Threshold estimation for continuous three‐phase polynomial regression models with constant mean in the middle regime
This paper considers a continuous three‐phase polynomial regression model with two threshold points for dependent data with heteroscedasticity. We assume the model is polynomial of order zero in the middle regime, and is polynomial of higher orders elsewhere. We denote this model by ℳ2$$ {\mathcal{M...
Saved in:
Published in | Statistica Neerlandica Vol. 77; no. 1; pp. 4 - 47 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Publishing Ltd
01.02.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0039-0402 1467-9574 |
DOI | 10.1111/stan.12268 |
Cover
Abstract | This paper considers a continuous three‐phase polynomial regression model with two threshold points for dependent data with heteroscedasticity. We assume the model is polynomial of order zero in the middle regime, and is polynomial of higher orders elsewhere. We denote this model by ℳ2$$ {\mathcal{M}}_2 $$, which includes models with one or no threshold points, denoted by ℳ1$$ {\mathcal{M}}_1 $$ and ℳ0$$ {\mathcal{M}}_0 $$, respectively, as special cases. We provide an ordered iterative least squares (OiLS) method when estimating ℳ2$$ {\mathcal{M}}_2 $$ and establish the consistency of the OiLS estimators under mild conditions. When the underlying model is ℳ1$$ {\mathcal{M}}_1 $$ and is (d0−1)$$ \left({d}_0-1\right) $$th‐order differentiable but not d0$$ {d}_0 $$th‐order differentiable at the threshold point, we further show the Op(N−1/(d0+2))$$ {O}_p\left({N}^{-1/\left({d}_0+2\right)}\right) $$ convergence rate of the OiLS estimators, which can be faster than the Op(N−1/(2d0))$$ {O}_p\left({N}^{-1/\left(2{d}_0\right)}\right) $$ convergence rate given in Feder when d0≥3$$ {d}_0\ge 3 $$. We also apply a model‐selection procedure for selecting ℳκ$$ {\mathcal{M}}_{\kappa } $$; κ=0,1,2$$ \kappa =0,1,2 $$. When the underlying model exists, we establish the selection consistency under the aforementioned conditions. Finally, we conduct simulation experiments to demonstrate the finite‐sample performance of our asymptotic results. |
---|---|
AbstractList | This paper considers a continuous three‐phase polynomial regression model with two threshold points for dependent data with heteroscedasticity. We assume the model is polynomial of order zero in the middle regime, and is polynomial of higher orders elsewhere. We denote this model by , which includes models with one or no threshold points, denoted by and , respectively, as special cases. We provide an ordered iterative least squares (OiLS) method when estimating and establish the consistency of the OiLS estimators under mild conditions. When the underlying model is and is th‐order differentiable but not th‐order differentiable at the threshold point, we further show the convergence rate of the OiLS estimators, which can be faster than the convergence rate given in Feder when . We also apply a model‐selection procedure for selecting ; . When the underlying model exists, we establish the selection consistency under the aforementioned conditions. Finally, we conduct simulation experiments to demonstrate the finite‐sample performance of our asymptotic results. This paper considers a continuous three‐phase polynomial regression model with two threshold points for dependent data with heteroscedasticity. We assume the model is polynomial of order zero in the middle regime, and is polynomial of higher orders elsewhere. We denote this model by ℳ2$$ {\mathcal{M}}_2 $$, which includes models with one or no threshold points, denoted by ℳ1$$ {\mathcal{M}}_1 $$ and ℳ0$$ {\mathcal{M}}_0 $$, respectively, as special cases. We provide an ordered iterative least squares (OiLS) method when estimating ℳ2$$ {\mathcal{M}}_2 $$ and establish the consistency of the OiLS estimators under mild conditions. When the underlying model is ℳ1$$ {\mathcal{M}}_1 $$ and is (d0−1)$$ \left({d}_0-1\right) $$th‐order differentiable but not d0$$ {d}_0 $$th‐order differentiable at the threshold point, we further show the Op(N−1/(d0+2))$$ {O}_p\left({N}^{-1/\left({d}_0+2\right)}\right) $$ convergence rate of the OiLS estimators, which can be faster than the Op(N−1/(2d0))$$ {O}_p\left({N}^{-1/\left(2{d}_0\right)}\right) $$ convergence rate given in Feder when d0≥3$$ {d}_0\ge 3 $$. We also apply a model‐selection procedure for selecting ℳκ$$ {\mathcal{M}}_{\kappa } $$; κ=0,1,2$$ \kappa =0,1,2 $$. When the underlying model exists, we establish the selection consistency under the aforementioned conditions. Finally, we conduct simulation experiments to demonstrate the finite‐sample performance of our asymptotic results. |
Author | Chang, Chih‐Hao Lim, Wei‐Yee Wong, Kam‐Fai |
Author_xml | – sequence: 1 givenname: Chih‐Hao orcidid: 0000-0003-2530-242X surname: Chang fullname: Chang, Chih‐Hao email: jhow@nuk.edu.tw organization: National University of Kaohsiung – sequence: 2 givenname: Kam‐Fai surname: Wong fullname: Wong, Kam‐Fai organization: National University of Kaohsiung – sequence: 3 givenname: Wei‐Yee surname: Lim fullname: Lim, Wei‐Yee organization: National University of Kaohsiung |
BookMark | eNp9kLtOwzAUhi1UJNrCwhNYYkNK8SWJk7GquEkVDJTZcptj6iqxg51SdeMReEaeBIcwc5azfN-5_BM0ss4CQpeUzGism9ApO6OM5cUJGtM0F0mZiXSExoTwMiEpYWdoEsKOECrKNB-jj9XWQ9i6usIQOtOozjiLtfN442xn7N7tA-4iA9-fX-1WBcCtq4_WNUbV2MNbtEOvNK6COuCD6ba92h_S4QaUxcbGAYAbU1U19Ipp4BydalUHuPjrU_R6d7taPCTL5_vHxXyZbBjjRbLmVV4RkWcqW3Oi6VpwSkS60YQTVWaF1kVZZARyrkFAVmkt1lVJNFegecqAT9HVMLf17n0fP5Q7t_c2rpRMpFwULGckUtcDtfEuBA9atj5G4Y-SEtnnKvt35G-uEaYDfDA1HP8h5ctq_jQ4P5rkgJk |
Cites_doi | 10.1007/s13571-013-0066-3 10.1016/j.jmva.2008.02.028 10.1214/aos/1176350509 10.1016/j.jeconom.2011.11.006 10.1214/07-AOS558 10.1162/003465397557132 10.1016/j.jeconom.2015.03.023 10.1109/TR.2007.895304 10.1214/aos/1176342999 10.1016/j.jeconom.2019.01.008 10.1093/biomet/87.2.301 10.1080/01621459.2014.954706 10.1111/jtsa.12035 10.1016/0167-7152(88)90118-6 10.1198/jasa.2010.tm09181 10.1080/07350015.2015.1073595 10.3150/08-BEJ122 10.1002/qre.1815 10.1002/env.2664 10.1080/07350015.2015.1064820 10.1080/01621459.2012.737745 10.1214/aos/1176349040 10.1111/1468-0262.00124 10.1017/S026646661200045X 10.1186/s12859-017-1863-x |
ContentType | Journal Article |
Copyright | 2022 Netherlands Society for Statistics and Operations Research. 2023 Netherlands Society for Statistics and Operations Research |
Copyright_xml | – notice: 2022 Netherlands Society for Statistics and Operations Research. – notice: 2023 Netherlands Society for Statistics and Operations Research |
DBID | AAYXX CITATION 7SC 8FD H8D JQ2 L7M L~C L~D |
DOI | 10.1111/stan.12268 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics |
EISSN | 1467-9574 |
EndPage | 47 |
ExternalDocumentID | 10_1111_stan_12268 STAN12268 |
Genre | article |
GrantInformation_xml | – fundername: Ministry of Science and Technology, Taiwan funderid: MOST 107‐2118‐M‐390‐001 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 29Q 31~ 33P 3SF 4.4 44B 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8V8 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AEMOZ AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHEFC AHQJS AIAGR AITYG AIURR AIWBW AJBDE AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBR EBS EBU EJD EMK EST ESX F00 F01 F04 F5P FEDTE FSPIC G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LPU LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 TN5 TUS U5U UB1 V8K W8V W99 WBKPD WIB WIH WIK WOHZO WQJ WRC WXSBR WYISQ XBAML XG1 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG AMVHM CITATION 7SC 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY H8D JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c2238-b3d6d0765a5b30f1b731074cf030a958ff89850e63fe7e5dff7bd90f3aef342e3 |
IEDL.DBID | DR2 |
ISSN | 0039-0402 |
IngestDate | Mon Jul 14 08:11:06 EDT 2025 Tue Jul 01 04:26:56 EDT 2025 Wed Jan 22 16:21:09 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2238-b3d6d0765a5b30f1b731074cf030a958ff89850e63fe7e5dff7bd90f3aef342e3 |
Notes | Funding information Ministry of Science and Technology, Taiwan, MOST 107‐2118‐M‐390‐001 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2530-242X |
PQID | 2743782620 |
PQPubID | 30850 |
PageCount | 44 |
ParticipantIDs | proquest_journals_2743782620 crossref_primary_10_1111_stan_12268 wiley_primary_10_1111_stan_12268_STAN12268 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2023 2023-02-00 20230201 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: February 2023 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Statistica Neerlandica |
PublicationYear | 2023 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2013; 29 1987; 3 2012; 167 2010; 105 2000; 68 2000; 87 1993; 21 2015; 189 2008; 14 2016; 32 2006 2008; 99 2007; 56 2012; 107 2018; 26 1997; 7 2021; 32 2013; 34 1988; 6 1997; 79 2017; 35 2015; 110 1998; 70 2017; 18 2019; 210 2009; 37 1975; 3 2014; 76 e_1_2_9_30_1 e_1_2_9_11_1 e_1_2_9_10_1 e_1_2_9_13_1 e_1_2_9_12_1 Jónás T. (e_1_2_9_20_1) 2018; 26 Bai J. (e_1_2_9_4_1) 1998; 70 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_17_1 Liu J. (e_1_2_9_26_1) 1997; 7 e_1_2_9_16_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_3_1 Lai C. D. (e_1_2_9_23_1) 2006 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – volume: 7 start-page: 497 year: 1997 end-page: 525 article-title: On segmented multivariate regression publication-title: Statistica Sinica – volume: 76 start-page: 49 year: 2014 end-page: 81 article-title: On piecewise polynomial regression under general dependence conditions, with an application to calcium‐imaging data publication-title: Sankhyā – volume: 34 start-page: 423 year: 2013 end-page: 446 article-title: Inference for single and multiple change‐points in time series publication-title: Journal of Time Series Analysis – volume: 79 start-page: 551 year: 1997 end-page: 563 article-title: Estimating of a change point in multiple regression models publication-title: Review of Economic and Statistics – volume: 35 start-page: 228 year: 2017 end-page: 240 article-title: Regression kink with an unknown threshold publication-title: Journal of Business & Economic Statistics – volume: 32 year: 2021 article-title: Fast grid search & bootstrap? Based inference for continuous two? Phase polynomial regression models publication-title: Environmetrics – volume: 26 start-page: 10 year: 2018 end-page: 18 article-title: Forecasting failure rates of electronic goods by using decomposition and fuzzy clustering of empirical failure rate curves publication-title: Journal Archives – volume: 99 start-page: 2016 year: 2008 end-page: 2038 article-title: Asymptotic results in segmented multiple regression publication-title: Journal of Multivariate Analysis – volume: 68 start-page: 575 year: 2000 end-page: 603 article-title: Sample splitting and threshold estimation publication-title: Econometrica – volume: 18 start-page: 454 year: 2017 article-title: Chngpt: Threshold regression model estimation and inference publication-title: BMC Bioinformatics – volume: 29 start-page: 482 year: 2013 end-page: 516 article-title: Asymptotic theory on the least squares estimation of threshold moving‐average models publication-title: Econometric Theory – volume: 37 start-page: 157 year: 2009 end-page: 183 article-title: Consistencies and rates of convergence of jump‐penalized least squares estimators publication-title: The Annals of Statistics – volume: 167 start-page: 240 year: 2012 end-page: 253 article-title: On the least squares estimation of multiple‐regime threshold autoregressive models publication-title: Journal of Econometrics – volume: 87 start-page: 301 year: 2000 end-page: 314 article-title: Multiple changepoint fitting via quasilikelihood, with application to DNA sequence segmentation publication-title: Biometrika – volume: 35 start-page: 334 year: 2017 end-page: 345 article-title: Threshold estimation via group orthogonal greedy algorithm publication-title: Journal of Business & Economic Statistics – volume: 3 start-page: 1321 year: 1987 end-page: 1328 article-title: Approximating the distribution of the maximum likelihood estimate of the change‐point in a sequence of independent random variables publication-title: The Annals of Statistics – volume: 14 start-page: 637 year: 2008 end-page: 660 article-title: Testing for changes in polynomial regression publication-title: Bernoulli – volume: 21 start-page: 520 year: 1993 end-page: 533 article-title: Consistency and limiting distribution of the least squares estimator of a threshold autoregressive model publication-title: Annals of Statistics – volume: 110 start-page: 1175 year: 2015 end-page: 1186 article-title: Estimation of multiple‐regime threshold autoregressive models with structural breaks publication-title: Journal of the American Statistical Association – volume: 189 start-page: 285 year: 2015 end-page: 296 article-title: Lasso estimation of threshold autoregressive models publication-title: Journal of Econometrics – year: 2006 – volume: 32 start-page: 1071 year: 2016 end-page: 1083 article-title: Clustering empirical failure rate curves for reliability prediction purposes in the case of consumer electronic products publication-title: Quality and Reliability Engineering International – volume: 56 start-page: 308 year: 2007 end-page: 311 article-title: A lifetime distribution with an upside‐down bathtub‐shaped hazard function publication-title: IEEE Transactions on Reliability – volume: 70 start-page: 9 year: 1998 end-page: 38 article-title: Estimating and testing linear models with multiple structural changes publication-title: Econometrics – volume: 210 start-page: 291 year: 2019 end-page: 309 article-title: Robust inference for threshold regression models publication-title: Journal of Econometrics – volume: 105 start-page: 1480 year: 2010 end-page: 1493 article-title: Multiple change‐point estimation with a total variation penalty publication-title: Journal of the American Statistical Association – volume: 107 start-page: 1590 year: 2012 end-page: 1598 article-title: Optimal detection of changepoints with a linear computational cost publication-title: Journal of the American Statistical Association – volume: 6 start-page: 181 year: 1988 end-page: 189 article-title: Estimating the number of change‐points via Schwarz' criterion publication-title: Statistics and Probability Letters – volume: 3 start-page: 49 year: 1975 end-page: 83 article-title: On asymptotic distribution theory in segmented regression problems‐identified case publication-title: The Annals of Statistics – ident: e_1_2_9_5_1 doi: 10.1007/s13571-013-0066-3 – ident: e_1_2_9_22_1 doi: 10.1016/j.jmva.2008.02.028 – ident: e_1_2_9_28_1 doi: 10.1214/aos/1176350509 – ident: e_1_2_9_24_1 doi: 10.1016/j.jeconom.2011.11.006 – ident: e_1_2_9_6_1 doi: 10.1214/07-AOS558 – ident: e_1_2_9_3_1 doi: 10.1162/003465397557132 – volume-title: Stochastic ageing and dependence for reliability year: 2006 ident: e_1_2_9_23_1 – ident: e_1_2_9_10_1 doi: 10.1016/j.jeconom.2015.03.023 – ident: e_1_2_9_11_1 doi: 10.1109/TR.2007.895304 – ident: e_1_2_9_13_1 doi: 10.1214/aos/1176342999 – ident: e_1_2_9_18_1 doi: 10.1016/j.jeconom.2019.01.008 – ident: e_1_2_9_7_1 doi: 10.1093/biomet/87.2.301 – ident: e_1_2_9_30_1 doi: 10.1080/01621459.2014.954706 – ident: e_1_2_9_19_1 doi: 10.1111/jtsa.12035 – ident: e_1_2_9_29_1 doi: 10.1016/0167-7152(88)90118-6 – ident: e_1_2_9_17_1 doi: 10.1198/jasa.2010.tm09181 – ident: e_1_2_9_16_1 doi: 10.1080/07350015.2015.1073595 – volume: 7 start-page: 497 year: 1997 ident: e_1_2_9_26_1 article-title: On segmented multivariate regression publication-title: Statistica Sinica – ident: e_1_2_9_2_1 doi: 10.3150/08-BEJ122 – ident: e_1_2_9_12_1 doi: 10.1002/qre.1815 – ident: e_1_2_9_27_1 doi: 10.1002/env.2664 – volume: 70 start-page: 9 year: 1998 ident: e_1_2_9_4_1 article-title: Estimating and testing linear models with multiple structural changes publication-title: Econometrics – volume: 26 start-page: 10 year: 2018 ident: e_1_2_9_20_1 article-title: Forecasting failure rates of electronic goods by using decomposition and fuzzy clustering of empirical failure rate curves publication-title: Journal Archives – ident: e_1_2_9_9_1 doi: 10.1080/07350015.2015.1064820 – ident: e_1_2_9_21_1 doi: 10.1080/01621459.2012.737745 – ident: e_1_2_9_8_1 doi: 10.1214/aos/1176349040 – ident: e_1_2_9_15_1 doi: 10.1111/1468-0262.00124 – ident: e_1_2_9_25_1 doi: 10.1017/S026646661200045X – ident: e_1_2_9_14_1 doi: 10.1186/s12859-017-1863-x |
SSID | ssj0017946 |
Score | 2.2821698 |
Snippet | This paper considers a continuous three‐phase polynomial regression model with two threshold points for dependent data with heteroscedasticity. We assume the... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 4 |
SubjectTerms | Consistency Convergence Estimation Estimators Iterative methods model selection polynomial regression models Polynomials Regression models threshold points |
Title | Threshold estimation for continuous three‐phase polynomial regression models with constant mean in the middle regime |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fstan.12268 https://www.proquest.com/docview/2743782620 |
Volume | 77 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA7Fkxe1PrBaJaAnYct2s48UvIhaiqAHreBFlmQz0aLdlu5W0JM_wd_oLzGTdOvjIOhtD0nI7mQyX2a_-ULIvjkSsDDJOh4PVOSZEACeCDLuSaZAcS45A0wNnF_Evevw7Ca6qZHDqhbG6UPME27oGXa_RgcXsvji5AieWm2DHrDSt81iFM4_uZxrR-FCi50mI2b_kcZTr2g8n12_R6NPiPkVqNpI010mt9UcHcHkoTUtZSt7-SHf-N-XWCFLMwhKj9yaqZMa5KtkEVGnE21eI099Y-ECf0xRFOFw1Y3UwFuKzPZBPh1NC1qaNvD--ja-N4GQjkePz1jhbAaewJ0j1-bU3rNTUEz2YlecR0mHIHI6yM0AQIc2P4JdBkNYJ9fd0_5xz5td0OBlBlVYg8bKT-JIRJL5ui0ThvzOTJudQ3QirjXv8MiHmGlIIFJaJ1J1fM0EaBYGwDbIQj7KYZNQJnQgMkwgy3YIYSAjoWLNhfIVB4MyG2SvMlQ6djocaXV-wcmn9iM2SLOyYTrzxSI1525mcFAc-A1yYI3xywjpVf_owj5t_aXxNlnEe-gdnbtJFsrJFHYMWinlrl2VH5G86uU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVYDnBhRxQKWIITUqo0zuIeEaIqWw9QJG6RHY-hgqZVkyLBiU_gG_kSPHbLdkCCWw6x5WQ8nufx8xtC9s2WgIVJ1vB4oCLPhADwRJBxTzIFinPJGWBq4KIdt67D05voZszNwbswTh_iI-GGnmHXa3RwTEh_8XJET7W6gQ98mszaAzrERJcf6lE41WKnyoj5fyTyLE-IPJ9tv8ejT5D5FaraWNNcdAVVCytRiBST-9qolLXs-YeA478_Y4ksjFEoPXTTZplMQb5C5hF4Ot3mVfLYMUYu8GyKog6Hu-BIDcKlSG7v5qP-qKCleQfeXl4HdyYW0kH_4QkvOZuOh3Dr-LU5taV2Cor5XmyK4yhpD0ROu7npAGjPpkiwSbcHa-S6edw5annjGg1eZoCFtWms_CSORCSZr-syYUjxzLRZPEQj4lrzBo98iJmGBCKldSJVw9dMgGZhAGydzOT9HDYIZUIHIsMcsqyHEAYyEirWXChfcTBAs0L2JpZKB06KI51sYXDwqf2JFVKdGDEdu2ORmq03M1AoDvwKObDW-KWH9Kpz2LZPm395eZfMtToX5-n5Sftsi8xjWXrH7q6SmXI4gm0DXkq5Y6foOzTy7wM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEB7SBEIuafMibtNGkJwKa9arfciQi0lr3LQxIXUgl7JIq1FqGq-NvS6kp_6E_sb-kmgkb16HQnrbgzRodzSaT7OfPgEc2i0Bj7OiHYhIJ4FNARjIqBCB4hq1EEpwpNLAaT_tXcQnl8nlEhzVZ2G8PsRdwY0iw63XFOATbR4EOYGnZsuiB_ECVuLU5kmCROd34lE001Ivykjlf-LxbNQ8nvu-j9PRPcZ8iFRdqum-hG_1ID3D5EdzXqlm8euJfuP_vsUrWF9gUNbxk2YDlrDchDWCnV61eQt-DqyLZ_RnipEKhz_eyCy-ZURtH5bz8XzGKtsG__7-M_luMyGbjK9v6IizNTzFK8-uLZm7aGfGqNpLXWkcFRuhLNmwtAaQjVyBhLoMR7gNF92Pg-NesLihISgsrHAeTXWYpYlMFA9NS2WcCJ6FsUuHbCfCGNEWSYgpN5hhoo3JlG6Hhks0PI6Q78ByOS5xFxiXJpIFVZBVK8Y4UonUqRFSh1qghZkNOKgdlU-8EEdeb2Bo8Ln7iA3Yq32YL4JxltuNN7dAKI3CBrx3zviHhfzroNN3T6-f03gfVs8-dPMvn_qf38Aa3Unvqd17sFxN5_jWIpdKvXMT9BaKfu2y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Threshold+estimation+for+continuous+three%E2%80%90phase+polynomial+regression+models+with+constant+mean+in+the+middle+regime&rft.jtitle=Statistica+Neerlandica&rft.au=Chang%2C+Chih%E2%80%90Hao&rft.au=Wong%2C+Kam%E2%80%90Fai&rft.au=Lim%2C+Wei%E2%80%90Yee&rft.date=2023-02-01&rft.issn=0039-0402&rft.eissn=1467-9574&rft.volume=77&rft.issue=1&rft.spage=4&rft.epage=47&rft_id=info:doi/10.1111%2Fstan.12268&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_stan_12268 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0039-0402&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0039-0402&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0039-0402&client=summon |