Universal Face Recognition Using Multiple Deep Learning Agent and Lazy Learning Algorithm

Mainstream face recognition systems have a problem regarding the disparity of recognizing faces from different races and ethnic backgrounds. This problem is caused by the imbalances in the proportion of racial representations found in mainstream datasets. Hence, the research proposes using a multi-a...

Full description

Saved in:
Bibliographic Details
Published inCommIT (Communication and Information Technology) Journal Vol. 15; no. 2; pp. 65 - 77
Main Authors Vincent, Kenny, Kristian, Yosi
Format Journal Article
LanguageEnglish
Published Bina Nusantara University 31.08.2021
Subjects
Online AccessGet full text
ISSN1979-2484
2460-7010
2460-7010
DOI10.21512/commit.v15i2.6688

Cover

Abstract Mainstream face recognition systems have a problem regarding the disparity of recognizing faces from different races and ethnic backgrounds. This problem is caused by the imbalances in the proportion of racial representations found in mainstream datasets. Hence, the research proposes using a multi-agent system to overcome this problem. The system employs several face recognition agents according to the number of races that are necessary to make data encodings for the classification process. The first step in implementing this system is to develop a race classifier. The number of races is arbitrary or determined differently in a caseby-case scenario. The race classifier determines which face recognition agent will try to recognize the face in the query. Each face recognition agent is trained using a different dataset according to their assigned race, so they have different parts in the system. The research utilizes lazy learning algorithms as the final classifier to accommodate a system with the constant data flow of the database. The experiment divides the data into three racial groups, which are black, Asian, and white. The experiment concludes that dividing face recognition tasks based on racial groups into several face recognition models has better performance than a single model with the same dataset with the same imbalances in racial representation. The multiple agent system achieves 85% on the Face Recognition Rate (FRR), while the single pipeline model achieves only 80.83% using the same dataset.
AbstractList Mainstream face recognition systems have a problem regarding the disparity of recognizing faces from different races and ethnic backgrounds. This problem is caused by the imbalances in the proportion of racial representations found in mainstream datasets. Hence, the research proposes using a multi-agent system to overcome this problem. The system employs several face recognition agents according to the number of races that are necessary to make data encodings for the classification process. The first step in implementing this system is to develop a race classifier. The number of races is arbitrary or determined differently in a caseby-case scenario. The race classifier determines which face recognition agent will try to recognize the face in the query. Each face recognition agent is trained using a different dataset according to their assigned race, so they have different parts in the system. The research utilizes lazy learning algorithms as the final classifier to accommodate a system with the constant data flow of the database. The experiment divides the data into three racial groups, which are black, Asian, and white. The experiment concludes that dividing face recognition tasks based on racial groups into several face recognition models has better performance than a single model with the same dataset with the same imbalances in racial representation. The multiple agent system achieves 85% on the Face Recognition Rate (FRR), while the single pipeline model achieves only 80.83% using the same dataset.
Author Vincent, Kenny
Kristian, Yosi
Author_xml – sequence: 1
  givenname: Kenny
  surname: Vincent
  fullname: Vincent, Kenny
– sequence: 2
  givenname: Yosi
  orcidid: 0000-0003-1082-5121
  surname: Kristian
  fullname: Kristian, Yosi
BookMark eNqNkMFu1DAQhi1UJJbSF-CUF8gyHjuJfawKhUqLKlXsgZM1ccbBVdZeOWnR8vRsdxHiyGVG-qXvO3xvxUXKiYV4L2GNspH4wefdLi7rZ9lEXLetMa_ECnULdQcSLsRK2s7WqI1-I67m-REApEXQUq3E922Kz1xmmqpb8lw9sM9jikvMqdrOMY3V16dpifuJq4_M-2rDVNLLfD1yWipKQ7WhX4d_9mnMJS4_du_E60DTzFd__qXY3n76dvOl3tx_vru53tQeUZm6QTUEw6FFCtC3ykorh-AptI02EJiOBzot0UiytukUmp50AN1IjXaw6lLcnb1Dpke3L3FH5eAyRXcachkdlSX6iZ2XwCB10_YDaFRsAFvfa4Vdj57ZH13q7HpKezr8pGn6K5TgTrHdObY7xXYvsY8Unilf8jwXDv8D_QbzcYal
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.21512/commit.v15i2.6688
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2460-7010
EndPage 77
ExternalDocumentID oai_doaj_org_article_c10e01456bd0423e8026cb4327b2ceec
10.21512/commit.v15i2.6688
10_21512_commit_v15i2_6688
GroupedDBID 5VS
AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
OK1
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c2238-523df8ef62af0b639191dfcaf65480fea80f0741281a9957328ba4f0451429d93
IEDL.DBID UNPAY
ISSN 1979-2484
2460-7010
IngestDate Fri Oct 03 12:33:10 EDT 2025
Sun Oct 26 04:15:08 EDT 2025
Tue Jul 01 02:18:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by-sa/4.0
cc-by-sa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2238-523df8ef62af0b639191dfcaf65480fea80f0741281a9957328ba4f0451429d93
ORCID 0000-0003-1082-5121
OpenAccessLink https://proxy.k.utb.cz/login?url=https://journal.binus.ac.id/index.php/commit/article/download/6688/4274
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_c10e01456bd0423e8026cb4327b2ceec
unpaywall_primary_10_21512_commit_v15i2_6688
crossref_primary_10_21512_commit_v15i2_6688
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-31
PublicationDateYYYYMMDD 2021-08-31
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-31
  day: 31
PublicationDecade 2020
PublicationTitle CommIT (Communication and Information Technology) Journal
PublicationYear 2021
Publisher Bina Nusantara University
Publisher_xml – name: Bina Nusantara University
SSID ssj0001920413
ssib044733333
ssib056857208
Score 2.1578407
Snippet Mainstream face recognition systems have a problem regarding the disparity of recognizing faces from different races and ethnic backgrounds. This problem is...
SourceID doaj
unpaywall
crossref
SourceType Open Website
Open Access Repository
Index Database
StartPage 65
SubjectTerms face recognition
lazy learning algorithm
multiple deep learning agent
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6yi3oQRcX5ixy8abVN0zQ5zh9jiHoQBT2VJE10sHVjbMj8630v7XQ3PdhDoWlLyvdKvveSL-8RcsK5scjDUaKyPOJCuMhY5SLtBJCJKn2ucUL__kH0nvntS_ayVOoLNWF1euAauAubxA6XvoQpUcLhJAQN1vCU5YbBAG9x9I2lWgqm4E_iPE_xWFxnQmY5C-XpEpXjkoLk9Q6awHgXYNxhHwaEJOuzc1GXYflhqZDMf52szqqxnn_owWCJgbqbZKNxHWmn_uQtsuKqbfLaKCvgRldbRx8XgqBRRYMcgN43kkF67dyYNvlU32gH91RRXZX0Tn_Ol9oHb6NJf_o-3CHP3Zunq17UlEuILHC8xJCy9NJ5wbSPDXgeEIqV3mqPpeFj7zSc0IFgMtEKLJMyaTT3mGAGSKlU6S5pVaPK7RHqsZ48i5U3mmFMZQS8p2JpZZ760mdtcrqApxjXWTEKiCYCmEUNZhHALBDMNrlEBL-fxIzWoQHsXDR2Ln6zc5ucfeP_hz73_6PPA7LGUMISppAPSWs6mbkj8EGm5jj8bl-TUdW0
  priority: 102
  providerName: Directory of Open Access Journals
Title Universal Face Recognition Using Multiple Deep Learning Agent and Lazy Learning Algorithm
URI https://journal.binus.ac.id/index.php/commit/article/download/6688/4274
https://doaj.org/article/c10e01456bd0423e8026cb4327b2ceec
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2460-7010
  dateEnd: 20221231
  omitProxy: true
  ssIdentifier: ssj0001920413
  issn: 2460-7010
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2460-7010
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib044733333
  issn: 1979-2484
  databaseCode: M~E
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB6V9AA98K4Ij2oP3MCOs7HX9jFAQ4VIhRCR2pO1zzQitaPggNoDv52Z9aZEnEDisofVeG3PrDTz7cx-A_AyTZUmPxwNyyyPUiFspHRpI2kFOpPSuFzSgf70VJzM0g9n2dkevN_ehQkajBEWbr7RkmgSzxtIZBEDNMLloh0EpQ4M8ck30gyEQByXIsC6Bfsiw6C8B_uz00_jc59TzimH4HsP81QkUY4QpLs-491dWDT-PswWPBZdD5bfLsoz-R_A7U29klc_5HK5434m9-Bi--Fd1cnXeNOqWF__wen4H_7sPtwNISobd0IPYM_WD-Fgh7jwEZyHeg4Um0ht2edtGVJTM1-EwKahUJG9s3bFAovrnI3pJheTtWEf5fXVzvxy3qwX7cXlY5hNjr-8PYlCk4ZIY2RREJA1rrBOcOkShfEOAkDjtHTUkD5xVuJAYQsvhrLE_TDihZKpI1obdIWmHB1Cr25q-wSYoy72PCmdkpyQnBL4XJkUushHzrisD6-2dqlWHRdHhRjGW7HqFFh5K1aktT68IdPdSBKPtp9o1vMq6LnSw8RSYlUoQwVCtkBIqlU64rniGD7oPry-MfxfvPPpv4k_gzucSmT8EfVz6LXrjX2BMU6rjvzZAI7Tn8dHYS__Ap7v_qQ
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB6V9AA9lLdIeWgP3MCOs7HX9jEthArRCiEitSdrn2lEakfBadX-embWmxJxAomLD6vx2p5ZaebzfvsNwNs0VZrycDQsszxKhbCR0qWNpBWYTErjckk_9E9OxfE0_XyWne3Ap81ZmODBGGHh-idNiSHxuoEkFjHAIFzO20Fw6sCQnnwjzUAIxHEpAqx7sCsyLMp7sDs9_To-93vKOe0h-N7DPBVJlCME6Y7P-HQXJo2vhtmcx6LrwfI7RXkl_z24v66X8uZaLhZb6WfyEC42L96xTn7E61bF-vYPTcf_8GWPYD-UqGzcGT2GHVs_gb0t4cKncB74HGg2kdqybxsaUlMzT0JgJ4GoyD5Yu2RBxXXGxnSSi8nasC_y9mZrfDFrVvP24vIZTCcfvx8dR6FJQ6SxsigIyBpXWCe4dInCegcBoHFaOmpInzgr8UJlCy-GssT1MOKFkqkjWRtMhaYcPYde3dT2BTBHXex5UjolOSE5JfC-Mil0kY-ccVkf3m3iUi07LY4KMYyPYtU5sPJRrMhrfTik0N1Zko62H2hWsyr4udLDxNLGqlCGCEK2QEiqVTriueJYPug-vL8L_F888-DfzF_CA04UGf-L-hX02tXavsYap1Vvwvr9BcBS_H4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Universal+Face+Recognition+Using+Multiple+Deep+Learning+Agent+and+Lazy+Learning+Algorithm&rft.jtitle=CommIT+%28Communication+and+Information+Technology%29+Journal&rft.au=Vincent%2C+Kenny&rft.au=Kristian%2C+Yosi&rft.date=2021-08-31&rft.issn=1979-2484&rft.eissn=2460-7010&rft.volume=15&rft.issue=2&rft.spage=65&rft.epage=77&rft_id=info:doi/10.21512%2Fcommit.v15i2.6688&rft.externalDBID=n%2Fa&rft.externalDocID=10_21512_commit_v15i2_6688
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1979-2484&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1979-2484&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1979-2484&client=summon