Deep Convolutional Generative Adversarial Network for Inverse Kinematics of Self-Assembly Robotic Arm based on the Depth Sensor

In this study, we propose a new Deep Convolutional Generative Adversarial Kinematics Network (DCGAKN) to establish inverse kinematics of self-assembly robotic arm. We design that the robot system uses a depth sensor detecting an object by You Only Look Once v4 (YOLOv4) algorithm, and then our propos...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 23; no. 1; p. 1
Main Authors Hsieh, Yi-Zeng, Xu, Fu-Xiong, Lin, Shih-Syun
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1530-437X
1558-1748
DOI10.1109/JSEN.2022.3222332

Cover

Abstract In this study, we propose a new Deep Convolutional Generative Adversarial Kinematics Network (DCGAKN) to establish inverse kinematics of self-assembly robotic arm. We design that the robot system uses a depth sensor detecting an object by You Only Look Once v4 (YOLOv4) algorithm, and then our proposed DCGAKN is with generator and discriminator of adversarial evolution training inverse kinematics model for controlling self-assembly robotic arm to solve the limited solution space to be more adaptive in the dynamic environment. The following is advancements of our proposed method. (1) Generator neural network is trained by few-shot training data to control self-assembly robotic arm to achieve high accuracy position. (2) Generator is evaluated with discriminator not only depending on training data, but also on adaptive evolutionary. (3) The self-assembly robotic arm is like humanoid arm not traditional robotic arm structure and it is easy for self-assembly model to build inverse kinematics without computing inverse kinematics matrix. (4) The object is detected by the depth information based on YOLOv4. (5) Through generator evolutionary, the activity range of robotic arm is not limited with training data range. The proposed DCGAKN is compared with CNN and DNN that accuracy rate and distance error achieve 87%, 1.26cm separately. The source code of this work is at: https://github.com/YiZengHsieh/DCGAKN.
AbstractList In this study, we propose a new deep convolutional generative adversarial kinematics network (DCGAKN) to establish inverse kinematics of self-assembly robotic arm. We design that the robot system uses a depth sensor detecting an object by you only look once v4 (YOLOv4) algorithm, and then, our proposed DCGAKN is with generator and discriminator of adversarial evolution training inverse kinematics model for controlling self-assembly robotic arm to solve the limited solution space to be more adaptive in the dynamic environment. The following are advancements of our proposed method: 1) generator neural network is trained by few-shot training data to control the self-assembly robotic arm to achieve high-accuracy position; 2) generator is evaluated with discriminator not only depending on training data but also on adaptive evolutionary; 3) the self-assembly robotic arm is like humanoid arm not traditional robotic arm structure and it is easy for self-assembly model to build inverse kinematics without computing inverse kinematics matrix; 4) the object is detected by the depth information based on YOLOv4; and 5) through generator evolutionary, the activity range of robotic arm is not limited with training data range. The proposed DCGAKN is compared with convolutional neural network (CNN) and deep neural network (DNN) that the accuracy rate and distance error achieve 87% and 1.26 cm, respectively. The source code of this work is at: https://github.com/YiZengHsieh/DCGAKN .
In this study, we propose a new Deep Convolutional Generative Adversarial Kinematics Network (DCGAKN) to establish inverse kinematics of self-assembly robotic arm. We design that the robot system uses a depth sensor detecting an object by You Only Look Once v4 (YOLOv4) algorithm, and then our proposed DCGAKN is with generator and discriminator of adversarial evolution training inverse kinematics model for controlling self-assembly robotic arm to solve the limited solution space to be more adaptive in the dynamic environment. The following is advancements of our proposed method. (1) Generator neural network is trained by few-shot training data to control self-assembly robotic arm to achieve high accuracy position. (2) Generator is evaluated with discriminator not only depending on training data, but also on adaptive evolutionary. (3) The self-assembly robotic arm is like humanoid arm not traditional robotic arm structure and it is easy for self-assembly model to build inverse kinematics without computing inverse kinematics matrix. (4) The object is detected by the depth information based on YOLOv4. (5) Through generator evolutionary, the activity range of robotic arm is not limited with training data range. The proposed DCGAKN is compared with CNN and DNN that accuracy rate and distance error achieve 87%, 1.26cm separately. The source code of this work is at: https://github.com/YiZengHsieh/DCGAKN.
Author Xu, Fu-Xiong
Hsieh, Yi-Zeng
Lin, Shih-Syun
Author_xml – sequence: 1
  givenname: Yi-Zeng
  surname: Hsieh
  fullname: Hsieh, Yi-Zeng
  organization: Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei City, Taiwan
– sequence: 2
  givenname: Fu-Xiong
  surname: Xu
  fullname: Xu, Fu-Xiong
  organization: Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei City, Taiwan
– sequence: 3
  givenname: Shih-Syun
  orcidid: 0000-0002-8360-5819
  surname: Lin
  fullname: Lin, Shih-Syun
  organization: Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung City, Taiwan
BookMark eNp9kMtOwzAQRS1UJKDwAYiNJdYpfsRxvKza8laRKEjsIieZiJTULrZbxIpfx1ERCxasZjRz7zzOERoYawChU0pGlBJ1cbuYzUeMMDbijDHO2R46pELkCZVpPuhzTpKUy5cDdOT9khCqpJCH6GsKsMYTa7a224TWGt3hKzDgdGi3gMf1FpzXro3lOYQP695wYx2-MX0d8F1rYBWllce2wQvommTsPazK7hM_2tLGDh67FS61hxpbg8Mr4Cmsw2sUG2_dMdpvdOfh5CcO0fPl7Glyndw_XN1MxvdJFb8JiSypKjMiJVFa0LRu0lKLXKQ8y2uWNxnhaQWyzjhVRPGqqWlGMl5SmUmoRc74EJ3v5q6dfd-AD8XSblz81hdMCsVzyeKQIaI7VeWs9w6aYu3alXafBSVFz7noORc95-KHc_TIP56qDbpHGZxuu3-dZztnCwC_m5QSIh7EvwEbyozz
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1016_j_conengprac_2025_106278
crossref_primary_10_1007_s11432_024_4157_7
crossref_primary_10_1109_JSEN_2023_3321742
crossref_primary_10_1177_09544054241310337
crossref_primary_10_1016_j_isatra_2024_12_008
crossref_primary_10_3390_app13158836
Cites_doi 10.1109/LRA.2017.2737485
10.1109/TASE.2020.3021119
10.1109/JSEN.2013.2240449
10.1109/JSEN.2018.2884321
10.1109/JSEN.2014.2359225
10.1109/TASE.2018.2840532
10.1109/JSEN.2020.3037301
10.1109/JSEN.2022.3164915
10.1109/JSEN.2019.2947719
10.1109/JSEN.2021.3104351
10.1109/JSEN.2021.3136362
10.1109/TASE.2020.3024725
10.1109/TRO.2013.2279412
10.1109/TRO.2019.2936302
10.1109/JSEN.2020.2981091
10.1109/JSEN.2021.3077272
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2022.3222332
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 1
ExternalDocumentID 10_1109_JSEN_2022_3222332
9955593
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
ZY4
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c223t-7b19b607709a514df4ba5854368d28f6034ce7d6319093cfd16063b1767ed5823
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Mon Jun 30 10:08:09 EDT 2025
Wed Oct 01 05:05:54 EDT 2025
Thu Apr 24 23:09:52 EDT 2025
Wed Aug 27 02:29:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c223t-7b19b607709a514df4ba5854368d28f6034ce7d6319093cfd16063b1767ed5823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8360-5819
0000-0002-5758-4516
0000-0001-9580-4914
PQID 2759387260
PQPubID 75733
PageCount 1
ParticipantIDs proquest_journals_2759387260
crossref_citationtrail_10_1109_JSEN_2022_3222332
crossref_primary_10_1109_JSEN_2022_3222332
ieee_primary_9955593
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
Lenninger (ref16) 2017
ref14
Bochkovskiy (ref17) 2020
ref11
ref10
Martínez-Tenor (ref15) 2017
ref2
ref1
ref19
Salimans (ref20) 2016
ref18
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref13
  doi: 10.1109/LRA.2017.2737485
– ident: ref7
  doi: 10.1109/TASE.2020.3021119
– ident: ref19
  doi: 10.1109/JSEN.2013.2240449
– ident: ref5
  doi: 10.1109/JSEN.2018.2884321
– volume-title: arXiv:2004.10934
  year: 2020
  ident: ref17
  article-title: YOLOv4: Optimal speed and accuracy of object detection
– volume-title: arXiv:1702.06329
  year: 2017
  ident: ref15
  article-title: Towards a common implementation of reinforcement learning for multiple robotic tasks
– ident: ref18
  doi: 10.1109/JSEN.2014.2359225
– ident: ref2
  doi: 10.1109/TASE.2018.2840532
– ident: ref14
  doi: 10.1109/JSEN.2020.3037301
– ident: ref10
  doi: 10.1109/JSEN.2022.3164915
– ident: ref4
  doi: 10.1109/JSEN.2019.2947719
– volume-title: arXiv:1606.03498
  year: 2016
  ident: ref20
  article-title: Improved techniques for training GANs
– start-page: 1
  issue: 1
  volume-title: Generative adversarial networks as integrated forward and inverse model for motor control
  year: 2017
  ident: ref16
– ident: ref8
  doi: 10.1109/JSEN.2021.3104351
– ident: ref12
  doi: 10.1109/JSEN.2021.3136362
– ident: ref1
  doi: 10.1109/TASE.2020.3024725
– ident: ref6
  doi: 10.1109/TRO.2013.2279412
– ident: ref3
  doi: 10.1109/TRO.2019.2936302
– ident: ref9
  doi: 10.1109/JSEN.2020.2981091
– ident: ref11
  doi: 10.1109/JSEN.2021.3077272
SSID ssj0019757
Score 2.4141772
Snippet In this study, we propose a new Deep Convolutional Generative Adversarial Kinematics Network (DCGAKN) to establish inverse kinematics of self-assembly robotic...
In this study, we propose a new deep convolutional generative adversarial kinematics network (DCGAKN) to establish inverse kinematics of self-assembly robotic...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Algorithms
Artificial neural networks
deep learning
depth sensor
Discriminators
generative adversarial network
Generative adversarial networks
Humanoid
Inverse kinematics
Kinematics
Multinational space ventures
Neural networks
Robot arms
Robot control
Robotic arm
Robotics
Self-assembly
Solution space
Source code
Training
Title Deep Convolutional Generative Adversarial Network for Inverse Kinematics of Self-Assembly Robotic Arm based on the Depth Sensor
URI https://ieeexplore.ieee.org/document/9955593
https://www.proquest.com/docview/2759387260
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61vQAHHi2oCwX5wAnhrdfx2vER9aGqqHugVNpbFNsTVWKbrDZZpHLhrzN2siteQtwi2Y5GnrH9zYz9DcDbgGQWpdTcSZRcVT7nzk4V177MIzOm12UMDVzN9MWNupxP5zvwfvsWBhHT5TMcx8-Uyw-NX8dQ2bG1UwLA2S7smlz3b7W2GQNrEqsnLWDBVWbmQwZzIuzx5fXZjDxBKccxrZBl8pczKBVV-WMnTsfL-RO42gjW3yr5Ml53buy__cbZ-L-SP4XHA85kH3rDeAY7WO_Do5_YB_fhwVAA_fb-AL6fIi7ZSVN_HUyRxvaM1HE7ZKlsc1tGY2Wz_uI4I7TLIkvHqkX2kf6auF9b1lTsGhcVj9nkO7e4Z58a11ALiXLH4pkZWFMzgp3sFJfdLXWu22b1HG7Ozz6fXPChNgP3NIUdN25inRbGCFsS5gqVciV5HpHPPsi80iJTHk3QtMKFzXwVJuQpZW5itMEwzWX2AvbqpsZDYF4F9KVSJYFX5TVNE1pfEQ5UwQeh8xGIjbYKPxCXx_oZiyI5MMIWUcFFVHAxKHgE77ZDlj1rx786H0SFbTsOuhrB0cYkimFdt4U01JIbcgJf_n3UK3gYC9L3QZoj2OtWa3xNsKVzb5K9_gCZ3OjJ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcigceLQgFgr4wAnhrddx7PiI-tDSdvdAW2lvUfyIKrFNVptspfbCX2eceFe8hLhFsh2NPGP7mxn7G4APzqNZFFxSwz2norQZNToVVNoiC8yYVhYhNDCZyvGVOJ2lsy34tHkL473vLp_5YfjscvmutqsQKjvQOkUAnDyAh6kQIu1fa21yBlp1vJ64hBkViZrFHOaI6YPTi-Mp-oKcD0NiIUn4L6dQV1blj724O2BOnsJkLVp_r-TbcNWaob3_jbXxf2V_Bk8i0iSfe9N4Dlu-2oXHP_EP7sJOLIF-fbcH34-8X5DDurqNxohje07qsCGSrnBzUwRzJdP-6jhBvEsCT8ey8eQM_9qxvzakLsmFn5c05JNvzPyOfK1NjS0oyg0Jp6YjdUUQeJIjv2ivsXPV1MsXcHVyfHk4prE6A7U4hS1VZqSNZEoxXSDqcqUwBfoegdHe8ayULBHWKydxjTOd2NKN0FdKzEhJ5V2a8eQlbFd15V8BscJ5WwhRIHwVVuI0eW1LRILCWcdkNgC21lZuI3V5qKAxzzsXhuk8KDgPCs6jggfwcTNk0fN2_KvzXlDYpmPU1QD21yaRx5Xd5FxhS6bQDXz991HvYWd8OTnPz79Mz97Ao1Cevg_Z7MN2u1z5twhiWvOus90f8AnsFg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Convolutional+Generative+Adversarial+Network+for+Inverse+Kinematics+of+Self-Assembly+Robotic+Arm+Based+on+the+Depth+Sensor&rft.jtitle=IEEE+sensors+journal&rft.au=Hsieh%2C+Yi-Zeng&rft.au=Xu%2C+Fu-Xiong&rft.au=Lin%2C+Shih-Syun&rft.date=2023-01-01&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=23&rft.issue=1&rft.spage=758&rft.epage=765&rft_id=info:doi/10.1109%2FJSEN.2022.3222332&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2022_3222332
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon