Research on robot tracking force control algorithm based on neural networks
PurposeThis study aims to propose a force control algorithm based on neural networks, which enables a robot to follow a changing reference force trajectory when in contact with human skin while maintaining a stable tracking force.Design/methodology/approachAiming at the challenge of robots having di...
Saved in:
| Published in | Industrial robot Vol. 51; no. 6; pp. 1049 - 1056 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Bedford
Emerald Group Publishing Limited
02.12.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0143-991X 1758-5791 |
| DOI | 10.1108/IR-04-2024-0176 |
Cover
| Abstract | PurposeThis study aims to propose a force control algorithm based on neural networks, which enables a robot to follow a changing reference force trajectory when in contact with human skin while maintaining a stable tracking force.Design/methodology/approachAiming at the challenge of robots having difficulty tracking changing force trajectories in skin contact scenarios, a single neuron algorithm adaptive proportional – integral – derivative online compensation is used based on traditional impedance control. At the same time, to better adapt to changes in the skin contact environment, a gated recurrent unit (GRU) network is used to model and predict skin elasticity coefficients, thus adjusting to the uncertainty of skin environments.FindingsIn two robot–skin interaction experiments, compared with the traditional impedance control and robot force control algorithm based on the radial basis function model and iterative algorithm, the maximum absolute force error, the average absolute force error and the standard deviation of the force error are all decreased.Research limitations/implicationsAs the training process of the GRU network is currently conducted offline, the focus in the subsequent phase is to refine the network to facilitate real-time computation of the algorithm.Practical implicationsThis algorithm can be applied to robot massage, robot B-ultrasound and other robot-assisted treatment scenarios.Originality/valueAs the proposed approach obtains effective force tracking during robot–skin contact and is verified by the experiment, this approach can be used in robot–skin contact scenarios to enhance the accuracy of force application by a robot. |
|---|---|
| AbstractList | PurposeThis study aims to propose a force control algorithm based on neural networks, which enables a robot to follow a changing reference force trajectory when in contact with human skin while maintaining a stable tracking force.Design/methodology/approachAiming at the challenge of robots having difficulty tracking changing force trajectories in skin contact scenarios, a single neuron algorithm adaptive proportional – integral – derivative online compensation is used based on traditional impedance control. At the same time, to better adapt to changes in the skin contact environment, a gated recurrent unit (GRU) network is used to model and predict skin elasticity coefficients, thus adjusting to the uncertainty of skin environments.FindingsIn two robot–skin interaction experiments, compared with the traditional impedance control and robot force control algorithm based on the radial basis function model and iterative algorithm, the maximum absolute force error, the average absolute force error and the standard deviation of the force error are all decreased.Research limitations/implicationsAs the training process of the GRU network is currently conducted offline, the focus in the subsequent phase is to refine the network to facilitate real-time computation of the algorithm.Practical implicationsThis algorithm can be applied to robot massage, robot B-ultrasound and other robot-assisted treatment scenarios.Originality/valueAs the proposed approach obtains effective force tracking during robot–skin contact and is verified by the experiment, this approach can be used in robot–skin contact scenarios to enhance the accuracy of force application by a robot. |
| Author | Du, Liang Xiao, Meng |
| Author_xml | – sequence: 1 givenname: Liang surname: Du fullname: Du, Liang – sequence: 2 givenname: Meng surname: Xiao fullname: Xiao, Meng |
| BookMark | eNotkEtLAzEYRYMo2FbXbgOuY_PlMUmWUnwUC0JRcBcymUxf06QmU8R_b4e6OpvDvXDG6DKmGBC6A_oAQPV0viRUEEaZIBRUdYFGoKQmUhm4RCMKghNj4OsajUvZUkplBdUIvS1DCS77NU4R51SnHvfZ-d0mrnCbsg_Yp9jn1GHXrVLe9Os9rl0JzeDHcMyuO6H_SXlXbtBV67oSbv85QZ_PTx-zV7J4f5nPHhfEM8Z7wmoVuObG80rrRjUeDBgHEBjwunZCqlaaRmgB4L0Ugcqatgak0KwBLzmfoPvz7iGn72Movd2mY46nS8uBc62YkexkTc-Wz6mUHFp7yJu9y78WqB2K2fnSUmGHYnYoxv8A-0NfUA |
| Cites_doi | 10.1007/s12555-022-0436-6 10.1016/j.jmbbm.2021.104667 10.1108/IR-11-2021-0266 10.1109/LRA.2020.3011379 10.1016/j.conengprac.2023.105714 10.3390/s20020345 10.1016/j.jbiomech.2021.110864 10.1109/TRO.2018.2830405 10.1109/LRA.2022.3186504 10.1162/neco_a_01174 10.1109/TMECH.2022.3202694 10.1177/0954411918759801 10.1109/TNNLS.2021.3136866 10.1109/TNNLS.2017.2665581 10.1109/TNNLS.2021.3057958 10.1017/S0263574718001339 10.3390/en13153929 |
| ContentType | Journal Article |
| Copyright | Emerald Publishing Limited. |
| Copyright_xml | – notice: Emerald Publishing Limited. |
| DBID | AAYXX CITATION 7SC 7SP 7TB 8FD F28 FR3 JQ2 L7M L~C L~D |
| DOI | 10.1108/IR-04-2024-0176 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 1758-5791 |
| EndPage | 1056 |
| ExternalDocumentID | 10_1108_IR_04_2024_0176 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 490 5VS 70U 7WY 85S 9E0 AAGBP AAIKC AAMCF AAMNW AATHL AAUDR AAYXX ABIJV ABJNI ABKQV ABSDC ABYQI ACGFO ACGFS ACGOD ACIWK ACZLT ADFRT ADOMW AEBZA AFYHH AHMHQ AJEBP ALMA_UNASSIGNED_HOLDINGS AODMV ARAPS ASMFL BENPR CITATION CS3 EBS ECCUG F5P FNNZZ GEI GEL GQ. H13 HCIFZ HZ~ H~9 IJT IPNFZ J1Y JI- JL0 K6~ KBGRL M2O M42 O9- P2P RIG SBBZN TN5 U5U WH7 7SC 7SP 7TB 8FD AFNTC AUCOK F28 FR3 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c223t-2b7e3839c3688d7dc1919a11e213bba457f59d48411cc54e05b0f915482d1c533 |
| IEDL.DBID | GEI |
| ISSN | 0143-991X |
| IngestDate | Sat Aug 16 21:25:05 EDT 2025 Wed Oct 01 05:44:10 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://www.emerald.com/insight/site-policies |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c223t-2b7e3839c3688d7dc1919a11e213bba457f59d48411cc54e05b0f915482d1c533 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3133872952 |
| PQPubID | 36873 |
| PageCount | 8 |
| ParticipantIDs | proquest_journals_3133872952 crossref_primary_10_1108_IR_04_2024_0176 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-02 |
| PublicationDateYYYYMMDD | 2024-12-02 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | Bedford |
| PublicationPlace_xml | – name: Bedford |
| PublicationTitle | Industrial robot |
| PublicationYear | 2024 |
| Publisher | Emerald Group Publishing Limited |
| Publisher_xml | – name: Emerald Group Publishing Limited |
| References | (key2024112907362803800_ref009) 2019; 31 (key2024112907362803800_ref022) 2022; 49 (key2024112907362803800_ref013) 2022; 130 (key2024112907362803800_ref017) 2019; 37 (key2024112907362803800_ref010) 2018; 232 (key2024112907362803800_ref012) 2018; 34 (key2024112907362803800_ref016) 2017; 7 (key2024112907362803800_ref007) 2023; 34 (key2024112907362803800_ref008) 2018; 29 (key2024112907362803800_ref020) 2024; 22 (key2024112907362803800_ref003) 2014 (key2024112907362803800_ref018) 2020; 20 (key2024112907362803800_ref023) 2023; 141 (key2024112907362803800_ref005) 2023; 28 (key2024112907362803800_ref002) 2020; 5 (key2024112907362803800_ref021) 2018; 331 (key2024112907362803800_ref001) 2021; 235 (key2024112907362803800_ref006) 2022; 7 (key2024112907362803800_ref011) 2020 (key2024112907362803800_ref024) 2021; 123 (key2024112907362803800_ref004) 2020; 2020 (key2024112907362803800_ref019) 2018; 15 (key2024112907362803800_ref014) 2020; 13 (key2024112907362803800_ref015) 2022; 33 |
| References_xml | – volume: 22 start-page: 946 issue: 3 year: 2024 ident: key2024112907362803800_ref020 article-title: A learning control strategy for robot-assisted bathing via impedance sliding mode technique with non-repetitive tasks publication-title: International Journal of Control, Automation and Systems doi: 10.1007/s12555-022-0436-6 – volume: 123 start-page: 104667 year: 2021 ident: key2024112907362803800_ref024 article-title: Extended Kalman filter for online soft tissue characterization based on Hunt-Crossley contact model publication-title: Journal of the Mechanical Behavior of Biomedical Materials doi: 10.1016/j.jmbbm.2021.104667 – volume: 49 start-page: 634 issue: 4 year: 2022 ident: key2024112907362803800_ref022 article-title: An intelligent control system for robot massaging with uncertain skin characteristics publication-title: Industrial Robot: The International Journal of Robotics Research and Application doi: 10.1108/IR-11-2021-0266 – volume: 5 start-page: 6129 issue: 4 year: 2020 ident: key2024112907362803800_ref002 article-title: Learning variable impedance control for contact-sensitive tasks publication-title: IEEE Robotics and Automation Letters doi: 10.1109/LRA.2020.3011379 – volume: 331 start-page: 1 year: 2018 ident: key2024112907362803800_ref021 article-title: Adaptive neural network force tracking impedance control for uncertain robotic manipulator based on nonlinear velocity observer publication-title: Neurocomputing – volume: 141 start-page: 105714 year: 2023 ident: key2024112907362803800_ref023 article-title: Neural network-based variable stiffness impedance control for internal/external forces tracking of dual-arm manipulators under uncertainties publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2023.105714 – volume: 20 start-page: 345 issue: 2 year: 2020 ident: key2024112907362803800_ref018 article-title: Single neural adaptive PID control for small UAV Micro-Turbojet engine publication-title: Sensors doi: 10.3390/s20020345 – volume: 130 start-page: 110864 year: 2022 ident: key2024112907362803800_ref013 article-title: Mechanical modeling and characterization of human skin: a review publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2021.110864 – volume: 34 start-page: 1170 issue: 5 year: 2018 ident: key2024112907362803800_ref012 article-title: Force, impedance, and trajectory learning for contact tooling and haptic identification publication-title: IEEE Transactions on Robotics doi: 10.1109/TRO.2018.2830405 – start-page: 4724 year: 2020 ident: key2024112907362803800_ref011 article-title: Arm-hand motion-force coordination for physical interactions with non-flat surfaces using dynamical systems: toward compliant robotic massage – year: 2014 ident: key2024112907362803800_ref003 article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling – volume: 7 start-page: 8106 issue: 3 year: 2022 ident: key2024112907362803800_ref006 article-title: Ultrasound-guided assistive robots for scoliosis assessment with optimization-based control and variable impedance publication-title: IEEE Robotics and Automation Letters doi: 10.1109/LRA.2022.3186504 – volume: 31 start-page: 765 issue: 4 year: 2019 ident: key2024112907362803800_ref009 article-title: Gated orthogonal recurrent units: on learning to forget publication-title: Neural Computation doi: 10.1162/neco_a_01174 – volume: 235 start-page: 5758 issue: 21 year: 2021 ident: key2024112907362803800_ref001 article-title: Development of an autonomous robotic system for beard shaving assistance of disabled people based on an adaptive force tracking impedance control publication-title: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science – volume: 2020 start-page: 1 year: 2020 ident: key2024112907362803800_ref004 article-title: Constant force PID control for robotic manipulator based on fuzzy neural network algorithm publication-title: Complexity – volume: 28 start-page: 372 issue: 1 year: 2023 ident: key2024112907362803800_ref005 article-title: Construction of interaction parallel manipulator: towards rehabilitation massage publication-title: IEEE/ASME Transactions on Mechatronics doi: 10.1109/TMECH.2022.3202694 – volume: 232 start-page: 323 issue: 4 year: 2018 ident: key2024112907362803800_ref010 article-title: Skin mechanical properties and modeling: a review publication-title: Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine doi: 10.1177/0954411918759801 – volume: 34 start-page: 6468 issue: 9 year: 2023 ident: key2024112907362803800_ref007 article-title: An interacting multiple model for trajectory prediction of intelligent vehicles in typical road traffic scenario publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2021.3136866 – volume: 29 start-page: 1174 issue: 4 year: 2018 ident: key2024112907362803800_ref008 article-title: Adaptive fuzzy neural network control for a constrained robot using impedance learning publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2017.2665581 – volume: 33 start-page: 4551 issue: 9 year: 2022 ident: key2024112907362803800_ref015 article-title: Neural networks enhanced optimal admittance control of robot–environment interaction using reinforcement learning publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2021.3057958 – volume: 7 start-page: 13 issue: 1 year: 2017 ident: key2024112907362803800_ref016 article-title: Design adaptive fuzzy sliding mode controller for pantograph mechanism apply to massage therapy robot for healthcare publication-title: Journal of Automation and Control Engineering – volume: 15 start-page: 1 issue: 4 year: 2018 ident: key2024112907362803800_ref019 article-title: Design, path planning improvement and test of a portable massage robot on human back publication-title: International Journal of Advanced Robotic Systems – volume: 37 start-page: 801 issue: 5 year: 2019 ident: key2024112907362803800_ref017 article-title: A tutorial survey and comparison of impedance control on robotic manipulation publication-title: Robotica doi: 10.1017/S0263574718001339 – volume: 13 start-page: 3929 issue: 15 year: 2020 ident: key2024112907362803800_ref014 article-title: Feedforward compensation analysis of piezoelectric actuators using artificial neural networks with conventional PID controller and single-neuron PID based on Hebb learning rules publication-title: Energies doi: 10.3390/en13153929 |
| SSID | ssj0005616 |
| Score | 2.3538713 |
| Snippet | PurposeThis study aims to propose a force control algorithm based on neural networks, which enables a robot to follow a changing reference force trajectory... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Index Database |
| StartPage | 1049 |
| SubjectTerms | Adaptive algorithms Control algorithms Control theory Deformation Derivatives Fuzzy logic Impedance Integrals Iterative algorithms Mechanical properties Mechanics Neural networks Radial basis function Real time Robot control Robots Skin Tracking |
| Title | Research on robot tracking force control algorithm based on neural networks |
| URI | https://www.proquest.com/docview/3133872952 |
| Volume | 51 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVMCB databaseName: Emerald A-Z Complete All Journals Journals customDbUrl: eissn: 1758-5791 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005616 issn: 0143-991X databaseCode: GEI dateStart: 19730101 isFulltext: true titleUrlDefault: https://www.emerald.com/insight providerName: Emerald |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZKJxYeAkShIA8IsbiNEzuPCSFE1YJgqKjULcSPUESblNZd2Pjn-PJAKiAm5kSW7nyxv-_y3R1CZ66Geo_UI5JFAWFUJsTiOJdIRyURk4HnMahGvn_w-yN2O-bjBnqqa2EKWWWZjinO6ZdsCSS1C8Jtewp_NRyA6TWDIaT1LXsHHUXgdyFh3Z2Y2fRy_kZgrhT8f62GbGzY2Oe8LgauJSB-MRoVWtwRi5PGVeufX9Zev7XWD-3iJupto4_ahlKA8tpZGdGR79_aO_6bkec_jdxBWxWMxVdl3O2ihs720F0t48N5hhe5yA02i0RCMh5bbCw1roTxOJk-20XNZIbhFlXwPjTWtCtmpSx9uY9GvZvH6z6phjUQaRGGIa4ItGW7kfT8MFSBkpYIRgml2qWeEAnjQcojxUJGqZScaYcLJ42AMLmKSgs6D1AzyzN9iLBQFvaFSaq1Jy3a4yKVTPBA-amTKCqcFrqoNyOelz054oLLOGE8GMYOi8FdMbirhdr1ZsXVx7mMPeDlllRw9-jvx8dos3A8qFfcNmqaxUqfWAxixGkRSJ-PB9ow |
| linkProvider | Emerald |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+robot+tracking+force+control+algorithm+based+on+neural+networks&rft.jtitle=Industrial+robot&rft.au=Du%2C+Liang&rft.au=Meng%2C+Xiao&rft.date=2024-12-02&rft.pub=Emerald+Group+Publishing+Limited&rft.issn=0143-991X&rft.eissn=1758-5791&rft.volume=51&rft.issue=6&rft.spage=1049&rft.epage=1056&rft_id=info:doi/10.1108%2FIR-04-2024-0176&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-991X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-991X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-991X&client=summon |