Identifying Top K Persuaders Using Singular Value Decomposition
Purpose - Finding top K persuaders in consumer network is an important problem in marketing. Recently, a new method of computing persuasion scores, interpreted as fixed point or stable distribution for given persuasion probabilities, was proposed. Top K persuaders are chosen according to the compute...
Saved in:
| Published in | Journal of distribution science Vol. 14; no. 9; pp. 25 - 29 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
한국유통과학회
01.09.2016
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1738-3110 2093-7717 2093-7717 |
| DOI | 10.15722/jds.14.9.201609.25 |
Cover
| Abstract | Purpose - Finding top K persuaders in consumer network is an important problem in marketing. Recently, a new method of computing persuasion scores, interpreted as fixed point or stable distribution for given persuasion probabilities, was proposed. Top K persuaders are chosen according to the computed scores. This research proposed a new definition of persuasion scores relaxing some conditions on the matrix of probabilities, and a method to identify top K persuaders based on the defined scores. Research design, data, and methodology - A new method of computing top K persuaders is computed by singular value decomposition (SVD) of the matrix which represents persuasion probabilities between entities. Results - By testing a randomly generated instance, it turns out that the proposed method is essentially different from the previous study sharing a similar idea. Conclusions - The proposed method is shown to be valid with respect to both theoretical analysis and empirical test. However, this method is limited to the category of persuasion scores relying on the matrix-form of persuasion probabilities. In addition, the strength of the method should be evaluated via additional experiments, e.g., using real instances, different benchmark methods, efficient numerical methods for SVD, and other decomposition methods such as NMF. |
|---|---|
| AbstractList | Purpose - Finding top K persuaders in consumer network is an important problem in marketing. Recently, a new method of computing persuasion scores, interpreted as fixed point or stable distribution for given persuasion probabilities, was proposed.
Top K persuaders are chosen according to the computed scores. This research proposed a new definition of persuasion scores relaxing some conditions on the matrix of probabilities, and a method to identify top K persuaders based on the defined scores.
Research design, data, and methodology - A new method of computing top K persuaders is computed by singular value decomposition (SVD) of the matrix which represents persuasion probabilities between entities.
Results - By testing a randomly generated instance, it turns out that the proposed method is essentially different from the previous study sharing a similar idea.
Conclusions - The proposed method is shown to be valid with respect to both theoretical analysis and empirical test.
However, this method is limited to the category of persuasion scores relying on the matrix-form of persuasion probabilities.
In addition, the strength of the method should be evaluated via additional experiments, e.g., using real instances, different benchmark methods, efficient numerical methods for SVD, and other decomposition methods such as NMF. KCI Citation Count: 0 Purpose - Finding top K persuaders in consumer network is an important problem in marketing. Recently, a new method of computing persuasion scores, interpreted as fixed point or stable distribution for given persuasion probabilities, was proposed. Top K persuaders are chosen according to the computed scores. This research proposed a new definition of persuasion scores relaxing some conditions on the matrix of probabilities, and a method to identify top K persuaders based on the defined scores. Research design, data, and methodology - A new method of computing top K persuaders is computed by singular value decomposition (SVD) of the matrix which represents persuasion probabilities between entities. Results - By testing a randomly generated instance, it turns out that the proposed method is essentially different from the previous study sharing a similar idea. Conclusions - The proposed method is shown to be valid with respect to both theoretical analysis and empirical test. However, this method is limited to the category of persuasion scores relying on the matrix-form of persuasion probabilities. In addition, the strength of the method should be evaluated via additional experiments, e.g., using real instances, different benchmark methods, efficient numerical methods for SVD, and other decomposition methods such as NMF. |
| Author | 정예림 민윤홍 |
| Author_xml | – sequence: 1 surname: 민윤홍 fullname: 민윤홍 – sequence: 2 surname: 정예림 fullname: 정예림 |
| BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002149299$$DAccess content in National Research Foundation of Korea (NRF) |
| BookMark | eNqNkEtPwkAcxDcGExH5BF568eChdf_77J4MwRdCglHwutk-liyUtunSGL69hfoBvMwkk9_MYa7RoKzKHKFbwBFwScjDNvMRsEhFBIPAnfELNCRY0VBKkAM0BEnjkALgKzT2fosxhphTgeMhepxleXlw9ujKTbCq6mAefOSNb03WabD2p_irk7YwTfBtijYPnvK02teVdwdXlTfo0prC5-M_H6H1y_Nq-hYulq-z6WQRpoRQHlKFmaSWEQmMZTSlCpiVCTZC8JinIhc2jlViDSQmYx2iqJSKAMVJkihM6Ajd97tlY_Uudboy7uybSu8aPflczTQQTnAsO5b1bFvW5vhjikLXjdub5qgB6_NnuvtMA9NK959pwrvaXV_bOX9wusx8od8n8-WJACG5EgpiEB1Hey5tKu-b3P5r_RerBnrZ |
| Cites_doi | 10.1287/isre.1070.0152 10.1509/jmkg.74.2.71 10.1080/0022250X.1972.9989806 10.2307/3149462 10.1017/S0021849904040371 10.1111/j.1468-0262.2006.00709.x 10.1214/088342306000000222 10.1509/jm.10.0088 10.13106/eajbm.2016.vol6.no3.21 10.1287/mksc.1090.0520 10.1016/0167-8116(94)00008-C 10.2307/2392937 10.1038/35019019 10.1126/science.1165821 10.1016/j.ijresmar.2005.09.004 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION JDI ADTOC UNPAY ACYCR |
| DEWEY | 330 |
| DOI | 10.15722/jds.14.9.201609.25 |
| DatabaseName | CrossRef [Open Access] KoreaScience Unpaywall for CDI: Periodical Content Unpaywall Korean Citation Index |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Business Economics |
| DocumentTitleAlternate | Identifying Top K Persuaders Using Singular Value Decomposition |
| EISSN | 2093-7717 |
| EndPage | 29 |
| ExternalDocumentID | oai_kci_go_kr_ARTI_1252087 10.15722/jds.14.9.201609.25 JAKO201616759691816 10_15722_jds_14_9_201609_25 |
| GroupedDBID | 5VS AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ KQ8 M~E JDI ADTOC UNPAY ACYCR |
| ID | FETCH-LOGICAL-c2235-390473f427144d3c3914f7b0a66585c6e6f889bfa1bad444d937792130bbb9023 |
| IEDL.DBID | UNPAY |
| ISSN | 1738-3110 2093-7717 |
| IngestDate | Wed Jul 24 05:51:45 EDT 2024 Tue Aug 19 20:21:43 EDT 2025 Fri Dec 22 12:02:13 EST 2023 Tue Jul 01 00:41:13 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | Social Network Analysis SVD Word-of-Mouth Persuaders |
| Language | English |
| License | cc-by-nc |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2235-390473f427144d3c3914f7b0a66585c6e6f889bfa1bad444d937792130bbb9023 |
| Notes | KISTI1.1003/JNL.JAKO201616759691816 G704-SER000008929.2016.14.9.010 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.15722/jds.14.9.201609.25 |
| PageCount | 5 |
| ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_1252087 unpaywall_primary_10_15722_jds_14_9_201609_25 kisti_ndsl_JAKO201616759691816 crossref_primary_10_15722_jds_14_9_201609_25 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2016-09-01 |
| PublicationDateYYYYMMDD | 2016-09-01 |
| PublicationDate_xml | – month: 09 year: 2016 text: 2016-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Journal of distribution science |
| PublicationTitleAlternate | Journal of distribution science |
| PublicationYear | 2016 |
| Publisher | 한국유통과학회 |
| Publisher_xml | – name: 한국유통과학회 |
| References | Borgatti, S. P. (REF041700335); 323 Hinz, O. (REF041700341); 75 Albert, R. (REF041700330); 406 Adebusoye Shedrack Oluwafemi (REF041700347); 6 Ballester, C. (REF041700332); 74 Brass, D. J. (REF041700336); 29 Hill, S. (REF041700340); 21 van der Lans, R. (REF041700350); 29 Kalish, S. (REF041700343); 12 Arndt, J. (REF041700331); 4 Bampo, M. (REF041700333); 19 Libai, B. (REF041700346); 22 Bonacich, P. (REF041700334); 2 Phelps, J. E. (REF041700348); 44 Walter, W. P. (REF041700351); 41 Yong-Min Kim (REF041700344); 5 Kozinets, R. V. (REF041700345); 74 Porter, L. (REF041700349); 6 정명희 (REF041700342); 4 |
| References_xml | – volume: 19 start-page: 273 issue: 3 ident: REF041700333 publication-title: Information Systems Research doi: 10.1287/isre.1070.0152 – volume: 74 start-page: 71 issue: 2 ident: REF041700345 publication-title: Journal of Marketing doi: 10.1509/jmkg.74.2.71 – volume: 4 start-page: 19 issue: 3 ident: REF041700342 publication-title: The East Asian Journal of Business Management – volume: 6 start-page: 30 issue: 2 ident: REF041700349 publication-title: Journal of Interactive Advertising – volume: 41 start-page: 116 issue: 1 ident: REF041700351 publication-title: Administrative Science Quarterly – volume: 2 start-page: 113 issue: 1 ident: REF041700334 publication-title: Journal of Mathematical Sociology doi: 10.1080/0022250X.1972.9989806 – volume: 4 start-page: 291 issue: 3 ident: REF041700331 publication-title: Journal of Marketing Research doi: 10.2307/3149462 – volume: 44 start-page: 333 issue: 4 ident: REF041700348 publication-title: Journal of advertising research doi: 10.1017/S0021849904040371 – volume: 74 start-page: 1403 issue: 5 ident: REF041700332 publication-title: Econometrica doi: 10.1111/j.1468-0262.2006.00709.x – volume: 21 start-page: 256 issue: 2 ident: REF041700340 publication-title: Statistical Science doi: 10.1214/088342306000000222 – volume: 75 start-page: 55 issue: 6 ident: REF041700341 publication-title: Journal of Marketing doi: 10.1509/jm.10.0088 – volume: 6 start-page: 21 issue: 3 ident: REF041700347 publication-title: The East Asian Journal of Business Management doi: 10.13106/eajbm.2016.vol6.no3.21 – volume: 29 start-page: 348 issue: 2 ident: REF041700350 publication-title: Marketing Science doi: 10.1287/mksc.1090.0520 – volume: 12 start-page: 105 issue: 2 ident: REF041700343 publication-title: International Journal of Research in Marketing doi: 10.1016/0167-8116(94)00008-C – volume: 29 start-page: 518 issue: 4 ident: REF041700336 publication-title: Administrative Science Quarterly doi: 10.2307/2392937 – volume: 406 start-page: 378 ident: REF041700330 publication-title: Nature doi: 10.1038/35019019 – volume: 5 start-page: 27 issue: 1 ident: REF041700344 publication-title: 산경연구논집 – volume: 323 start-page: 892 issue: 5916 ident: REF041700335 publication-title: Science doi: 10.1126/science.1165821 – volume: 22 start-page: 375 issue: 4 ident: REF041700346 publication-title: International Journal of Research in Marketing doi: 10.1016/j.ijresmar.2005.09.004 |
| SSID | ssj0001853608 ssib051117196 ssib048506301 ssib001106912 |
| Score | 1.9636022 |
| Snippet | Purpose - Finding top K persuaders in consumer network is an important problem in marketing. Recently, a new method of computing persuasion scores, interpreted... |
| SourceID | nrf unpaywall kisti crossref |
| SourceType | Open Website Open Access Repository Index Database |
| StartPage | 25 |
| SubjectTerms | 경제학 |
| Title | Identifying Top K Persuaders Using Singular Value Decomposition |
| URI | http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO201616759691816&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01 https://doi.org/10.15722/jds.14.9.201609.25 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002149299 |
| UnpaywallVersion | publishedVersion |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| ispartofPNX | 유통과학연구, 2016, 14(9), 80, pp.25-29 |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2093-7717 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001853608 issn: 2093-7717 databaseCode: KQ8 dateStart: 19990101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2093-7717 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001853608 issn: 2093-7717 databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2093-7717 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001853608 issn: 2093-7717 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED6NVhp72YCBVhiVhXgkJXFiJ36aKn6IFQmQoBN7suz8QNAqrdpGaPvruXNSBJMmwUucKFas3Dm-75LvvgDsi8j4uDYmHkY77kWZEV4iYqKJWYlwWyQydWqfF_JsGA1uxW2js021MC-_34uY88OHbI5Pc49qSgLpYyNWoC0FAu8WtIcXV_3fruQxpLd8TnuAY46OmDGIG42h_1zlVRxqE1i7x_BSzvBotSqn5s-jGY9fhJrTL3UN99wpFBLDZNSrFraX_v1Hv_GNd7EGnxvIyfr1HFmHD3m5AR-XjPev8KMu1nUFT-xmMmXnjHjxleM4M8cpYNe4IcIq-2XGVc6Oc6KiN3yvTRientwcnXnNfxW8FMGA8ELlR3FYRDzGbCoL01AFURFb30iEIyKVuSySRNnCBNZkEXZRpErIMdpZaxUG-S1olZMy_wZMmTDnpCknrYlyEVjS0sG1F0Enjwu_6MDB0sp6WstnaEo7yCgajYKZh1a6NormogNd5wldZvOxHvTPL-lUgEmNkgqxiOzAHrpIj9J7TbrY1N5N9GimEf3_1AjWuJ_EHfCePfiWUbff2X8HPtF-zTT7Dq3FrMp3EZosbNel9N1mYj4BcD3Tag |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED7WBNq97EfXMq9rEWOPc2rLlmw9jdC1ZA1kgyUlexKSf5Q2xglJzNj--t3ZzkgLhezFsrGw8J2s-87-7jPARxEaD9fG2MVox90wNcKNRUQ0MSsRbotYJrXa50gOJuH1VExbnW2qhdn-fi8izs_v0xU-zT2qKfGlh43Yg64UCLw70J2Mvvd_1iWPAb3lq7UHOOboiBn9qNUYeuIqD-JQl8DaHYaXcolHB1W5ML9_maLYCjVXL5sa7lWtUEgMk1mvWtte8ueRfuOOd_EKXrSQk_WbOfIanmXlIexvGO9v4HNTrFsXPLHxfMGGjHjxVc1xZjWngP3ADRFW2Y0pqox9yYiK3vK9jmBydTm-GLjtfxXcBMGAcAPlhVGQhzzCbCoNkkD5YR5Zz0iEIyKRmczjWNnc-NakIXZRpErIMdpZaxUG-WPolPMyewtMmSDjpCknrQkz4VvS0sG1F0Enj3Ivd-DTxsp60chnaEo7yCgajYKZh1a6MYrmwoGz2hO6TFeFvu4Pv9EpH5MaJRViEenAB3SRniV3mnSxqb2d69lSI_r_qhGscS-OHHD_eXCXUd_9Z_8TeE77DdPsPXTWyyo7RWiytmftlPwLgUHSdQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+Top+K+Persuaders+Using+Singular+Value+Decomposition&rft.jtitle=Journal+of+distribution+science&rft.au=%EB%AF%BC%EC%9C%A4%ED%99%8D&rft.au=%EC%A0%95%EC%98%88%EB%A6%BC&rft.date=2016-09-01&rft.pub=%ED%95%9C%EA%B5%AD%EC%9C%A0%ED%86%B5%EA%B3%BC%ED%95%99%ED%9A%8C&rft.issn=1738-3110&rft.eissn=2093-7717&rft.spage=25&rft.epage=29&rft_id=info:doi/10.15722%2Fjds.14.9.201609.25&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_1252087 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1738-3110&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1738-3110&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1738-3110&client=summon |