Identifying Top K Persuaders Using Singular Value Decomposition

Purpose - Finding top K persuaders in consumer network is an important problem in marketing. Recently, a new method of computing persuasion scores, interpreted as fixed point or stable distribution for given persuasion probabilities, was proposed. Top K persuaders are chosen according to the compute...

Full description

Saved in:
Bibliographic Details
Published inJournal of distribution science Vol. 14; no. 9; pp. 25 - 29
Main Authors 민윤홍, 정예림
Format Journal Article
LanguageEnglish
Published 한국유통과학회 01.09.2016
Subjects
Online AccessGet full text
ISSN1738-3110
2093-7717
2093-7717
DOI10.15722/jds.14.9.201609.25

Cover

Abstract Purpose - Finding top K persuaders in consumer network is an important problem in marketing. Recently, a new method of computing persuasion scores, interpreted as fixed point or stable distribution for given persuasion probabilities, was proposed. Top K persuaders are chosen according to the computed scores. This research proposed a new definition of persuasion scores relaxing some conditions on the matrix of probabilities, and a method to identify top K persuaders based on the defined scores. Research design, data, and methodology - A new method of computing top K persuaders is computed by singular value decomposition (SVD) of the matrix which represents persuasion probabilities between entities. Results - By testing a randomly generated instance, it turns out that the proposed method is essentially different from the previous study sharing a similar idea. Conclusions - The proposed method is shown to be valid with respect to both theoretical analysis and empirical test. However, this method is limited to the category of persuasion scores relying on the matrix-form of persuasion probabilities. In addition, the strength of the method should be evaluated via additional experiments, e.g., using real instances, different benchmark methods, efficient numerical methods for SVD, and other decomposition methods such as NMF.
AbstractList Purpose - Finding top K persuaders in consumer network is an important problem in marketing. Recently, a new method of computing persuasion scores, interpreted as fixed point or stable distribution for given persuasion probabilities, was proposed. Top K persuaders are chosen according to the computed scores. This research proposed a new definition of persuasion scores relaxing some conditions on the matrix of probabilities, and a method to identify top K persuaders based on the defined scores. Research design, data, and methodology - A new method of computing top K persuaders is computed by singular value decomposition (SVD) of the matrix which represents persuasion probabilities between entities. Results - By testing a randomly generated instance, it turns out that the proposed method is essentially different from the previous study sharing a similar idea. Conclusions - The proposed method is shown to be valid with respect to both theoretical analysis and empirical test. However, this method is limited to the category of persuasion scores relying on the matrix-form of persuasion probabilities. In addition, the strength of the method should be evaluated via additional experiments, e.g., using real instances, different benchmark methods, efficient numerical methods for SVD, and other decomposition methods such as NMF. KCI Citation Count: 0
Purpose - Finding top K persuaders in consumer network is an important problem in marketing. Recently, a new method of computing persuasion scores, interpreted as fixed point or stable distribution for given persuasion probabilities, was proposed. Top K persuaders are chosen according to the computed scores. This research proposed a new definition of persuasion scores relaxing some conditions on the matrix of probabilities, and a method to identify top K persuaders based on the defined scores. Research design, data, and methodology - A new method of computing top K persuaders is computed by singular value decomposition (SVD) of the matrix which represents persuasion probabilities between entities. Results - By testing a randomly generated instance, it turns out that the proposed method is essentially different from the previous study sharing a similar idea. Conclusions - The proposed method is shown to be valid with respect to both theoretical analysis and empirical test. However, this method is limited to the category of persuasion scores relying on the matrix-form of persuasion probabilities. In addition, the strength of the method should be evaluated via additional experiments, e.g., using real instances, different benchmark methods, efficient numerical methods for SVD, and other decomposition methods such as NMF.
Author 정예림
민윤홍
Author_xml – sequence: 1
  surname: 민윤홍
  fullname: 민윤홍
– sequence: 2
  surname: 정예림
  fullname: 정예림
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002149299$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNqNkEtPwkAcxDcGExH5BF568eChdf_77J4MwRdCglHwutk-liyUtunSGL69hfoBvMwkk9_MYa7RoKzKHKFbwBFwScjDNvMRsEhFBIPAnfELNCRY0VBKkAM0BEnjkALgKzT2fosxhphTgeMhepxleXlw9ujKTbCq6mAefOSNb03WabD2p_irk7YwTfBtijYPnvK02teVdwdXlTfo0prC5-M_H6H1y_Nq-hYulq-z6WQRpoRQHlKFmaSWEQmMZTSlCpiVCTZC8JinIhc2jlViDSQmYx2iqJSKAMVJkihM6Ajd97tlY_Uudboy7uybSu8aPflczTQQTnAsO5b1bFvW5vhjikLXjdub5qgB6_NnuvtMA9NK959pwrvaXV_bOX9wusx8od8n8-WJACG5EgpiEB1Hey5tKu-b3P5r_RerBnrZ
Cites_doi 10.1287/isre.1070.0152
10.1509/jmkg.74.2.71
10.1080/0022250X.1972.9989806
10.2307/3149462
10.1017/S0021849904040371
10.1111/j.1468-0262.2006.00709.x
10.1214/088342306000000222
10.1509/jm.10.0088
10.13106/eajbm.2016.vol6.no3.21
10.1287/mksc.1090.0520
10.1016/0167-8116(94)00008-C
10.2307/2392937
10.1038/35019019
10.1126/science.1165821
10.1016/j.ijresmar.2005.09.004
ContentType Journal Article
DBID AAYXX
CITATION
JDI
ADTOC
UNPAY
ACYCR
DEWEY 330
DOI 10.15722/jds.14.9.201609.25
DatabaseName CrossRef
[Open Access] KoreaScience
Unpaywall for CDI: Periodical Content
Unpaywall
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Business
Economics
DocumentTitleAlternate Identifying Top K Persuaders Using Singular Value Decomposition
EISSN 2093-7717
EndPage 29
ExternalDocumentID oai_kci_go_kr_ARTI_1252087
10.15722/jds.14.9.201609.25
JAKO201616759691816
10_15722_jds_14_9_201609_25
GroupedDBID 5VS
AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
KQ8
M~E
JDI
ADTOC
UNPAY
ACYCR
ID FETCH-LOGICAL-c2235-390473f427144d3c3914f7b0a66585c6e6f889bfa1bad444d937792130bbb9023
IEDL.DBID UNPAY
ISSN 1738-3110
2093-7717
IngestDate Wed Jul 24 05:51:45 EDT 2024
Tue Aug 19 20:21:43 EDT 2025
Fri Dec 22 12:02:13 EST 2023
Tue Jul 01 00:41:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Social Network Analysis
SVD
Word-of-Mouth
Persuaders
Language English
License cc-by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2235-390473f427144d3c3914f7b0a66585c6e6f889bfa1bad444d937792130bbb9023
Notes KISTI1.1003/JNL.JAKO201616759691816
G704-SER000008929.2016.14.9.010
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.15722/jds.14.9.201609.25
PageCount 5
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_1252087
unpaywall_primary_10_15722_jds_14_9_201609_25
kisti_ndsl_JAKO201616759691816
crossref_primary_10_15722_jds_14_9_201609_25
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-09-01
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-09-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of distribution science
PublicationTitleAlternate Journal of distribution science
PublicationYear 2016
Publisher 한국유통과학회
Publisher_xml – name: 한국유통과학회
References Borgatti, S. P. (REF041700335); 323
Hinz, O. (REF041700341); 75
Albert, R. (REF041700330); 406
Adebusoye Shedrack Oluwafemi (REF041700347); 6
Ballester, C. (REF041700332); 74
Brass, D. J. (REF041700336); 29
Hill, S. (REF041700340); 21
van der Lans, R. (REF041700350); 29
Kalish, S. (REF041700343); 12
Arndt, J. (REF041700331); 4
Bampo, M. (REF041700333); 19
Libai, B. (REF041700346); 22
Bonacich, P. (REF041700334); 2
Phelps, J. E. (REF041700348); 44
Walter, W. P. (REF041700351); 41
Yong-Min Kim (REF041700344); 5
Kozinets, R. V. (REF041700345); 74
Porter, L. (REF041700349); 6
정명희 (REF041700342); 4
References_xml – volume: 19
  start-page: 273
  issue: 3
  ident: REF041700333
  publication-title: Information Systems Research
  doi: 10.1287/isre.1070.0152
– volume: 74
  start-page: 71
  issue: 2
  ident: REF041700345
  publication-title: Journal of Marketing
  doi: 10.1509/jmkg.74.2.71
– volume: 4
  start-page: 19
  issue: 3
  ident: REF041700342
  publication-title: The East Asian Journal of Business Management
– volume: 6
  start-page: 30
  issue: 2
  ident: REF041700349
  publication-title: Journal of Interactive Advertising
– volume: 41
  start-page: 116
  issue: 1
  ident: REF041700351
  publication-title: Administrative Science Quarterly
– volume: 2
  start-page: 113
  issue: 1
  ident: REF041700334
  publication-title: Journal of Mathematical Sociology
  doi: 10.1080/0022250X.1972.9989806
– volume: 4
  start-page: 291
  issue: 3
  ident: REF041700331
  publication-title: Journal of Marketing Research
  doi: 10.2307/3149462
– volume: 44
  start-page: 333
  issue: 4
  ident: REF041700348
  publication-title: Journal of advertising research
  doi: 10.1017/S0021849904040371
– volume: 74
  start-page: 1403
  issue: 5
  ident: REF041700332
  publication-title: Econometrica
  doi: 10.1111/j.1468-0262.2006.00709.x
– volume: 21
  start-page: 256
  issue: 2
  ident: REF041700340
  publication-title: Statistical Science
  doi: 10.1214/088342306000000222
– volume: 75
  start-page: 55
  issue: 6
  ident: REF041700341
  publication-title: Journal of Marketing
  doi: 10.1509/jm.10.0088
– volume: 6
  start-page: 21
  issue: 3
  ident: REF041700347
  publication-title: The East Asian Journal of Business Management
  doi: 10.13106/eajbm.2016.vol6.no3.21
– volume: 29
  start-page: 348
  issue: 2
  ident: REF041700350
  publication-title: Marketing Science
  doi: 10.1287/mksc.1090.0520
– volume: 12
  start-page: 105
  issue: 2
  ident: REF041700343
  publication-title: International Journal of Research in Marketing
  doi: 10.1016/0167-8116(94)00008-C
– volume: 29
  start-page: 518
  issue: 4
  ident: REF041700336
  publication-title: Administrative Science Quarterly
  doi: 10.2307/2392937
– volume: 406
  start-page: 378
  ident: REF041700330
  publication-title: Nature
  doi: 10.1038/35019019
– volume: 5
  start-page: 27
  issue: 1
  ident: REF041700344
  publication-title: 산경연구논집
– volume: 323
  start-page: 892
  issue: 5916
  ident: REF041700335
  publication-title: Science
  doi: 10.1126/science.1165821
– volume: 22
  start-page: 375
  issue: 4
  ident: REF041700346
  publication-title: International Journal of Research in Marketing
  doi: 10.1016/j.ijresmar.2005.09.004
SSID ssj0001853608
ssib051117196
ssib048506301
ssib001106912
Score 1.9636022
Snippet Purpose - Finding top K persuaders in consumer network is an important problem in marketing. Recently, a new method of computing persuasion scores, interpreted...
SourceID nrf
unpaywall
kisti
crossref
SourceType Open Website
Open Access Repository
Index Database
StartPage 25
SubjectTerms 경제학
Title Identifying Top K Persuaders Using Singular Value Decomposition
URI http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO201616759691816&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01
https://doi.org/10.15722/jds.14.9.201609.25
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002149299
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 유통과학연구, 2016, 14(9), 80, pp.25-29
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2093-7717
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001853608
  issn: 2093-7717
  databaseCode: KQ8
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2093-7717
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001853608
  issn: 2093-7717
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2093-7717
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001853608
  issn: 2093-7717
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED6NVhp72YCBVhiVhXgkJXFiJ36aKn6IFQmQoBN7suz8QNAqrdpGaPvruXNSBJMmwUucKFas3Dm-75LvvgDsi8j4uDYmHkY77kWZEV4iYqKJWYlwWyQydWqfF_JsGA1uxW2js021MC-_34uY88OHbI5Pc49qSgLpYyNWoC0FAu8WtIcXV_3fruQxpLd8TnuAY46OmDGIG42h_1zlVRxqE1i7x_BSzvBotSqn5s-jGY9fhJrTL3UN99wpFBLDZNSrFraX_v1Hv_GNd7EGnxvIyfr1HFmHD3m5AR-XjPev8KMu1nUFT-xmMmXnjHjxleM4M8cpYNe4IcIq-2XGVc6Oc6KiN3yvTRientwcnXnNfxW8FMGA8ELlR3FYRDzGbCoL01AFURFb30iEIyKVuSySRNnCBNZkEXZRpErIMdpZaxUG-S1olZMy_wZMmTDnpCknrYlyEVjS0sG1F0Enjwu_6MDB0sp6WstnaEo7yCgajYKZh1a6NormogNd5wldZvOxHvTPL-lUgEmNkgqxiOzAHrpIj9J7TbrY1N5N9GimEf3_1AjWuJ_EHfCePfiWUbff2X8HPtF-zTT7Dq3FrMp3EZosbNel9N1mYj4BcD3Tag
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED7WBNq97EfXMq9rEWOPc2rLlmw9jdC1ZA1kgyUlexKSf5Q2xglJzNj--t3ZzkgLhezFsrGw8J2s-87-7jPARxEaD9fG2MVox90wNcKNRUQ0MSsRbotYJrXa50gOJuH1VExbnW2qhdn-fi8izs_v0xU-zT2qKfGlh43Yg64UCLw70J2Mvvd_1iWPAb3lq7UHOOboiBn9qNUYeuIqD-JQl8DaHYaXcolHB1W5ML9_maLYCjVXL5sa7lWtUEgMk1mvWtte8ueRfuOOd_EKXrSQk_WbOfIanmXlIexvGO9v4HNTrFsXPLHxfMGGjHjxVc1xZjWngP3ADRFW2Y0pqox9yYiK3vK9jmBydTm-GLjtfxXcBMGAcAPlhVGQhzzCbCoNkkD5YR5Zz0iEIyKRmczjWNnc-NakIXZRpErIMdpZaxUG-WPolPMyewtMmSDjpCknrQkz4VvS0sG1F0Enj3Ivd-DTxsp60chnaEo7yCgajYKZh1a6MYrmwoGz2hO6TFeFvu4Pv9EpH5MaJRViEenAB3SRniV3mnSxqb2d69lSI_r_qhGscS-OHHD_eXCXUd_9Z_8TeE77DdPsPXTWyyo7RWiytmftlPwLgUHSdQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+Top+K+Persuaders+Using+Singular+Value+Decomposition&rft.jtitle=Journal+of+distribution+science&rft.au=%EB%AF%BC%EC%9C%A4%ED%99%8D&rft.au=%EC%A0%95%EC%98%88%EB%A6%BC&rft.date=2016-09-01&rft.pub=%ED%95%9C%EA%B5%AD%EC%9C%A0%ED%86%B5%EA%B3%BC%ED%95%99%ED%9A%8C&rft.issn=1738-3110&rft.eissn=2093-7717&rft.spage=25&rft.epage=29&rft_id=info:doi/10.15722%2Fjds.14.9.201609.25&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_1252087
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1738-3110&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1738-3110&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1738-3110&client=summon