Deep Convolutional Generative Adversarial Network for Inverse Kinematics of Self-Assembly Robotic Arm based on the Depth Sensor
In this study, we propose a new Deep Convolutional Generative Adversarial Kinematics Network (DCGAKN) to establish inverse kinematics of self-assembly robotic arm. We design that the robot system uses a depth sensor detecting an object by You Only Look Once v4 (YOLOv4) algorithm, and then our propos...
        Saved in:
      
    
          | Published in | IEEE sensors journal Vol. 23; no. 1; p. 1 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          IEEE
    
        01.01.2023
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1530-437X 1558-1748  | 
| DOI | 10.1109/JSEN.2022.3222332 | 
Cover
| Abstract | In this study, we propose a new Deep Convolutional Generative Adversarial Kinematics Network (DCGAKN) to establish inverse kinematics of self-assembly robotic arm. We design that the robot system uses a depth sensor detecting an object by You Only Look Once v4 (YOLOv4) algorithm, and then our proposed DCGAKN is with generator and discriminator of adversarial evolution training inverse kinematics model for controlling self-assembly robotic arm to solve the limited solution space to be more adaptive in the dynamic environment. The following is advancements of our proposed method. (1) Generator neural network is trained by few-shot training data to control self-assembly robotic arm to achieve high accuracy position. (2) Generator is evaluated with discriminator not only depending on training data, but also on adaptive evolutionary. (3) The self-assembly robotic arm is like humanoid arm not traditional robotic arm structure and it is easy for self-assembly model to build inverse kinematics without computing inverse kinematics matrix. (4) The object is detected by the depth information based on YOLOv4. (5) Through generator evolutionary, the activity range of robotic arm is not limited with training data range. The proposed DCGAKN is compared with CNN and DNN that accuracy rate and distance error achieve 87%, 1.26cm separately. The source code of this work is at: https://github.com/YiZengHsieh/DCGAKN. | 
    
|---|---|
| AbstractList | In this study, we propose a new deep convolutional generative adversarial kinematics network (DCGAKN) to establish inverse kinematics of self-assembly robotic arm. We design that the robot system uses a depth sensor detecting an object by you only look once v4 (YOLOv4) algorithm, and then, our proposed DCGAKN is with generator and discriminator of adversarial evolution training inverse kinematics model for controlling self-assembly robotic arm to solve the limited solution space to be more adaptive in the dynamic environment. The following are advancements of our proposed method: 1) generator neural network is trained by few-shot training data to control the self-assembly robotic arm to achieve high-accuracy position; 2) generator is evaluated with discriminator not only depending on training data but also on adaptive evolutionary; 3) the self-assembly robotic arm is like humanoid arm not traditional robotic arm structure and it is easy for self-assembly model to build inverse kinematics without computing inverse kinematics matrix; 4) the object is detected by the depth information based on YOLOv4; and 5) through generator evolutionary, the activity range of robotic arm is not limited with training data range. The proposed DCGAKN is compared with convolutional neural network (CNN) and deep neural network (DNN) that the accuracy rate and distance error achieve 87% and 1.26 cm, respectively. The source code of this work is at: https://github.com/YiZengHsieh/DCGAKN . In this study, we propose a new Deep Convolutional Generative Adversarial Kinematics Network (DCGAKN) to establish inverse kinematics of self-assembly robotic arm. We design that the robot system uses a depth sensor detecting an object by You Only Look Once v4 (YOLOv4) algorithm, and then our proposed DCGAKN is with generator and discriminator of adversarial evolution training inverse kinematics model for controlling self-assembly robotic arm to solve the limited solution space to be more adaptive in the dynamic environment. The following is advancements of our proposed method. (1) Generator neural network is trained by few-shot training data to control self-assembly robotic arm to achieve high accuracy position. (2) Generator is evaluated with discriminator not only depending on training data, but also on adaptive evolutionary. (3) The self-assembly robotic arm is like humanoid arm not traditional robotic arm structure and it is easy for self-assembly model to build inverse kinematics without computing inverse kinematics matrix. (4) The object is detected by the depth information based on YOLOv4. (5) Through generator evolutionary, the activity range of robotic arm is not limited with training data range. The proposed DCGAKN is compared with CNN and DNN that accuracy rate and distance error achieve 87%, 1.26cm separately. The source code of this work is at: https://github.com/YiZengHsieh/DCGAKN.  | 
    
| Author | Xu, Fu-Xiong Hsieh, Yi-Zeng Lin, Shih-Syun  | 
    
| Author_xml | – sequence: 1 givenname: Yi-Zeng surname: Hsieh fullname: Hsieh, Yi-Zeng organization: Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei City, Taiwan – sequence: 2 givenname: Fu-Xiong surname: Xu fullname: Xu, Fu-Xiong organization: Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei City, Taiwan – sequence: 3 givenname: Shih-Syun orcidid: 0000-0002-8360-5819 surname: Lin fullname: Lin, Shih-Syun organization: Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung City, Taiwan  | 
    
| BookMark | eNp9kMtOwzAQRS1UJKDwAYiNJdYpfsRxvKza8laRKEjsIieZiJTULrZbxIpfx1ERCxasZjRz7zzOERoYawChU0pGlBJ1cbuYzUeMMDbijDHO2R46pELkCZVpPuhzTpKUy5cDdOT9khCqpJCH6GsKsMYTa7a224TWGt3hKzDgdGi3gMf1FpzXro3lOYQP695wYx2-MX0d8F1rYBWllce2wQvommTsPazK7hM_2tLGDh67FS61hxpbg8Mr4Cmsw2sUG2_dMdpvdOfh5CcO0fPl7Glyndw_XN1MxvdJFb8JiSypKjMiJVFa0LRu0lKLXKQ8y2uWNxnhaQWyzjhVRPGqqWlGMl5SmUmoRc74EJ3v5q6dfd-AD8XSblz81hdMCsVzyeKQIaI7VeWs9w6aYu3alXafBSVFz7noORc95-KHc_TIP56qDbpHGZxuu3-dZztnCwC_m5QSIh7EvwEbyozz | 
    
| CODEN | ISJEAZ | 
    
| CitedBy_id | crossref_primary_10_1016_j_conengprac_2025_106278 crossref_primary_10_1007_s11432_024_4157_7 crossref_primary_10_1109_JSEN_2023_3321742 crossref_primary_10_1177_09544054241310337 crossref_primary_10_1016_j_isatra_2024_12_008 crossref_primary_10_3390_app13158836  | 
    
| Cites_doi | 10.1109/LRA.2017.2737485 10.1109/TASE.2020.3021119 10.1109/JSEN.2013.2240449 10.1109/JSEN.2018.2884321 10.1109/JSEN.2014.2359225 10.1109/TASE.2018.2840532 10.1109/JSEN.2020.3037301 10.1109/JSEN.2022.3164915 10.1109/JSEN.2019.2947719 10.1109/JSEN.2021.3104351 10.1109/JSEN.2021.3136362 10.1109/TASE.2020.3024725 10.1109/TRO.2013.2279412 10.1109/TRO.2019.2936302 10.1109/JSEN.2020.2981091 10.1109/JSEN.2021.3077272  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 | 
    
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M  | 
    
| DOI | 10.1109/JSEN.2022.3222332 | 
    
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace  | 
    
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts  | 
    
| DatabaseTitleList | Solid State and Superconductivity Abstracts | 
    
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Geography Engineering  | 
    
| EISSN | 1558-1748 | 
    
| EndPage | 1 | 
    
| ExternalDocumentID | 10_1109_JSEN_2022_3222332 9955593  | 
    
| Genre | orig-research | 
    
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ ZY4 AAYXX CITATION 7SP 7U5 8FD L7M  | 
    
| ID | FETCH-LOGICAL-c223t-7b19b607709a514df4ba5854368d28f6034ce7d6319093cfd16063b1767ed5823 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 1530-437X | 
    
| IngestDate | Mon Jun 30 10:08:09 EDT 2025 Wed Oct 01 05:05:54 EDT 2025 Thu Apr 24 23:09:52 EDT 2025 Wed Aug 27 02:29:15 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c223t-7b19b607709a514df4ba5854368d28f6034ce7d6319093cfd16063b1767ed5823 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-8360-5819 0000-0002-5758-4516 0000-0001-9580-4914  | 
    
| PQID | 2759387260 | 
    
| PQPubID | 75733 | 
    
| PageCount | 1 | 
    
| ParticipantIDs | proquest_journals_2759387260 crossref_citationtrail_10_1109_JSEN_2022_3222332 crossref_primary_10_1109_JSEN_2022_3222332 ieee_primary_9955593  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-01-01 | 
    
| PublicationDateYYYYMMDD | 2023-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | IEEE sensors journal | 
    
| PublicationTitleAbbrev | JSEN | 
    
| PublicationYear | 2023 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref12 Lenninger (ref16) 2017 ref14 Bochkovskiy (ref17) 2020 ref11 ref10 Martínez-Tenor (ref15) 2017 ref2 ref1 ref19 Salimans (ref20) 2016 ref18 ref8 ref7 ref9 ref4 ref3 ref6 ref5  | 
    
| References_xml | – ident: ref13 doi: 10.1109/LRA.2017.2737485 – ident: ref7 doi: 10.1109/TASE.2020.3021119 – ident: ref19 doi: 10.1109/JSEN.2013.2240449 – ident: ref5 doi: 10.1109/JSEN.2018.2884321 – volume-title: arXiv:2004.10934 year: 2020 ident: ref17 article-title: YOLOv4: Optimal speed and accuracy of object detection – volume-title: arXiv:1702.06329 year: 2017 ident: ref15 article-title: Towards a common implementation of reinforcement learning for multiple robotic tasks – ident: ref18 doi: 10.1109/JSEN.2014.2359225 – ident: ref2 doi: 10.1109/TASE.2018.2840532 – ident: ref14 doi: 10.1109/JSEN.2020.3037301 – ident: ref10 doi: 10.1109/JSEN.2022.3164915 – ident: ref4 doi: 10.1109/JSEN.2019.2947719 – volume-title: arXiv:1606.03498 year: 2016 ident: ref20 article-title: Improved techniques for training GANs – start-page: 1 issue: 1 volume-title: Generative adversarial networks as integrated forward and inverse model for motor control year: 2017 ident: ref16 – ident: ref8 doi: 10.1109/JSEN.2021.3104351 – ident: ref12 doi: 10.1109/JSEN.2021.3136362 – ident: ref1 doi: 10.1109/TASE.2020.3024725 – ident: ref6 doi: 10.1109/TRO.2013.2279412 – ident: ref3 doi: 10.1109/TRO.2019.2936302 – ident: ref9 doi: 10.1109/JSEN.2020.2981091 – ident: ref11 doi: 10.1109/JSEN.2021.3077272  | 
    
| SSID | ssj0019757 | 
    
| Score | 2.4141772 | 
    
| Snippet | In this study, we propose a new Deep Convolutional Generative Adversarial Kinematics Network (DCGAKN) to establish inverse kinematics of self-assembly robotic... In this study, we propose a new deep convolutional generative adversarial kinematics network (DCGAKN) to establish inverse kinematics of self-assembly robotic...  | 
    
| SourceID | proquest crossref ieee  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1 | 
    
| SubjectTerms | Accuracy Algorithms Artificial neural networks deep learning depth sensor Discriminators generative adversarial network Generative adversarial networks Humanoid Inverse kinematics Kinematics Multinational space ventures Neural networks Robot arms Robot control Robotic arm Robotics Self-assembly Solution space Source code Training  | 
    
| Title | Deep Convolutional Generative Adversarial Network for Inverse Kinematics of Self-Assembly Robotic Arm based on the Depth Sensor | 
    
| URI | https://ieeexplore.ieee.org/document/9955593 https://www.proquest.com/docview/2759387260  | 
    
| Volume | 23 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61vQAHHi2oCwX5wAnhrdfx2vER9aGqqHugVNpbFNsTVWKbrDZZpHLhrzN2siteQtwi2Y5GnrH9zYz9DcDbgGQWpdTcSZRcVT7nzk4V177MIzOm12UMDVzN9MWNupxP5zvwfvsWBhHT5TMcx8-Uyw-NX8dQ2bG1UwLA2S7smlz3b7W2GQNrEqsnLWDBVWbmQwZzIuzx5fXZjDxBKccxrZBl8pczKBVV-WMnTsfL-RO42gjW3yr5Ml53buy__cbZ-L-SP4XHA85kH3rDeAY7WO_Do5_YB_fhwVAA_fb-AL6fIi7ZSVN_HUyRxvaM1HE7ZKlsc1tGY2Wz_uI4I7TLIkvHqkX2kf6auF9b1lTsGhcVj9nkO7e4Z58a11ALiXLH4pkZWFMzgp3sFJfdLXWu22b1HG7Ozz6fXPChNgP3NIUdN25inRbGCFsS5gqVciV5HpHPPsi80iJTHk3QtMKFzXwVJuQpZW5itMEwzWX2AvbqpsZDYF4F9KVSJYFX5TVNE1pfEQ5UwQeh8xGIjbYKPxCXx_oZiyI5MMIWUcFFVHAxKHgE77ZDlj1rx786H0SFbTsOuhrB0cYkimFdt4U01JIbcgJf_n3UK3gYC9L3QZoj2OtWa3xNsKVzb5K9_gCZ3OjJ | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcigceLQgFgr4wAnhrddx7PiI-tDSdvdAW2lvUfyIKrFNVptspfbCX2eceFe8hLhFsh2NPGP7mxn7G4APzqNZFFxSwz2norQZNToVVNoiC8yYVhYhNDCZyvGVOJ2lsy34tHkL473vLp_5YfjscvmutqsQKjvQOkUAnDyAh6kQIu1fa21yBlp1vJ64hBkViZrFHOaI6YPTi-Mp-oKcD0NiIUn4L6dQV1blj724O2BOnsJkLVp_r-TbcNWaob3_jbXxf2V_Bk8i0iSfe9N4Dlu-2oXHP_EP7sJOLIF-fbcH34-8X5DDurqNxohje07qsCGSrnBzUwRzJdP-6jhBvEsCT8ey8eQM_9qxvzakLsmFn5c05JNvzPyOfK1NjS0oyg0Jp6YjdUUQeJIjv2ivsXPV1MsXcHVyfHk4prE6A7U4hS1VZqSNZEoxXSDqcqUwBfoegdHe8ayULBHWKydxjTOd2NKN0FdKzEhJ5V2a8eQlbFd15V8BscJ5WwhRIHwVVuI0eW1LRILCWcdkNgC21lZuI3V5qKAxzzsXhuk8KDgPCs6jggfwcTNk0fN2_KvzXlDYpmPU1QD21yaRx5Xd5FxhS6bQDXz991HvYWd8OTnPz79Mz97Ao1Cevg_Z7MN2u1z5twhiWvOus90f8AnsFg | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Convolutional+Generative+Adversarial+Network+for+Inverse+Kinematics+of+Self-Assembly+Robotic+Arm+Based+on+the+Depth+Sensor&rft.jtitle=IEEE+sensors+journal&rft.au=Hsieh%2C+Yi-Zeng&rft.au=Xu%2C+Fu-Xiong&rft.au=Lin%2C+Shih-Syun&rft.date=2023-01-01&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=23&rft.issue=1&rft.spage=758&rft.epage=765&rft_id=info:doi/10.1109%2FJSEN.2022.3222332&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2022_3222332 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |