Universal Face Recognition Using Multiple Deep Learning Agent and Lazy Learning Algorithm
Mainstream face recognition systems have a problem regarding the disparity of recognizing faces from different races and ethnic backgrounds. This problem is caused by the imbalances in the proportion of racial representations found in mainstream datasets. Hence, the research proposes using a multi-a...
Saved in:
| Published in | CommIT (Communication and Information Technology) Journal Vol. 15; no. 2; pp. 65 - 77 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Bina Nusantara University
31.08.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1979-2484 2460-7010 2460-7010 |
| DOI | 10.21512/commit.v15i2.6688 |
Cover
| Abstract | Mainstream face recognition systems have a problem regarding the disparity of recognizing faces from different races and ethnic backgrounds. This problem is caused by the imbalances in the proportion of racial representations found in mainstream datasets. Hence, the research proposes using a multi-agent system to overcome this problem. The system employs several face recognition agents according to the number of races that are necessary to make data encodings for the classification process. The first step in implementing this system is to develop a race classifier. The number of races is arbitrary or determined differently in a caseby-case scenario. The race classifier determines which face recognition agent will try to recognize the face in the query. Each face recognition agent is trained using a different dataset according to their assigned race, so they have different parts in the system. The research utilizes lazy learning algorithms as the final classifier to accommodate a system with the constant data flow of the database. The experiment divides the data into three racial groups, which are black, Asian, and white. The experiment concludes that dividing face recognition tasks based on racial groups into several face recognition models has better performance than a single model with the same dataset with the same imbalances in racial representation. The multiple agent system achieves 85% on the Face Recognition Rate (FRR), while the single pipeline model achieves only 80.83% using the same dataset. |
|---|---|
| AbstractList | Mainstream face recognition systems have a problem regarding the disparity of recognizing faces from different races and ethnic backgrounds. This problem is caused by the imbalances in the proportion of racial representations found in mainstream datasets. Hence, the research proposes using a multi-agent system to overcome this problem. The system employs several face recognition agents according to the number of races that are necessary to make data encodings for the classification process. The first step in implementing this system is to develop a race classifier. The number of races is arbitrary or determined differently in a caseby-case scenario. The race classifier determines which face recognition agent will try to recognize the face in the query. Each face recognition agent is trained using a different dataset according to their assigned race, so they have different parts in the system. The research utilizes lazy learning algorithms as the final classifier to accommodate a system with the constant data flow of the database. The experiment divides the data into three racial groups, which are black, Asian, and white. The experiment concludes that dividing face recognition tasks based on racial groups into several face recognition models has better performance than a single model with the same dataset with the same imbalances in racial representation. The multiple agent system achieves 85% on the Face Recognition Rate (FRR), while the single pipeline model achieves only 80.83% using the same dataset. |
| Author | Vincent, Kenny Kristian, Yosi |
| Author_xml | – sequence: 1 givenname: Kenny surname: Vincent fullname: Vincent, Kenny – sequence: 2 givenname: Yosi orcidid: 0000-0003-1082-5121 surname: Kristian fullname: Kristian, Yosi |
| BookMark | eNqNkMFu1DAQhi1UJJbSF-CUF8gyHjuJfawKhUqLKlXsgZM1ccbBVdZeOWnR8vRsdxHiyGVG-qXvO3xvxUXKiYV4L2GNspH4wefdLi7rZ9lEXLetMa_ECnULdQcSLsRK2s7WqI1-I67m-REApEXQUq3E922Kz1xmmqpb8lw9sM9jikvMqdrOMY3V16dpifuJq4_M-2rDVNLLfD1yWipKQ7WhX4d_9mnMJS4_du_E60DTzFd__qXY3n76dvOl3tx_vru53tQeUZm6QTUEw6FFCtC3ykorh-AptI02EJiOBzot0UiytukUmp50AN1IjXaw6lLcnb1Dpke3L3FH5eAyRXcachkdlSX6iZ2XwCB10_YDaFRsAFvfa4Vdj57ZH13q7HpKezr8pGn6K5TgTrHdObY7xXYvsY8Unilf8jwXDv8D_QbzcYal |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.21512/commit.v15i2.6688 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2460-7010 |
| EndPage | 77 |
| ExternalDocumentID | oai_doaj_org_article_c10e01456bd0423e8026cb4327b2ceec 10.21512/commit.v15i2.6688 10_21512_commit_v15i2_6688 |
| GroupedDBID | 5VS AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ OK1 ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c2238-523df8ef62af0b639191dfcaf65480fea80f0741281a9957328ba4f0451429d93 |
| IEDL.DBID | UNPAY |
| ISSN | 1979-2484 2460-7010 |
| IngestDate | Fri Oct 03 12:33:10 EDT 2025 Sun Oct 26 04:15:08 EDT 2025 Tue Jul 01 02:18:20 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://creativecommons.org/licenses/by-sa/4.0 cc-by-sa |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2238-523df8ef62af0b639191dfcaf65480fea80f0741281a9957328ba4f0451429d93 |
| ORCID | 0000-0003-1082-5121 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://journal.binus.ac.id/index.php/commit/article/download/6688/4274 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c10e01456bd0423e8026cb4327b2ceec unpaywall_primary_10_21512_commit_v15i2_6688 crossref_primary_10_21512_commit_v15i2_6688 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-08-31 |
| PublicationDateYYYYMMDD | 2021-08-31 |
| PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-31 day: 31 |
| PublicationDecade | 2020 |
| PublicationTitle | CommIT (Communication and Information Technology) Journal |
| PublicationYear | 2021 |
| Publisher | Bina Nusantara University |
| Publisher_xml | – name: Bina Nusantara University |
| SSID | ssj0001920413 ssib044733333 ssib056857208 |
| Score | 2.1578407 |
| Snippet | Mainstream face recognition systems have a problem regarding the disparity of recognizing faces from different races and ethnic backgrounds. This problem is... |
| SourceID | doaj unpaywall crossref |
| SourceType | Open Website Open Access Repository Index Database |
| StartPage | 65 |
| SubjectTerms | face recognition lazy learning algorithm multiple deep learning agent |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6yi3oQRcX5ixy8abVN0zQ5zh9jiHoQBT2VJE10sHVjbMj8630v7XQ3PdhDoWlLyvdKvveSL-8RcsK5scjDUaKyPOJCuMhY5SLtBJCJKn2ucUL__kH0nvntS_ayVOoLNWF1euAauAubxA6XvoQpUcLhJAQN1vCU5YbBAG9x9I2lWgqm4E_iPE_xWFxnQmY5C-XpEpXjkoLk9Q6awHgXYNxhHwaEJOuzc1GXYflhqZDMf52szqqxnn_owWCJgbqbZKNxHWmn_uQtsuKqbfLaKCvgRldbRx8XgqBRRYMcgN43kkF67dyYNvlU32gH91RRXZX0Tn_Ol9oHb6NJf_o-3CHP3Zunq17UlEuILHC8xJCy9NJ5wbSPDXgeEIqV3mqPpeFj7zSc0IFgMtEKLJMyaTT3mGAGSKlU6S5pVaPK7RHqsZ48i5U3mmFMZQS8p2JpZZ760mdtcrqApxjXWTEKiCYCmEUNZhHALBDMNrlEBL-fxIzWoQHsXDR2Ln6zc5ucfeP_hz73_6PPA7LGUMISppAPSWs6mbkj8EGm5jj8bl-TUdW0 priority: 102 providerName: Directory of Open Access Journals |
| Title | Universal Face Recognition Using Multiple Deep Learning Agent and Lazy Learning Algorithm |
| URI | https://journal.binus.ac.id/index.php/commit/article/download/6688/4274 https://doaj.org/article/c10e01456bd0423e8026cb4327b2ceec |
| UnpaywallVersion | publishedVersion |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2460-7010 dateEnd: 20221231 omitProxy: true ssIdentifier: ssj0001920413 issn: 2460-7010 databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2460-7010 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib044733333 issn: 1979-2484 databaseCode: M~E dateStart: 20070101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB6V9AA98K4Ij2oP3MCOs7HX9jFAQ4VIhRCR2pO1zzQitaPggNoDv52Z9aZEnEDisofVeG3PrDTz7cx-A_AyTZUmPxwNyyyPUiFspHRpI2kFOpPSuFzSgf70VJzM0g9n2dkevN_ehQkajBEWbr7RkmgSzxtIZBEDNMLloh0EpQ4M8ck30gyEQByXIsC6Bfsiw6C8B_uz00_jc59TzimH4HsP81QkUY4QpLs-491dWDT-PswWPBZdD5bfLsoz-R_A7U29klc_5HK5434m9-Bi--Fd1cnXeNOqWF__wen4H_7sPtwNISobd0IPYM_WD-Fgh7jwEZyHeg4Um0ht2edtGVJTM1-EwKahUJG9s3bFAovrnI3pJheTtWEf5fXVzvxy3qwX7cXlY5hNjr-8PYlCk4ZIY2RREJA1rrBOcOkShfEOAkDjtHTUkD5xVuJAYQsvhrLE_TDihZKpI1obdIWmHB1Cr25q-wSYoy72PCmdkpyQnBL4XJkUushHzrisD6-2dqlWHRdHhRjGW7HqFFh5K1aktT68IdPdSBKPtp9o1vMq6LnSw8RSYlUoQwVCtkBIqlU64rniGD7oPry-MfxfvPPpv4k_gzucSmT8EfVz6LXrjX2BMU6rjvzZAI7Tn8dHYS__Ap7v_qQ |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB6V9AA9lLdIeWgP3MCOs7HX9jEthArRCiEitSdrn2lEakfBadX-embWmxJxAomLD6vx2p5ZaebzfvsNwNs0VZrycDQsszxKhbCR0qWNpBWYTErjckk_9E9OxfE0_XyWne3Ap81ZmODBGGHh-idNiSHxuoEkFjHAIFzO20Fw6sCQnnwjzUAIxHEpAqx7sCsyLMp7sDs9_To-93vKOe0h-N7DPBVJlCME6Y7P-HQXJo2vhtmcx6LrwfI7RXkl_z24v66X8uZaLhZb6WfyEC42L96xTn7E61bF-vYPTcf_8GWPYD-UqGzcGT2GHVs_gb0t4cKncB74HGg2kdqybxsaUlMzT0JgJ4GoyD5Yu2RBxXXGxnSSi8nasC_y9mZrfDFrVvP24vIZTCcfvx8dR6FJQ6SxsigIyBpXWCe4dInCegcBoHFaOmpInzgr8UJlCy-GssT1MOKFkqkjWRtMhaYcPYde3dT2BTBHXex5UjolOSE5JfC-Mil0kY-ccVkf3m3iUi07LY4KMYyPYtU5sPJRrMhrfTik0N1Zko62H2hWsyr4udLDxNLGqlCGCEK2QEiqVTriueJYPug-vL8L_F888-DfzF_CA04UGf-L-hX02tXavsYap1Vvwvr9BcBS_H4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Universal+Face+Recognition+Using+Multiple+Deep+Learning+Agent+and+Lazy+Learning+Algorithm&rft.jtitle=CommIT+%28Communication+and+Information+Technology%29+Journal&rft.au=Vincent%2C+Kenny&rft.au=Kristian%2C+Yosi&rft.date=2021-08-31&rft.issn=1979-2484&rft.eissn=2460-7010&rft.volume=15&rft.issue=2&rft.spage=65&rft.epage=77&rft_id=info:doi/10.21512%2Fcommit.v15i2.6688&rft.externalDBID=n%2Fa&rft.externalDocID=10_21512_commit_v15i2_6688 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1979-2484&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1979-2484&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1979-2484&client=summon |