
– ident: ref4
  doi: 10.1109/TBME.2016.2619333
– ident: ref15
  doi: 10.3390/s19051151
– ident: ref37
  doi: 10.1109/ISCAS.2019.8702747
– ident: ref42
  doi: 10.1109/JSSC.2016.2605660
– ident: ref53
  doi: 10.1109/TBCAS.2019.2921875
– ident: ref47
  doi: 10.1109/ISSCC.2018.8310300
– ident: ref25
  doi: 10.1109/SPIN.2014.6777023
– ident: ref50
  doi: 10.1109/NEWCAS52662.2022.9842163
– ident: ref12
  doi: 10.1016/j.bios.2014.09.042
– ident: ref44
  doi: 10.1109/JSSC.2016.2642205
– ident: ref6
  doi: 10.1109/TBME.2014.2308552
– ident: ref10
  doi: 10.1038/ncomms14997
– ident: ref33
  doi: 10.1016/j.artmed.2011.05.001
– ident: ref2
  doi: 10.1016/j.diabres.2019.107839
– ident: ref45
  doi: 10.1109/TBCAS.2019.2945114
– ident: ref55
  doi: 10.1007/978-3-642-19475-7_34
– ident: ref16
  doi: 10.1038/s41598-018-19340-y
– ident: ref5
  doi: 10.1109/JSSC.2014.2384037
– ident: ref40
  doi: 10.1109/ISCAS.2019.8702241
– ident: ref11
  doi: 10.1109/BIOCAS.2018.8584660
– ident: ref18
  doi: 10.1038/s41598-017-13018-7
– ident: ref24
  doi: 10.1089/152091501750220046
– ident: ref13
  doi: 10.1016/j.bios.2015.12.014
– ident: ref41
  doi: 10.1109/ASSCC.2013.6691035
– ident: ref57
  doi: 10.1089/dia.2005.7.776
– ident: ref20
  doi: 10.1063/1.5017169
– ident: ref21
  doi: 10.2174/157340312801215782
– ident: ref3
  doi: 10.1038/s41598-019-53680-7
– ident: ref7
  doi: 10.1016/j.talanta.2017.08.077
– ident: ref23
  doi: 10.2337/dc13-1374
– volume-title: WHO Diabetes Fact sheet
  year: 2021
  ident: ref1
– ident: ref48
  doi: 10.1109/CICC.2017.7993704
– ident: ref36
  doi: 10.1088/0031-9155/51/5/N02
SSID ssj0019757
Score 2.4107037
Snippet Recent trends in research and the market show high demand for frequent monitoring of glucose to estimate the blood sugar level non-invasively which can replace...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 14185
SubjectTerms Blood
Cutting
Diabetes
Feature extraction
Frequent glucose monitoring
Glucose
Light emitting diodes
Microprocessors
Monitoring
near-infrared (NIR)
Noise prediction
photoplethysmography (PPG)
Power consumption
Power management
Sensors
Signal processing
Skin
support vector regression (SVR)
System on chip
Title A 186μW Photoplethysmography-Based Noninvasive Glucose Sensing SoC
URI https://ieeexplore.ieee.org/document/9794921
https://www.proquest.com/docview/2689807605
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8NAFH7UXtSDS6tYrZKDJ3HaLJNljrW0SqFFaMXeQmaJBbUVTQX9bf4Gf5PzkmlxQ7wFMhOG997kLd9bAI5RxSmaUpJq_UBoSAOSJNIm-ZTyyKduKhDR7Q-CiyvaG_vjEpwua2GUUnnymWrgY47ly5mYY6isybTwMKwaX9FiVtRqLREDFuZdPfUFtgn1wrFBMB2bNXvDzkB7gq6rHdTIjpj3RQflQ1V-_Ilz9dLdhP7iYEVWyW1jnvGGeP3Ws_G_J9-CDWNnWq1CMLahpKYVWP_UfbACq2YA-uSlCu2W5UTB-9u1dTmZZZhUjgy8N-_JmdZ10hpg6PY5wYR367xIdbeGmAA_vbGGs_YOjLqdUfuCmPkKRGijICMslQ5NhM9TQd0Em5sJFgrPEb6jGOdByLU96Gn_TVuFPKEydJSU1FE8pQGin7tQns6mag8s3040pUWURq522CRnoac86SZcMSaEK2pgLwgeC9N7HEdg3MW5D2KzGHkUI49iw6ManCy3PBSNN_5aXEWaLxcactegvuBqbK7mU-wGEYsQj_T3f991AGv4bQzgOn4dytnjXB1qyyPjR7nIfQAzo9M_
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB0hOAAHdkRZc-CEcMniJPaxVIWytEJqEb1F8RKQgBZBigTfxjfwTXgSt2IT4hYptmLNjDPLmwVgF1WcphklmdEPhMY0ImmqXFJMKWch9TOJiG6rHTUv6Wkv7E3A_rgWRmtdJJ_pKj4WWL4ayCGGyg64ER6OVeNTofEqWFmtNcYMeFz09TRX2CU0iHsWw_RcfnDaabSNL-j7xkVlLuPBFy1UjFX58S8uFMzRPLRGRyvzSm6rw1xU5eu3ro3_PfsCzFlL06mVorEIE7q_BLOf-g8uwbQdgX7zsgz1muOx6P3tyrm4GeSYVo4svLfvyaHRdsppY_D2OcWUd-e4THZ3OpgC3792OoP6CnSPGt16k9gJC0QasyAnPFMeTWUoMkn9FNubSR7LwJOhp7kQUSyMRRgYWhu7UKRUxZ5WinpaZDRC_HMVJvuDvl4DJ3RTQ2nJMuYbl00JHgc6UH4qNOdS-rIC7ojgibTdx3EIxl1SeCEuT5BHCfIosTyqwN54y0PZeuOvxctI8_FCS-4KbI64mtjL-ZT4EeMMEclw_fddOzDd7LbOk_OT9tkGzOB3MJzrhZswmT8O9ZaxQ3KxXYjfB3zm1pI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+186%CE%BCW+Photoplethysmography-Based+Noninvasive+Glucose+Sensing+SoC&rft.jtitle=IEEE+sensors+journal&rft.au=Hina%2C+Aminah&rft.au=Saadeh%2C+Wala&rft.date=2022-07-15&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=22&rft.issue=14&rft.spage=14185&rft.epage=14195&rft_id=info:doi/10.1109%2FJSEN.2022.3180893&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2022_3180893
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon