Threshold estimation for continuous three‐phase polynomial regression models with constant mean in the middle regime

This paper considers a continuous three‐phase polynomial regression model with two threshold points for dependent data with heteroscedasticity. We assume the model is polynomial of order zero in the middle regime, and is polynomial of higher orders elsewhere. We denote this model by ℳ2$$ {\mathcal{M...

Full description

Saved in:
Bibliographic Details
Published inStatistica Neerlandica Vol. 77; no. 1; pp. 4 - 47
Main Authors Chang, Chih‐Hao, Wong, Kam‐Fai, Lim, Wei‐Yee
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.02.2023
Subjects
Online AccessGet full text
ISSN0039-0402
1467-9574
DOI10.1111/stan.12268

Cover

Abstract This paper considers a continuous three‐phase polynomial regression model with two threshold points for dependent data with heteroscedasticity. We assume the model is polynomial of order zero in the middle regime, and is polynomial of higher orders elsewhere. We denote this model by ℳ2$$ {\mathcal{M}}_2 $$, which includes models with one or no threshold points, denoted by ℳ1$$ {\mathcal{M}}_1 $$ and ℳ0$$ {\mathcal{M}}_0 $$, respectively, as special cases. We provide an ordered iterative least squares (OiLS) method when estimating ℳ2$$ {\mathcal{M}}_2 $$ and establish the consistency of the OiLS estimators under mild conditions. When the underlying model is ℳ1$$ {\mathcal{M}}_1 $$ and is (d0−1)$$ \left({d}_0-1\right) $$th‐order differentiable but not d0$$ {d}_0 $$th‐order differentiable at the threshold point, we further show the Op(N−1/(d0+2))$$ {O}_p\left({N}^{-1/\left({d}_0+2\right)}\right) $$ convergence rate of the OiLS estimators, which can be faster than the Op(N−1/(2d0))$$ {O}_p\left({N}^{-1/\left(2{d}_0\right)}\right) $$ convergence rate given in Feder when d0≥3$$ {d}_0\ge 3 $$. We also apply a model‐selection procedure for selecting ℳκ$$ {\mathcal{M}}_{\kappa } $$; κ=0,1,2$$ \kappa =0,1,2 $$. When the underlying model exists, we establish the selection consistency under the aforementioned conditions. Finally, we conduct simulation experiments to demonstrate the finite‐sample performance of our asymptotic results.
AbstractList This paper considers a continuous three‐phase polynomial regression model with two threshold points for dependent data with heteroscedasticity. We assume the model is polynomial of order zero in the middle regime, and is polynomial of higher orders elsewhere. We denote this model by , which includes models with one or no threshold points, denoted by and , respectively, as special cases. We provide an ordered iterative least squares (OiLS) method when estimating and establish the consistency of the OiLS estimators under mild conditions. When the underlying model is and is th‐order differentiable but not th‐order differentiable at the threshold point, we further show the convergence rate of the OiLS estimators, which can be faster than the convergence rate given in Feder when . We also apply a model‐selection procedure for selecting ; . When the underlying model exists, we establish the selection consistency under the aforementioned conditions. Finally, we conduct simulation experiments to demonstrate the finite‐sample performance of our asymptotic results.
This paper considers a continuous three‐phase polynomial regression model with two threshold points for dependent data with heteroscedasticity. We assume the model is polynomial of order zero in the middle regime, and is polynomial of higher orders elsewhere. We denote this model by ℳ2$$ {\mathcal{M}}_2 $$, which includes models with one or no threshold points, denoted by ℳ1$$ {\mathcal{M}}_1 $$ and ℳ0$$ {\mathcal{M}}_0 $$, respectively, as special cases. We provide an ordered iterative least squares (OiLS) method when estimating ℳ2$$ {\mathcal{M}}_2 $$ and establish the consistency of the OiLS estimators under mild conditions. When the underlying model is ℳ1$$ {\mathcal{M}}_1 $$ and is (d0−1)$$ \left({d}_0-1\right) $$th‐order differentiable but not d0$$ {d}_0 $$th‐order differentiable at the threshold point, we further show the Op(N−1/(d0+2))$$ {O}_p\left({N}^{-1/\left({d}_0+2\right)}\right) $$ convergence rate of the OiLS estimators, which can be faster than the Op(N−1/(2d0))$$ {O}_p\left({N}^{-1/\left(2{d}_0\right)}\right) $$ convergence rate given in Feder when d0≥3$$ {d}_0\ge 3 $$. We also apply a model‐selection procedure for selecting ℳκ$$ {\mathcal{M}}_{\kappa } $$; κ=0,1,2$$ \kappa =0,1,2 $$. When the underlying model exists, we establish the selection consistency under the aforementioned conditions. Finally, we conduct simulation experiments to demonstrate the finite‐sample performance of our asymptotic results.
Author Chang, Chih‐Hao
Lim, Wei‐Yee
Wong, Kam‐Fai
Author_xml – sequence: 1
  givenname: Chih‐Hao
  orcidid: 0000-0003-2530-242X
  surname: Chang
  fullname: Chang, Chih‐Hao
  email: jhow@nuk.edu.tw
  organization: National University of Kaohsiung
– sequence: 2
  givenname: Kam‐Fai
  surname: Wong
  fullname: Wong, Kam‐Fai
  organization: National University of Kaohsiung
– sequence: 3
  givenname: Wei‐Yee
  surname: Lim
  fullname: Lim, Wei‐Yee
  organization: National University of Kaohsiung
BookMark eNp9kLtOwzAUhi1UJNrCwhNYYkNK8SWJk7GquEkVDJTZcptj6iqxg51SdeMReEaeBIcwc5azfN-5_BM0ss4CQpeUzGism9ApO6OM5cUJGtM0F0mZiXSExoTwMiEpYWdoEsKOECrKNB-jj9XWQ9i6usIQOtOozjiLtfN442xn7N7tA-4iA9-fX-1WBcCtq4_WNUbV2MNbtEOvNK6COuCD6ba92h_S4QaUxcbGAYAbU1U19Ipp4BydalUHuPjrU_R6d7taPCTL5_vHxXyZbBjjRbLmVV4RkWcqW3Oi6VpwSkS60YQTVWaF1kVZZARyrkFAVmkt1lVJNFegecqAT9HVMLf17n0fP5Q7t_c2rpRMpFwULGckUtcDtfEuBA9atj5G4Y-SEtnnKvt35G-uEaYDfDA1HP8h5ctq_jQ4P5rkgJk
Cites_doi 10.1007/s13571-013-0066-3
10.1016/j.jmva.2008.02.028
10.1214/aos/1176350509
10.1016/j.jeconom.2011.11.006
10.1214/07-AOS558
10.1162/003465397557132
10.1016/j.jeconom.2015.03.023
10.1109/TR.2007.895304
10.1214/aos/1176342999
10.1016/j.jeconom.2019.01.008
10.1093/biomet/87.2.301
10.1080/01621459.2014.954706
10.1111/jtsa.12035
10.1016/0167-7152(88)90118-6
10.1198/jasa.2010.tm09181
10.1080/07350015.2015.1073595
10.3150/08-BEJ122
10.1002/qre.1815
10.1002/env.2664
10.1080/07350015.2015.1064820
10.1080/01621459.2012.737745
10.1214/aos/1176349040
10.1111/1468-0262.00124
10.1017/S026646661200045X
10.1186/s12859-017-1863-x
ContentType Journal Article
Copyright 2022 Netherlands Society for Statistics and Operations Research.
2023 Netherlands Society for Statistics and Operations Research
Copyright_xml – notice: 2022 Netherlands Society for Statistics and Operations Research.
– notice: 2023 Netherlands Society for Statistics and Operations Research
DBID AAYXX
CITATION
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
DOI 10.1111/stan.12268
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1467-9574
EndPage 47
ExternalDocumentID 10_1111_stan_12268
STAN12268
Genre article
GrantInformation_xml – fundername: Ministry of Science and Technology, Taiwan
  funderid: MOST 107‐2118‐M‐390‐001
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
29Q
31~
33P
3SF
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8V8
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AHQJS
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBR
EBS
EBU
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FSPIC
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LPU
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
U5U
UB1
V8K
W8V
W99
WBKPD
WIB
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XBAML
XG1
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
AMVHM
CITATION
7SC
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
H8D
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2238-b3d6d0765a5b30f1b731074cf030a958ff89850e63fe7e5dff7bd90f3aef342e3
IEDL.DBID DR2
ISSN 0039-0402
IngestDate Mon Jul 14 08:11:06 EDT 2025
Tue Jul 01 04:26:56 EDT 2025
Wed Jan 22 16:21:09 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2238-b3d6d0765a5b30f1b731074cf030a958ff89850e63fe7e5dff7bd90f3aef342e3
Notes Funding information
Ministry of Science and Technology, Taiwan, MOST 107‐2118‐M‐390‐001
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2530-242X
PQID 2743782620
PQPubID 30850
PageCount 44
ParticipantIDs proquest_journals_2743782620
crossref_primary_10_1111_stan_12268
wiley_primary_10_1111_stan_12268_STAN12268
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2023
2023-02-00
20230201
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: February 2023
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Statistica Neerlandica
PublicationYear 2023
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2013; 29
1987; 3
2012; 167
2010; 105
2000; 68
2000; 87
1993; 21
2015; 189
2008; 14
2016; 32
2006
2008; 99
2007; 56
2012; 107
2018; 26
1997; 7
2021; 32
2013; 34
1988; 6
1997; 79
2017; 35
2015; 110
1998; 70
2017; 18
2019; 210
2009; 37
1975; 3
2014; 76
e_1_2_9_30_1
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_12_1
Jónás T. (e_1_2_9_20_1) 2018; 26
Bai J. (e_1_2_9_4_1) 1998; 70
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
Liu J. (e_1_2_9_26_1) 1997; 7
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_3_1
Lai C. D. (e_1_2_9_23_1) 2006
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 7
  start-page: 497
  year: 1997
  end-page: 525
  article-title: On segmented multivariate regression
  publication-title: Statistica Sinica
– volume: 76
  start-page: 49
  year: 2014
  end-page: 81
  article-title: On piecewise polynomial regression under general dependence conditions, with an application to calcium‐imaging data
  publication-title: Sankhyā
– volume: 34
  start-page: 423
  year: 2013
  end-page: 446
  article-title: Inference for single and multiple change‐points in time series
  publication-title: Journal of Time Series Analysis
– volume: 79
  start-page: 551
  year: 1997
  end-page: 563
  article-title: Estimating of a change point in multiple regression models
  publication-title: Review of Economic and Statistics
– volume: 35
  start-page: 228
  year: 2017
  end-page: 240
  article-title: Regression kink with an unknown threshold
  publication-title: Journal of Business & Economic Statistics
– volume: 32
  year: 2021
  article-title: Fast grid search & bootstrap? Based inference for continuous two? Phase polynomial regression models
  publication-title: Environmetrics
– volume: 26
  start-page: 10
  year: 2018
  end-page: 18
  article-title: Forecasting failure rates of electronic goods by using decomposition and fuzzy clustering of empirical failure rate curves
  publication-title: Journal Archives
– volume: 99
  start-page: 2016
  year: 2008
  end-page: 2038
  article-title: Asymptotic results in segmented multiple regression
  publication-title: Journal of Multivariate Analysis
– volume: 68
  start-page: 575
  year: 2000
  end-page: 603
  article-title: Sample splitting and threshold estimation
  publication-title: Econometrica
– volume: 18
  start-page: 454
  year: 2017
  article-title: Chngpt: Threshold regression model estimation and inference
  publication-title: BMC Bioinformatics
– volume: 29
  start-page: 482
  year: 2013
  end-page: 516
  article-title: Asymptotic theory on the least squares estimation of threshold moving‐average models
  publication-title: Econometric Theory
– volume: 37
  start-page: 157
  year: 2009
  end-page: 183
  article-title: Consistencies and rates of convergence of jump‐penalized least squares estimators
  publication-title: The Annals of Statistics
– volume: 167
  start-page: 240
  year: 2012
  end-page: 253
  article-title: On the least squares estimation of multiple‐regime threshold autoregressive models
  publication-title: Journal of Econometrics
– volume: 87
  start-page: 301
  year: 2000
  end-page: 314
  article-title: Multiple changepoint fitting via quasilikelihood, with application to DNA sequence segmentation
  publication-title: Biometrika
– volume: 35
  start-page: 334
  year: 2017
  end-page: 345
  article-title: Threshold estimation via group orthogonal greedy algorithm
  publication-title: Journal of Business & Economic Statistics
– volume: 3
  start-page: 1321
  year: 1987
  end-page: 1328
  article-title: Approximating the distribution of the maximum likelihood estimate of the change‐point in a sequence of independent random variables
  publication-title: The Annals of Statistics
– volume: 14
  start-page: 637
  year: 2008
  end-page: 660
  article-title: Testing for changes in polynomial regression
  publication-title: Bernoulli
– volume: 21
  start-page: 520
  year: 1993
  end-page: 533
  article-title: Consistency and limiting distribution of the least squares estimator of a threshold autoregressive model
  publication-title: Annals of Statistics
– volume: 110
  start-page: 1175
  year: 2015
  end-page: 1186
  article-title: Estimation of multiple‐regime threshold autoregressive models with structural breaks
  publication-title: Journal of the American Statistical Association
– volume: 189
  start-page: 285
  year: 2015
  end-page: 296
  article-title: Lasso estimation of threshold autoregressive models
  publication-title: Journal of Econometrics
– year: 2006
– volume: 32
  start-page: 1071
  year: 2016
  end-page: 1083
  article-title: Clustering empirical failure rate curves for reliability prediction purposes in the case of consumer electronic products
  publication-title: Quality and Reliability Engineering International
– volume: 56
  start-page: 308
  year: 2007
  end-page: 311
  article-title: A lifetime distribution with an upside‐down bathtub‐shaped hazard function
  publication-title: IEEE Transactions on Reliability
– volume: 70
  start-page: 9
  year: 1998
  end-page: 38
  article-title: Estimating and testing linear models with multiple structural changes
  publication-title: Econometrics
– volume: 210
  start-page: 291
  year: 2019
  end-page: 309
  article-title: Robust inference for threshold regression models
  publication-title: Journal of Econometrics
– volume: 105
  start-page: 1480
  year: 2010
  end-page: 1493
  article-title: Multiple change‐point estimation with a total variation penalty
  publication-title: Journal of the American Statistical Association
– volume: 107
  start-page: 1590
  year: 2012
  end-page: 1598
  article-title: Optimal detection of changepoints with a linear computational cost
  publication-title: Journal of the American Statistical Association
– volume: 6
  start-page: 181
  year: 1988
  end-page: 189
  article-title: Estimating the number of change‐points via Schwarz' criterion
  publication-title: Statistics and Probability Letters
– volume: 3
  start-page: 49
  year: 1975
  end-page: 83
  article-title: On asymptotic distribution theory in segmented regression problems‐identified case
  publication-title: The Annals of Statistics
– ident: e_1_2_9_5_1
  doi: 10.1007/s13571-013-0066-3
– ident: e_1_2_9_22_1
  doi: 10.1016/j.jmva.2008.02.028
– ident: e_1_2_9_28_1
  doi: 10.1214/aos/1176350509
– ident: e_1_2_9_24_1
  doi: 10.1016/j.jeconom.2011.11.006
– ident: e_1_2_9_6_1
  doi: 10.1214/07-AOS558
– ident: e_1_2_9_3_1
  doi: 10.1162/003465397557132
– volume-title: Stochastic ageing and dependence for reliability
  year: 2006
  ident: e_1_2_9_23_1
– ident: e_1_2_9_10_1
  doi: 10.1016/j.jeconom.2015.03.023
– ident: e_1_2_9_11_1
  doi: 10.1109/TR.2007.895304
– ident: e_1_2_9_13_1
  doi: 10.1214/aos/1176342999
– ident: e_1_2_9_18_1
  doi: 10.1016/j.jeconom.2019.01.008
– ident: e_1_2_9_7_1
  doi: 10.1093/biomet/87.2.301
– ident: e_1_2_9_30_1
  doi: 10.1080/01621459.2014.954706
– ident: e_1_2_9_19_1
  doi: 10.1111/jtsa.12035
– ident: e_1_2_9_29_1
  doi: 10.1016/0167-7152(88)90118-6
– ident: e_1_2_9_17_1
  doi: 10.1198/jasa.2010.tm09181
– ident: e_1_2_9_16_1
  doi: 10.1080/07350015.2015.1073595
– volume: 7
  start-page: 497
  year: 1997
  ident: e_1_2_9_26_1
  article-title: On segmented multivariate regression
  publication-title: Statistica Sinica
– ident: e_1_2_9_2_1
  doi: 10.3150/08-BEJ122
– ident: e_1_2_9_12_1
  doi: 10.1002/qre.1815
– ident: e_1_2_9_27_1
  doi: 10.1002/env.2664
– volume: 70
  start-page: 9
  year: 1998
  ident: e_1_2_9_4_1
  article-title: Estimating and testing linear models with multiple structural changes
  publication-title: Econometrics
– volume: 26
  start-page: 10
  year: 2018
  ident: e_1_2_9_20_1
  article-title: Forecasting failure rates of electronic goods by using decomposition and fuzzy clustering of empirical failure rate curves
  publication-title: Journal Archives
– ident: e_1_2_9_9_1
  doi: 10.1080/07350015.2015.1064820
– ident: e_1_2_9_21_1
  doi: 10.1080/01621459.2012.737745
– ident: e_1_2_9_8_1
  doi: 10.1214/aos/1176349040
– ident: e_1_2_9_15_1
  doi: 10.1111/1468-0262.00124
– ident: e_1_2_9_25_1
  doi: 10.1017/S026646661200045X
– ident: e_1_2_9_14_1
  doi: 10.1186/s12859-017-1863-x
SSID ssj0017946
Score 2.2821698
Snippet This paper considers a continuous three‐phase polynomial regression model with two threshold points for dependent data with heteroscedasticity. We assume the...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 4
SubjectTerms Consistency
Convergence
Estimation
Estimators
Iterative methods
model selection
polynomial regression models
Polynomials
Regression models
threshold points
Title Threshold estimation for continuous three‐phase polynomial regression models with constant mean in the middle regime
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fstan.12268
https://www.proquest.com/docview/2743782620
Volume 77
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA7Fkxe1PrBaJaAnYct2s48UvIhaiqAHreBFlmQz0aLdlu5W0JM_wd_oLzGTdOvjIOhtD0nI7mQyX2a_-ULIvjkSsDDJOh4PVOSZEACeCDLuSaZAcS45A0wNnF_Evevw7Ca6qZHDqhbG6UPME27oGXa_RgcXsvji5AieWm2DHrDSt81iFM4_uZxrR-FCi50mI2b_kcZTr2g8n12_R6NPiPkVqNpI010mt9UcHcHkoTUtZSt7-SHf-N-XWCFLMwhKj9yaqZMa5KtkEVGnE21eI099Y-ECf0xRFOFw1Y3UwFuKzPZBPh1NC1qaNvD--ja-N4GQjkePz1jhbAaewJ0j1-bU3rNTUEz2YlecR0mHIHI6yM0AQIc2P4JdBkNYJ9fd0_5xz5td0OBlBlVYg8bKT-JIRJL5ui0ThvzOTJudQ3QirjXv8MiHmGlIIFJaJ1J1fM0EaBYGwDbIQj7KYZNQJnQgMkwgy3YIYSAjoWLNhfIVB4MyG2SvMlQ6djocaXV-wcmn9iM2SLOyYTrzxSI1525mcFAc-A1yYI3xywjpVf_owj5t_aXxNlnEe-gdnbtJFsrJFHYMWinlrl2VH5G86uU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVYDnBhRxQKWIITUqo0zuIeEaIqWw9QJG6RHY-hgqZVkyLBiU_gG_kSPHbLdkCCWw6x5WQ8nufx8xtC9s2WgIVJ1vB4oCLPhADwRJBxTzIFinPJGWBq4KIdt67D05voZszNwbswTh_iI-GGnmHXa3RwTEh_8XJET7W6gQ98mszaAzrERJcf6lE41WKnyoj5fyTyLE-IPJ9tv8ejT5D5FaraWNNcdAVVCytRiBST-9qolLXs-YeA478_Y4ksjFEoPXTTZplMQb5C5hF4Ot3mVfLYMUYu8GyKog6Hu-BIDcKlSG7v5qP-qKCleQfeXl4HdyYW0kH_4QkvOZuOh3Dr-LU5taV2Cor5XmyK4yhpD0ROu7npAGjPpkiwSbcHa-S6edw5annjGg1eZoCFtWms_CSORCSZr-syYUjxzLRZPEQj4lrzBo98iJmGBCKldSJVw9dMgGZhAGydzOT9HDYIZUIHIsMcsqyHEAYyEirWXChfcTBAs0L2JpZKB06KI51sYXDwqf2JFVKdGDEdu2ORmq03M1AoDvwKObDW-KWH9Kpz2LZPm395eZfMtToX5-n5Sftsi8xjWXrH7q6SmXI4gm0DXkq5Y6foOzTy7wM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEB7SBEIuafMibtNGkJwKa9arfciQi0lr3LQxIXUgl7JIq1FqGq-NvS6kp_6E_sb-kmgkb16HQnrbgzRodzSaT7OfPgEc2i0Bj7OiHYhIJ4FNARjIqBCB4hq1EEpwpNLAaT_tXcQnl8nlEhzVZ2G8PsRdwY0iw63XFOATbR4EOYGnZsuiB_ECVuLU5kmCROd34lE001Ivykjlf-LxbNQ8nvu-j9PRPcZ8iFRdqum-hG_1ID3D5EdzXqlm8euJfuP_vsUrWF9gUNbxk2YDlrDchDWCnV61eQt-DqyLZ_RnipEKhz_eyCy-ZURtH5bz8XzGKtsG__7-M_luMyGbjK9v6IizNTzFK8-uLZm7aGfGqNpLXWkcFRuhLNmwtAaQjVyBhLoMR7gNF92Pg-NesLihISgsrHAeTXWYpYlMFA9NS2WcCJ6FsUuHbCfCGNEWSYgpN5hhoo3JlG6Hhks0PI6Q78ByOS5xFxiXJpIFVZBVK8Y4UonUqRFSh1qghZkNOKgdlU-8EEdeb2Bo8Ln7iA3Yq32YL4JxltuNN7dAKI3CBrx3zviHhfzroNN3T6-f03gfVs8-dPMvn_qf38Aa3Unvqd17sFxN5_jWIpdKvXMT9BaKfu2y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Threshold+estimation+for+continuous+three%E2%80%90phase+polynomial+regression+models+with+constant+mean+in+the+middle+regime&rft.jtitle=Statistica+Neerlandica&rft.au=Chang%2C+Chih%E2%80%90Hao&rft.au=Wong%2C+Kam%E2%80%90Fai&rft.au=Lim%2C+Wei%E2%80%90Yee&rft.date=2023-02-01&rft.issn=0039-0402&rft.eissn=1467-9574&rft.volume=77&rft.issue=1&rft.spage=4&rft.epage=47&rft_id=info:doi/10.1111%2Fstan.12268&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_stan_12268
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0039-0402&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0039-0402&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0039-0402&client=summon