Research on robot tracking force control algorithm based on neural networks

PurposeThis study aims to propose a force control algorithm based on neural networks, which enables a robot to follow a changing reference force trajectory when in contact with human skin while maintaining a stable tracking force.Design/methodology/approachAiming at the challenge of robots having di...

Full description

Saved in:
Bibliographic Details
Published inIndustrial robot Vol. 51; no. 6; pp. 1049 - 1056
Main Authors Du, Liang, Xiao, Meng
Format Journal Article
LanguageEnglish
Published Bedford Emerald Group Publishing Limited 02.12.2024
Subjects
Online AccessGet full text
ISSN0143-991X
1758-5791
DOI10.1108/IR-04-2024-0176

Cover

Abstract PurposeThis study aims to propose a force control algorithm based on neural networks, which enables a robot to follow a changing reference force trajectory when in contact with human skin while maintaining a stable tracking force.Design/methodology/approachAiming at the challenge of robots having difficulty tracking changing force trajectories in skin contact scenarios, a single neuron algorithm adaptive proportional – integral – derivative online compensation is used based on traditional impedance control. At the same time, to better adapt to changes in the skin contact environment, a gated recurrent unit (GRU) network is used to model and predict skin elasticity coefficients, thus adjusting to the uncertainty of skin environments.FindingsIn two robot–skin interaction experiments, compared with the traditional impedance control and robot force control algorithm based on the radial basis function model and iterative algorithm, the maximum absolute force error, the average absolute force error and the standard deviation of the force error are all decreased.Research limitations/implicationsAs the training process of the GRU network is currently conducted offline, the focus in the subsequent phase is to refine the network to facilitate real-time computation of the algorithm.Practical implicationsThis algorithm can be applied to robot massage, robot B-ultrasound and other robot-assisted treatment scenarios.Originality/valueAs the proposed approach obtains effective force tracking during robot–skin contact and is verified by the experiment, this approach can be used in robot–skin contact scenarios to enhance the accuracy of force application by a robot.
AbstractList PurposeThis study aims to propose a force control algorithm based on neural networks, which enables a robot to follow a changing reference force trajectory when in contact with human skin while maintaining a stable tracking force.Design/methodology/approachAiming at the challenge of robots having difficulty tracking changing force trajectories in skin contact scenarios, a single neuron algorithm adaptive proportional – integral – derivative online compensation is used based on traditional impedance control. At the same time, to better adapt to changes in the skin contact environment, a gated recurrent unit (GRU) network is used to model and predict skin elasticity coefficients, thus adjusting to the uncertainty of skin environments.FindingsIn two robot–skin interaction experiments, compared with the traditional impedance control and robot force control algorithm based on the radial basis function model and iterative algorithm, the maximum absolute force error, the average absolute force error and the standard deviation of the force error are all decreased.Research limitations/implicationsAs the training process of the GRU network is currently conducted offline, the focus in the subsequent phase is to refine the network to facilitate real-time computation of the algorithm.Practical implicationsThis algorithm can be applied to robot massage, robot B-ultrasound and other robot-assisted treatment scenarios.Originality/valueAs the proposed approach obtains effective force tracking during robot–skin contact and is verified by the experiment, this approach can be used in robot–skin contact scenarios to enhance the accuracy of force application by a robot.
Author Du, Liang
Xiao, Meng
Author_xml – sequence: 1
  givenname: Liang
  surname: Du
  fullname: Du, Liang
– sequence: 2
  givenname: Meng
  surname: Xiao
  fullname: Xiao, Meng
BookMark eNotkEtLAzEYRYMo2FbXbgOuY_PlMUmWUnwUC0JRcBcymUxf06QmU8R_b4e6OpvDvXDG6DKmGBC6A_oAQPV0viRUEEaZIBRUdYFGoKQmUhm4RCMKghNj4OsajUvZUkplBdUIvS1DCS77NU4R51SnHvfZ-d0mrnCbsg_Yp9jn1GHXrVLe9Os9rl0JzeDHcMyuO6H_SXlXbtBV67oSbv85QZ_PTx-zV7J4f5nPHhfEM8Z7wmoVuObG80rrRjUeDBgHEBjwunZCqlaaRmgB4L0Ugcqatgak0KwBLzmfoPvz7iGn72Movd2mY46nS8uBc62YkexkTc-Wz6mUHFp7yJu9y78WqB2K2fnSUmGHYnYoxv8A-0NfUA
Cites_doi 10.1007/s12555-022-0436-6
10.1016/j.jmbbm.2021.104667
10.1108/IR-11-2021-0266
10.1109/LRA.2020.3011379
10.1016/j.conengprac.2023.105714
10.3390/s20020345
10.1016/j.jbiomech.2021.110864
10.1109/TRO.2018.2830405
10.1109/LRA.2022.3186504
10.1162/neco_a_01174
10.1109/TMECH.2022.3202694
10.1177/0954411918759801
10.1109/TNNLS.2021.3136866
10.1109/TNNLS.2017.2665581
10.1109/TNNLS.2021.3057958
10.1017/S0263574718001339
10.3390/en13153929
ContentType Journal Article
Copyright Emerald Publishing Limited.
Copyright_xml – notice: Emerald Publishing Limited.
DBID AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1108/IR-04-2024-0176
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database
DeliveryMethod fulltext_linktorsrc
EISSN 1758-5791
EndPage 1056
ExternalDocumentID 10_1108_IR_04_2024_0176
GroupedDBID -~X
.DC
0R~
29I
4.4
490
5VS
70U
7WY
85S
9E0
AAGBP
AAIKC
AAMCF
AAMNW
AATHL
AAUDR
AAYXX
ABIJV
ABJNI
ABKQV
ABSDC
ABYQI
ACGFO
ACGFS
ACGOD
ACIWK
ACZLT
ADFRT
ADOMW
AEBZA
AFYHH
AHMHQ
AJEBP
ALMA_UNASSIGNED_HOLDINGS
AODMV
ARAPS
ASMFL
BENPR
CITATION
CS3
EBS
ECCUG
F5P
FNNZZ
GEI
GEL
GQ.
H13
HCIFZ
HZ~
H~9
IJT
IPNFZ
J1Y
JI-
JL0
K6~
KBGRL
M2O
M42
O9-
P2P
RIG
SBBZN
TN5
U5U
WH7
7SC
7SP
7TB
8FD
AFNTC
AUCOK
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c223t-2b7e3839c3688d7dc1919a11e213bba457f59d48411cc54e05b0f915482d1c533
IEDL.DBID GEI
ISSN 0143-991X
IngestDate Sat Aug 16 21:25:05 EDT 2025
Wed Oct 01 05:44:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://www.emerald.com/insight/site-policies
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c223t-2b7e3839c3688d7dc1919a11e213bba457f59d48411cc54e05b0f915482d1c533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3133872952
PQPubID 36873
PageCount 8
ParticipantIDs proquest_journals_3133872952
crossref_primary_10_1108_IR_04_2024_0176
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-02
PublicationDateYYYYMMDD 2024-12-02
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-02
  day: 02
PublicationDecade 2020
PublicationPlace Bedford
PublicationPlace_xml – name: Bedford
PublicationTitle Industrial robot
PublicationYear 2024
Publisher Emerald Group Publishing Limited
Publisher_xml – name: Emerald Group Publishing Limited
References (key2024112907362803800_ref009) 2019; 31
(key2024112907362803800_ref022) 2022; 49
(key2024112907362803800_ref013) 2022; 130
(key2024112907362803800_ref017) 2019; 37
(key2024112907362803800_ref010) 2018; 232
(key2024112907362803800_ref012) 2018; 34
(key2024112907362803800_ref016) 2017; 7
(key2024112907362803800_ref007) 2023; 34
(key2024112907362803800_ref008) 2018; 29
(key2024112907362803800_ref020) 2024; 22
(key2024112907362803800_ref003) 2014
(key2024112907362803800_ref018) 2020; 20
(key2024112907362803800_ref023) 2023; 141
(key2024112907362803800_ref005) 2023; 28
(key2024112907362803800_ref002) 2020; 5
(key2024112907362803800_ref021) 2018; 331
(key2024112907362803800_ref001) 2021; 235
(key2024112907362803800_ref006) 2022; 7
(key2024112907362803800_ref011) 2020
(key2024112907362803800_ref024) 2021; 123
(key2024112907362803800_ref004) 2020; 2020
(key2024112907362803800_ref019) 2018; 15
(key2024112907362803800_ref014) 2020; 13
(key2024112907362803800_ref015) 2022; 33
References_xml – volume: 22
  start-page: 946
  issue: 3
  year: 2024
  ident: key2024112907362803800_ref020
  article-title: A learning control strategy for robot-assisted bathing via impedance sliding mode technique with non-repetitive tasks
  publication-title: International Journal of Control, Automation and Systems
  doi: 10.1007/s12555-022-0436-6
– volume: 123
  start-page: 104667
  year: 2021
  ident: key2024112907362803800_ref024
  article-title: Extended Kalman filter for online soft tissue characterization based on Hunt-Crossley contact model
  publication-title: Journal of the Mechanical Behavior of Biomedical Materials
  doi: 10.1016/j.jmbbm.2021.104667
– volume: 49
  start-page: 634
  issue: 4
  year: 2022
  ident: key2024112907362803800_ref022
  article-title: An intelligent control system for robot massaging with uncertain skin characteristics
  publication-title: Industrial Robot: The International Journal of Robotics Research and Application
  doi: 10.1108/IR-11-2021-0266
– volume: 5
  start-page: 6129
  issue: 4
  year: 2020
  ident: key2024112907362803800_ref002
  article-title: Learning variable impedance control for contact-sensitive tasks
  publication-title: IEEE Robotics and Automation Letters
  doi: 10.1109/LRA.2020.3011379
– volume: 331
  start-page: 1
  year: 2018
  ident: key2024112907362803800_ref021
  article-title: Adaptive neural network force tracking impedance control for uncertain robotic manipulator based on nonlinear velocity observer
  publication-title: Neurocomputing
– volume: 141
  start-page: 105714
  year: 2023
  ident: key2024112907362803800_ref023
  article-title: Neural network-based variable stiffness impedance control for internal/external forces tracking of dual-arm manipulators under uncertainties
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2023.105714
– volume: 20
  start-page: 345
  issue: 2
  year: 2020
  ident: key2024112907362803800_ref018
  article-title: Single neural adaptive PID control for small UAV Micro-Turbojet engine
  publication-title: Sensors
  doi: 10.3390/s20020345
– volume: 130
  start-page: 110864
  year: 2022
  ident: key2024112907362803800_ref013
  article-title: Mechanical modeling and characterization of human skin: a review
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2021.110864
– volume: 34
  start-page: 1170
  issue: 5
  year: 2018
  ident: key2024112907362803800_ref012
  article-title: Force, impedance, and trajectory learning for contact tooling and haptic identification
  publication-title: IEEE Transactions on Robotics
  doi: 10.1109/TRO.2018.2830405
– start-page: 4724
  year: 2020
  ident: key2024112907362803800_ref011
  article-title: Arm-hand motion-force coordination for physical interactions with non-flat surfaces using dynamical systems: toward compliant robotic massage
– year: 2014
  ident: key2024112907362803800_ref003
  article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling
– volume: 7
  start-page: 8106
  issue: 3
  year: 2022
  ident: key2024112907362803800_ref006
  article-title: Ultrasound-guided assistive robots for scoliosis assessment with optimization-based control and variable impedance
  publication-title: IEEE Robotics and Automation Letters
  doi: 10.1109/LRA.2022.3186504
– volume: 31
  start-page: 765
  issue: 4
  year: 2019
  ident: key2024112907362803800_ref009
  article-title: Gated orthogonal recurrent units: on learning to forget
  publication-title: Neural Computation
  doi: 10.1162/neco_a_01174
– volume: 235
  start-page: 5758
  issue: 21
  year: 2021
  ident: key2024112907362803800_ref001
  article-title: Development of an autonomous robotic system for beard shaving assistance of disabled people based on an adaptive force tracking impedance control
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
– volume: 2020
  start-page: 1
  year: 2020
  ident: key2024112907362803800_ref004
  article-title: Constant force PID control for robotic manipulator based on fuzzy neural network algorithm
  publication-title: Complexity
– volume: 28
  start-page: 372
  issue: 1
  year: 2023
  ident: key2024112907362803800_ref005
  article-title: Construction of interaction parallel manipulator: towards rehabilitation massage
  publication-title: IEEE/ASME Transactions on Mechatronics
  doi: 10.1109/TMECH.2022.3202694
– volume: 232
  start-page: 323
  issue: 4
  year: 2018
  ident: key2024112907362803800_ref010
  article-title: Skin mechanical properties and modeling: a review
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine
  doi: 10.1177/0954411918759801
– volume: 34
  start-page: 6468
  issue: 9
  year: 2023
  ident: key2024112907362803800_ref007
  article-title: An interacting multiple model for trajectory prediction of intelligent vehicles in typical road traffic scenario
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2021.3136866
– volume: 29
  start-page: 1174
  issue: 4
  year: 2018
  ident: key2024112907362803800_ref008
  article-title: Adaptive fuzzy neural network control for a constrained robot using impedance learning
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2017.2665581
– volume: 33
  start-page: 4551
  issue: 9
  year: 2022
  ident: key2024112907362803800_ref015
  article-title: Neural networks enhanced optimal admittance control of robot–environment interaction using reinforcement learning
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2021.3057958
– volume: 7
  start-page: 13
  issue: 1
  year: 2017
  ident: key2024112907362803800_ref016
  article-title: Design adaptive fuzzy sliding mode controller for pantograph mechanism apply to massage therapy robot for healthcare
  publication-title: Journal of Automation and Control Engineering
– volume: 15
  start-page: 1
  issue: 4
  year: 2018
  ident: key2024112907362803800_ref019
  article-title: Design, path planning improvement and test of a portable massage robot on human back
  publication-title: International Journal of Advanced Robotic Systems
– volume: 37
  start-page: 801
  issue: 5
  year: 2019
  ident: key2024112907362803800_ref017
  article-title: A tutorial survey and comparison of impedance control on robotic manipulation
  publication-title: Robotica
  doi: 10.1017/S0263574718001339
– volume: 13
  start-page: 3929
  issue: 15
  year: 2020
  ident: key2024112907362803800_ref014
  article-title: Feedforward compensation analysis of piezoelectric actuators using artificial neural networks with conventional PID controller and single-neuron PID based on Hebb learning rules
  publication-title: Energies
  doi: 10.3390/en13153929
SSID ssj0005616
Score 2.3538713
Snippet PurposeThis study aims to propose a force control algorithm based on neural networks, which enables a robot to follow a changing reference force trajectory...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 1049
SubjectTerms Adaptive algorithms
Control algorithms
Control theory
Deformation
Derivatives
Fuzzy logic
Impedance
Integrals
Iterative algorithms
Mechanical properties
Mechanics
Neural networks
Radial basis function
Real time
Robot control
Robots
Skin
Tracking
Title Research on robot tracking force control algorithm based on neural networks
URI https://www.proquest.com/docview/3133872952
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVMCB
  databaseName: Emerald A-Z Complete All Journals Journals
  customDbUrl:
  eissn: 1758-5791
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005616
  issn: 0143-991X
  databaseCode: GEI
  dateStart: 19730101
  isFulltext: true
  titleUrlDefault: https://www.emerald.com/insight
  providerName: Emerald
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZKJxYeAkShIA8IsbiNEzuPCSFE1YJgqKjULcSPUESblNZd2Pjn-PJAKiAm5kSW7nyxv-_y3R1CZ66Geo_UI5JFAWFUJsTiOJdIRyURk4HnMahGvn_w-yN2O-bjBnqqa2EKWWWZjinO6ZdsCSS1C8Jtewp_NRyA6TWDIaT1LXsHHUXgdyFh3Z2Y2fRy_kZgrhT8f62GbGzY2Oe8LgauJSB-MRoVWtwRi5PGVeufX9Zev7XWD-3iJupto4_ahlKA8tpZGdGR79_aO_6bkec_jdxBWxWMxVdl3O2ihs720F0t48N5hhe5yA02i0RCMh5bbCw1roTxOJk-20XNZIbhFlXwPjTWtCtmpSx9uY9GvZvH6z6phjUQaRGGIa4ItGW7kfT8MFSBkpYIRgml2qWeEAnjQcojxUJGqZScaYcLJ42AMLmKSgs6D1AzyzN9iLBQFvaFSaq1Jy3a4yKVTPBA-amTKCqcFrqoNyOelz054oLLOGE8GMYOi8FdMbirhdr1ZsXVx7mMPeDlllRw9-jvx8dos3A8qFfcNmqaxUqfWAxixGkRSJ-PB9ow
linkProvider Emerald
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+robot+tracking+force+control+algorithm+based+on+neural+networks&rft.jtitle=Industrial+robot&rft.au=Du%2C+Liang&rft.au=Meng%2C+Xiao&rft.date=2024-12-02&rft.pub=Emerald+Group+Publishing+Limited&rft.issn=0143-991X&rft.eissn=1758-5791&rft.volume=51&rft.issue=6&rft.spage=1049&rft.epage=1056&rft_id=info:doi/10.1108%2FIR-04-2024-0176&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-991X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-991X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-991X&client=summon