Pixelwise asphalt concrete pavement crack detection via deep learning‐based semantic segmentation method

Summary Explicit gaps exist between the advanced deep learning technologies and the less satisfied pixel‐level crack detection algorithms. Therefore, this research sought to bridge this gap via outlining the deep neural network model for pixelwise pavement crack detection. Two state‐of‐the‐art deep...

Full description

Saved in:
Bibliographic Details
Published inStructural control and health monitoring Vol. 29; no. 8
Main Authors Huyan, Ju, Ma, Tao, Li, Wei, Yang, Handuo, Xu, Zhengchao
Format Journal Article
LanguageEnglish
Published Pavia John Wiley & Sons, Inc 01.08.2022
Subjects
Online AccessGet full text
ISSN1545-2255
1545-2263
DOI10.1002/stc.2974

Cover

Abstract Summary Explicit gaps exist between the advanced deep learning technologies and the less satisfied pixel‐level crack detection algorithms. Therefore, this research sought to bridge this gap via outlining the deep neural network model for pixelwise pavement crack detection. Two state‐of‐the‐art deep neural network models are constructed for the semantic segmentation of crack images. The first architecture, VGGCrackU‐net, is composed of 10 3×3 convolutional layers, 4 max‐pooling layers, 4 up‐sampling layers, and 4 concatenate operations. Another architecture, ResCrackU‐net, is composed of 7‐level residual units with a total of 22 convolutional layers. Asphalt concrete pavement crack images are collected by smartphones, action cameras, and automatic pavement monitoring systems from diverse functional classes of AC pavements. The crack images are manually labeled and double‐checked by trained operators for quality insurance. After that, 500 crack images are randomly divided into training, validating, and test datasets according to the ratio of 3:1:1. Both architectures are trained on GPU facilitated Keras platform with Python version of 3.5, which demonstrated fast convergence. Results prove that the proposed models exhibit significant advantages for pixelwise crack detection when compared with the performance of widely used FCN net and PSPnet. Meanwhile, ResCrackU‐net slightly outperforms VGGCrackU‐net, which, however, can provide acceptable results as well. Though significant false negative and false positive errors are observed in both network models, the contributions are noticeable, which can provide innovative guidance for future work in figuring out solutions to the problems.
AbstractList Explicit gaps exist between the advanced deep learning technologies and the less satisfied pixel‐level crack detection algorithms. Therefore, this research sought to bridge this gap via outlining the deep neural network model for pixelwise pavement crack detection. Two state‐of‐the‐art deep neural network models are constructed for the semantic segmentation of crack images. The first architecture, VGGCrackU‐net, is composed of 10 3×3 convolutional layers, 4 max‐pooling layers, 4 up‐sampling layers, and 4 concatenate operations. Another architecture, ResCrackU‐net, is composed of 7‐level residual units with a total of 22 convolutional layers. Asphalt concrete pavement crack images are collected by smartphones, action cameras, and automatic pavement monitoring systems from diverse functional classes of AC pavements. The crack images are manually labeled and double‐checked by trained operators for quality insurance. After that, 500 crack images are randomly divided into training, validating, and test datasets according to the ratio of 3:1:1. Both architectures are trained on GPU facilitated Keras platform with Python version of 3.5, which demonstrated fast convergence. Results prove that the proposed models exhibit significant advantages for pixelwise crack detection when compared with the performance of widely used FCN net and PSPnet. Meanwhile, ResCrackU‐net slightly outperforms VGGCrackU‐net, which, however, can provide acceptable results as well. Though significant false negative and false positive errors are observed in both network models, the contributions are noticeable, which can provide innovative guidance for future work in figuring out solutions to the problems.
Summary Explicit gaps exist between the advanced deep learning technologies and the less satisfied pixel‐level crack detection algorithms. Therefore, this research sought to bridge this gap via outlining the deep neural network model for pixelwise pavement crack detection. Two state‐of‐the‐art deep neural network models are constructed for the semantic segmentation of crack images. The first architecture, VGGCrackU‐net, is composed of 10 3×3 convolutional layers, 4 max‐pooling layers, 4 up‐sampling layers, and 4 concatenate operations. Another architecture, ResCrackU‐net, is composed of 7‐level residual units with a total of 22 convolutional layers. Asphalt concrete pavement crack images are collected by smartphones, action cameras, and automatic pavement monitoring systems from diverse functional classes of AC pavements. The crack images are manually labeled and double‐checked by trained operators for quality insurance. After that, 500 crack images are randomly divided into training, validating, and test datasets according to the ratio of 3:1:1. Both architectures are trained on GPU facilitated Keras platform with Python version of 3.5, which demonstrated fast convergence. Results prove that the proposed models exhibit significant advantages for pixelwise crack detection when compared with the performance of widely used FCN net and PSPnet. Meanwhile, ResCrackU‐net slightly outperforms VGGCrackU‐net, which, however, can provide acceptable results as well. Though significant false negative and false positive errors are observed in both network models, the contributions are noticeable, which can provide innovative guidance for future work in figuring out solutions to the problems.
Author Li, Wei
Huyan, Ju
Ma, Tao
Yang, Handuo
Xu, Zhengchao
Author_xml – sequence: 1
  givenname: Ju
  surname: Huyan
  fullname: Huyan, Ju
  organization: Southeast University
– sequence: 2
  givenname: Tao
  orcidid: 0000-0002-7963-9370
  surname: Ma
  fullname: Ma, Tao
  email: matao@seu.edu.cn
  organization: Southeast University
– sequence: 3
  givenname: Wei
  orcidid: 0000-0003-4508-3076
  surname: Li
  fullname: Li, Wei
  organization: Chang'an University
– sequence: 4
  givenname: Handuo
  surname: Yang
  fullname: Yang, Handuo
  organization: Southeast University
– sequence: 5
  givenname: Zhengchao
  surname: Xu
  fullname: Xu, Zhengchao
  organization: Chang'an University
BookMark eNp1kE1OwzAQhS0EEm1B4giR2LBJcWzHSZao4k-qBBJlHbn2uHVJnWCnLd1xBM7ISXAbxALBat6Mvjczen10aGsLCJ0leJhgTC59K4ekyNgB6iUpS2NCOD380Wl6jPreLwLJSZ720OLRvEG1MR4i4Zu5qNpI1lY6aCFqxBqWYMPECfkSqTCTralttDYidNBEFQhnjZ19vn9MhQcVeVgK2xoZxGxnFXt-Ce28VifoSIvKw-l3HaDnm-vJ6C4eP9zej67GsSSEspgzliuca8mmDEAWRErF8mkhCoppJhKhgWCOldZcc6JzSTXORMq1YlwqmdIBOu_2Nq5-XYFvy0W9cjacLAnPaVYwTrNADTtKutp7B7qUpnu3dcJUZYLLXZ5lyLPc5RkMF78MjTNL4bZ_oXGHbkwF23-58mky2vNf9p2KHA
CitedBy_id crossref_primary_10_1016_j_autcon_2024_105682
crossref_primary_10_1080_10298436_2023_2246096
crossref_primary_10_1016_j_ijrmms_2025_106038
crossref_primary_10_1109_TITS_2024_3511036
crossref_primary_10_1016_j_measurement_2022_112427
crossref_primary_10_1016_j_engappai_2024_108312
crossref_primary_10_1186_s40537_024_00981_y
crossref_primary_10_1109_JSEN_2023_3267834
crossref_primary_10_1016_j_autcon_2024_105772
crossref_primary_10_1038_s41598_025_90924_1
crossref_primary_10_1016_j_autcon_2024_105297
crossref_primary_10_1016_j_autcon_2024_105770
crossref_primary_10_3390_electronics12020255
crossref_primary_10_1080_10298436_2024_2402838
crossref_primary_10_1016_j_autcon_2024_105612
crossref_primary_10_1155_2023_6932621
crossref_primary_10_3390_app14188100
crossref_primary_10_1016_j_kscej_2025_100203
crossref_primary_10_1016_j_autcon_2022_104666
crossref_primary_10_1016_j_autcon_2023_105112
crossref_primary_10_1007_s00521_023_08277_7
crossref_primary_10_1080_17445760_2024_2405966
crossref_primary_10_1109_JIOT_2025_3527233
crossref_primary_10_1016_j_displa_2024_102787
crossref_primary_10_3390_drones7020143
crossref_primary_10_1016_j_heliyon_2024_e26142
crossref_primary_10_1016_j_engstruct_2024_118171
Cites_doi 10.1016/j.imavis.2005.05.017
10.1016/j.jhydrol.2021.126028
10.1016/j.conbuildmat.2019.117426
10.1109/CVPR.2016.90
10.1155/2018/6290498
10.1016/j.conbuildmat.2013.07.091
10.1061/9780784480922.015
10.1109/TIP.2018.2878966
10.1016/j.conbuildmat.2020.119332
10.1016/j.autcon.2020.103152
10.1061/(ASCE)CP.1943-5487.0000781
10.1111/mice.12297
10.1111/mice.12409
10.1016/j.jclepro.2020.121208
10.1016/j.jclepro.2020.121733
10.1016/j.jclepro.2020.125135
10.3141/2024-09
10.1016/j.imavis.2016.11.018
10.1061/JPEODX.0000028
10.1016/j.imavis.2011.10.003
10.1016/j.measurement.2021.109914
10.1088/1757-899X/236/1/012101
10.1016/j.conbuildmat.2019.117912
10.1016/j.conbuildmat.2020.121899
10.1002/stc.2551
10.1016/j.conbuildmat.2021.123051
10.1016/0968-090X(93)90002-W
10.1016/j.jclepro.2020.124583
10.1016/j.jclepro.2020.120629
10.1016/j.jclepro.2020.121467
10.1016/j.conbuildmat.2021.122457
10.1002/stc.2286
10.1016/j.jclepro.2020.124447
10.1111/mice.12440
10.1016/j.conbuildmat.2019.01.137
10.1109/ICTIS.2017.8047878
10.1002/stc.2452
10.1002/stc.2381e2381
10.1177/0361198105194000107
10.1007/978-3-662-56689-3_7
10.1016/j.conbuildmat.2017.04.097
10.1016/j.conbuildmat.2020.118099
10.1117/1.JEI.26.5.053008
10.1109/ICIP.1995.529742
10.1061/(ASCE)0733-947X(1994)120:4(552)
10.1155/2018/5989246
10.1061/(ASCE)CP.1943-5487.0000775
ContentType Journal Article
Copyright 2022 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2022 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7ST
8FD
C1K
FR3
KR7
SOI
DOI 10.1002/stc.2974
DatabaseName CrossRef
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1545-2263
EndPage n/a
ExternalDocumentID 10_1002_stc_2974
STC2974
Genre article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central University of China
  funderid: 300102249306; 300102249301
– fundername: National Key R&D Program of China
  funderid: 2021YFB2600600; 2021YFB2600604
– fundername: National Natural Science Foundation of China
  funderid: 52108403
GroupedDBID .3N
.GA
.Y3
05W
0R~
123
1L6
1OC
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
52M
52O
52T
52U
52W
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJEY
AANHP
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACCZN
ACGFO
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFZJQ
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F21
FEDTE
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
H13
HBH
HF~
HHY
HVGLF
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2W
P2X
P4D
Q.N
QB0
QRW
R.K
RHX
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
V8K
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WYISQ
XV2
~IA
~WT
AAMMB
AAYXX
ABJCF
ADMLS
AEFGJ
AEUYN
AFKRA
AGQPQ
AGXDD
AIDQK
AIDYY
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
M7S
PHGZM
PHGZT
PQGLB
PTHSS
1OB
7ST
8FD
C1K
FR3
KR7
SOI
ID FETCH-LOGICAL-c2234-6448d08fc4b4eec92ccd48b9a93037a1afe2060dff6f62f8c3f07a56fd46cdc53
IEDL.DBID DR2
ISSN 1545-2255
IngestDate Wed Aug 13 07:32:12 EDT 2025
Wed Oct 01 04:44:11 EDT 2025
Thu Apr 24 23:04:14 EDT 2025
Wed Jan 22 16:24:23 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2234-6448d08fc4b4eec92ccd48b9a93037a1afe2060dff6f62f8c3f07a56fd46cdc53
Notes Funding information
Fundamental Research Funds for the Central University of China, Grant/Award Numbers: 300102249306, 300102249301; National Key R&D Program of China, Grant/Award Numbers: 2021YFB2600600, 2021YFB2600604; National Natural Science Foundation of China, Grant/Award Number: 52108403
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7963-9370
0000-0003-4508-3076
PQID 2683794637
PQPubID 2034347
PageCount 21
ParticipantIDs proquest_journals_2683794637
crossref_citationtrail_10_1002_stc_2974
crossref_primary_10_1002_stc_2974
wiley_primary_10_1002_stc_2974_STC2974
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2022
2022-08-00
20220801
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: August 2022
PublicationDecade 2020
PublicationPlace Pavia
PublicationPlace_xml – name: Pavia
PublicationTitle Structural control and health monitoring
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2013; 26
2020; 240
2021; 289
2020; 241
2021; 283
2021; 282
2021; 287
2019; 206
1993; 1
2017; 236
2005; 23
1993; 6
2021; 279
2017; 32
2007; 2024
2019; 26
2020; 259
2009; 7251
2019; 28
2021; 272
2020; 255
1996; 1
2021; 595
2018; 32
2011; 29
2018; 35
2018; 144
2013; 48
2020; 262
2017; 26
2011
2020; 263
2019; 34
2020; 269
2021; 184
1993
2018; 2018
1994; 120
2017; 57
2017; 56
2019
2020; 27
2018
2014; 35
2017
2016
2015
2020; 113
2014
2020; 234
2017; 146
2005; 1940
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
Chambon S (e_1_2_10_27_1) 2009; 7251
e_1_2_10_2_1
Ioffe S (e_1_2_10_59_1) 2015
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_55_1
e_1_2_10_8_1
Kaseko M (e_1_2_10_13_1) 1993; 6
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_51_1
Hizukuri A (e_1_2_10_29_1) 2017
e_1_2_10_61_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_45_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
Ginsberg MD (e_1_2_10_12_1) 1993; 6
Lu ZW (e_1_2_10_22_1) 2014; 35
Gulli A (e_1_2_10_62_1) 2017
Zhang D (e_1_2_10_35_1) 2017; 56
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_54_1
Simonyan K (e_1_2_10_60_1) 2014
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_9_1
e_1_2_10_10_1
e_1_2_10_33_1
Liu Y (e_1_2_10_24_1) 2013; 26
e_1_2_10_31_1
Klassen G (e_1_2_10_14_1) 1993
e_1_2_10_50_1
Hoang ND (e_1_2_10_30_1) 2018; 35
Fujita Y (e_1_2_10_37_1) 2017
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – volume: 289
  issue: 20
  year: 2021
  article-title: Preparation and evaluation of cooling asphalt concrete modified with SBS and tourmaline anion powder
  publication-title: J Clean Prod
– volume: 7251
  year: 2009
  article-title: Introduction of a wavelet transform based on 2D matched filter in a Markov random field for fine structure extraction: application on road crack detection
  publication-title: Proc SPIE Int Soc Opt Eng
– start-page: 10338
  year: 2017
  article-title: Development of a classification method for a crack on a pavement surface images using machine learning
  publication-title: Proc SPIE Int Soc Opt Eng
– volume: 32
  start-page: 805
  issue: 10
  year: 2017
  end-page: 819
  article-title: Automated pixel‐level pavement crack detection on 3D asphalt surfaces using a deep‐learning network
  publication-title: Comput Aided Civ Inf Eng
– volume: 23
  start-page: 921
  issue: 10
  year: 2005
  end-page: 933
  article-title: A robust approach for automatic detection and segmentation of cracks in underground pipeline images
  publication-title: Image Vis Comput
– volume: 255
  year: 2020
  article-title: Molecular dynamics simulation of distribution and adhesion of asphalt components on steel slag
  publication-title: Construct Build Mater
– start-page: 770
  year: 2016
  end-page: 778
– volume: 241
  year: 2020
  article-title: Fatigue resistance of aged asphalt binders: An investigation of different analytical methods in linear amplitude sweep test
  publication-title: Construct Build Mater
– volume: 6
  start-page: 56
  year: 1993
  end-page: 60
  article-title: Algorithm for crack detection in automated pavement analysis
  publication-title: Proc Infrastruct Plann Manag
– volume: 26
  issue: 8
  year: 2019
  article-title: Image‐based concrete crack assessment using mask and region‐based convolutional neural network
  publication-title: Struct Control Health Monit
– volume: 2024
  start-page: 73
  issue: 1
  year: 2007
  end-page: 81
  article-title: Wavelet‐based pavement distress image edge detection with a trous algorithm
  publication-title: Transp Res Rec
– volume: 6
  start-page: 277
  year: 1993
  end-page: 281
  article-title: Evaluation of two automated thresholding techniques for pavement images
  publication-title: Proc Infrastruct Plann Manag
– volume: 29
  start-page: 861
  issue: 12
  year: 2011
  end-page: 872
  article-title: FoSA: F* seed‐growing approach for crack‐line detection from pavement images
  publication-title: Image Vis Comput
– volume: 26
  start-page: 70
  issue: 3
  year: 2013
  end-page: 76
  article-title: Edge detection based on 2D Rosin threshold method in road crack images
  publication-title: Zhongguo Gonglu Xuebao/China Journal of Highway and Transport
– volume: 2018
  start-page: 16
  issue: 1
  year: 2018
  article-title: Automatic recognition of asphalt pavement cracks based on image processing and machine learning approaches: a comparative study on classifier performance
  publication-title: Math Probl Eng
– volume: 234
  year: 2020
  article-title: Evaluation of optimum mixing conditions for rubberized asphalt mixture containing reclaimed asphalt pavement
  publication-title: Construct Build Mater
– volume: 282
  year: 2021
  article-title: Recycling of steel slag aggregate in portland cement concrete: An overview
  publication-title: J Clean Prod
– start-page: 82
  year: 2018
  end-page: 89
– volume: 28
  start-page: 1498
  issue: 3
  year: 2019
  end-page: 1512
  article-title: DeepCrack: learning hierarchical convolutional features for crack detection
  publication-title: IEEE Trans Image Process
– volume: 263
  issue: 1
  year: 2020
  article-title: Microstructure of synthetic composite interfaces and verification of mixing order in cold‐recycled asphalt emulsion mixture
  publication-title: J Clean Prod
– year: 2014
– volume: 269
  issue: 1
  year: 2020
  article-title: Application of steel slag in cement treated aggregate base course
  publication-title: J Clean Prod
– volume: 595
  year: 2021
  article-title: DEM‐CFD simulation on clogging and degradation of air voids in double‐layer porous asphalt pavement under rainfall
  publication-title: J Hydrol
– volume: 259
  year: 2020
  article-title: A multiphysics evaluation of the rejuvenator effects on aged asphalt using molecular dynamics simulations
  publication-title: J Clean Prod
– start-page: 11
  year: 2011
  end-page: 16
– volume: 1
  start-page: 446
  year: 1996
  end-page: 449
  article-title: Markov random field for rectilinear structure extraction in pavement distress image analysis
  publication-title: IEEE Intl Conf Image Process
– volume: 35
  start-page: 622
  issue: 5
  year: 2014
  end-page: 625
  article-title: Pavement Crack Detection Algorithm Based on Sub‐Region and Multi‐Scale Analysis
  publication-title: Dongbei Daxue Xuebao/Journal of Northeastern University
– year: 1993
– year: 2015
– volume: 120
  start-page: 552
  issue: 4
  year: 1994
  end-page: 569
  article-title: Comparison of traditional and neural classifiers for pavement‐crack detection
  publication-title: J Transport Eng
– volume: 2018
  start-page: 17
  issue: 1
  year: 2018
  article-title: Fast local laplacian‐based steerable and sobel filters integrated with adaptive boosting classification tree for automatic recognition of asphalt pavement cracks
  publication-title: Adv Civil Eng
– volume: 35
  start-page: 1
  issue: 2
  year: 2018
  end-page: 12
  article-title: A novel method for asphalt pavement crack classification based on image processing and machine learning
  publication-title: Eng Comput
– volume: 272
  year: 2021
  article-title: Fatigue crack density of asphalt binders under controlled‐stress rotational shear load testing
  publication-title: Construct Build Mater
– volume: 57
  start-page: 130
  year: 2017
  end-page: 146
  article-title: An efficient and reliable coarse‐to‐fine approach for asphalt pavement crack detection
  publication-title: Image Vis Comput
– volume: 279
  year: 2021
  article-title: A feasibility study exploring limestone in porous asphalt concrete: Performance evaluation and superpave compaction characteristics
  publication-title: Construct Build Mater
– volume: 287
  year: 2021
  article-title: Research on application feasibility of limestone in sublayer of doublelayer permeable asphalt pavement
  publication-title: Construct Build Mater
– start-page: 10338
  year: 2017
  article-title: A method based on machine learning using hand‐crafted features for crack detection from asphalt pavement surface images
  publication-title: Proc SPIE Int Soc Opt Eng
– volume: 144
  issue: 2
  year: 2018
  article-title: Pavement cracking detection based on three‐dimensional data using improved active contour model
  publication-title: J Transp Eng B: Pavements
– volume: 32
  issue: 5
  year: 2018
  article-title: Deep learning‐based fully automated pavement crack detection on 3D asphalt surfaces with an improved CrackNet
  publication-title: J Comput Civil Eng
– volume: 34
  start-page: 713
  issue: 8
  year: 2019
  end-page: 727
  article-title: Encoder–decoder network for pixel‐level road crack detection in black‐box images
  publication-title: Comput Aided Civ Inf Eng
– volume: 34
  start-page: 213
  issue: 3
  year: 2019
  end-page: 229
  article-title: Automated pixel‐level pavement crack detection on 3D asphalt surfaces with a recurrent neural network
  publication-title: Comput Aided Civ Inf Eng
– volume: 184
  issue: 1
  year: 2021
  article-title: Pixel‐level pavement crack segmentation with encoder‐decoder network
  publication-title: Measurement
– volume: 48
  start-page: 853
  year: 2013
  end-page: 857
  article-title: Pavement crack classification based on tensor factorization
  publication-title: Construct Build Mater
– volume: 32
  issue: 5
  year: 2018
  article-title: Image processing‐based classification of asphalt pavement cracks using support vector machine optimized by artificial bee colony
  publication-title: J Comput Civil Eng
– volume: 240
  year: 2020
  article-title: Characterization of agglomeration of reclaimed asphalt pavement for cold recycling
  publication-title: Construct Build Mater
– volume: 206
  start-page: 35
  year: 2019
  end-page: 45
  article-title: Three‐dimensional micromechanical pavement model development for the study of block cracking
  publication-title: Construct Build Mater
– volume: 1
  start-page: 275
  issue: 4
  year: 1993
  end-page: 291
  article-title: A neural network‐based methodology for pavement crack detection and classification
  publication-title: Transport Res Part C
– start-page: 26
  issue: 11
  year: 2019
  article-title: Detecting concealed damage in asphalt pavement based on a composite lead zirconate titanate/polyvinylidene fluoride aggregate
  publication-title: Struct Control Health Monit
– volume: 26
  issue: 5
  year: 2017
  article-title: Detection of pavement cracks using tiled fuzzy Hough transform
  publication-title: J Electron Imag
– volume: 27
  issue: 8
  year: 2020
  article-title: CrackU‐net: a novel deep convolutional neural network for pixelwise pavement crack detection
  publication-title: Struct Control Health Monit
– volume: 26
  issue: 1
  year: 2019
– volume: 262
  year: 2020
  article-title: Mechanical performance study of pervious concrete using steel slag aggregate through laboratory tests and numerical simulation
  publication-title: J Clean Prod
– volume: 1940
  start-page: 55
  year: 2005
  end-page: 62
  article-title: Statistical analysis of automated versus manual pavement condition surveys
  publication-title: Transp Res Rec
– volume: 236
  issue: 1
  year: 2017
  article-title: Crack identification for rigid pavements using unmanned aerial vehicles
  publication-title: IOP Conf Ser: Mater Sci Eng
– volume: 113
  year: 2020
  article-title: Integrating three‐dimensional road design and pavement structure analysis based on BIM
  publication-title: Autom Construct
– volume: 146
  start-page: 775
  year: 2017
  end-page: 787
  article-title: Recognition, location, measurement, and 3D reconstruction of concealed cracks using convolutional neural networks
  publication-title: Construct Build Mater
– volume: 56
  start-page: 68
  issue: 4
  year: 2017
  end-page: 74
  article-title: Crack detection for bituminous pavements based on cluster and minimum spanning tree
  publication-title: Zhongshan Daxue Xuebao/Acta Scientiarum Natralium Universitatis Sunyatseni
– year: 2017
– volume: 283
  start-page: 124583
  issue: 10
  year: 2021
  article-title: LCA and LCCA based multi‐objective optimization of pavement maintenance
  publication-title: J Clean Prod
– ident: e_1_2_10_23_1
  doi: 10.1016/j.imavis.2005.05.017
– ident: e_1_2_10_52_1
  doi: 10.1016/j.jhydrol.2021.126028
– ident: e_1_2_10_46_1
  doi: 10.1016/j.conbuildmat.2019.117426
– ident: e_1_2_10_61_1
  doi: 10.1109/CVPR.2016.90
– volume: 56
  start-page: 68
  issue: 4
  year: 2017
  ident: e_1_2_10_35_1
  article-title: Crack detection for bituminous pavements based on cluster and minimum spanning tree
  publication-title: Zhongshan Daxue Xuebao/Acta Scientiarum Natralium Universitatis Sunyatseni
– ident: e_1_2_10_31_1
  doi: 10.1155/2018/6290498
– ident: e_1_2_10_20_1
  doi: 10.1016/j.conbuildmat.2013.07.091
– volume-title: Very deep convolutional networks for large‐scale image recognition
  year: 2014
  ident: e_1_2_10_60_1
– ident: e_1_2_10_43_1
  doi: 10.1061/9780784480922.015
– ident: e_1_2_10_41_1
  doi: 10.1109/TIP.2018.2878966
– ident: e_1_2_10_19_1
– ident: e_1_2_10_4_1
  doi: 10.1016/j.conbuildmat.2020.119332
– ident: e_1_2_10_11_1
  doi: 10.1016/j.autcon.2020.103152
– ident: e_1_2_10_34_1
  doi: 10.1061/(ASCE)CP.1943-5487.0000781
– ident: e_1_2_10_53_1
  doi: 10.1111/mice.12297
– ident: e_1_2_10_55_1
  doi: 10.1111/mice.12409
– ident: e_1_2_10_8_1
  doi: 10.1016/j.jclepro.2020.121208
– ident: e_1_2_10_45_1
  doi: 10.1016/j.jclepro.2020.121733
– ident: e_1_2_10_51_1
  doi: 10.1016/j.jclepro.2020.125135
– ident: e_1_2_10_26_1
  doi: 10.3141/2024-09
– ident: e_1_2_10_25_1
  doi: 10.1016/j.imavis.2016.11.018
– ident: e_1_2_10_17_1
  doi: 10.1061/JPEODX.0000028
– ident: e_1_2_10_44_1
  doi: 10.1016/j.imavis.2011.10.003
– ident: e_1_2_10_58_1
  doi: 10.1016/j.measurement.2021.109914
– volume: 35
  start-page: 622
  issue: 5
  year: 2014
  ident: e_1_2_10_22_1
  article-title: Pavement Crack Detection Algorithm Based on Sub‐Region and Multi‐Scale Analysis
  publication-title: Dongbei Daxue Xuebao/Journal of Northeastern University
– ident: e_1_2_10_39_1
  doi: 10.1088/1757-899X/236/1/012101
– volume: 26
  start-page: 70
  issue: 3
  year: 2013
  ident: e_1_2_10_24_1
  article-title: Edge detection based on 2D Rosin threshold method in road crack images
  publication-title: Zhongguo Gonglu Xuebao/China Journal of Highway and Transport
– ident: e_1_2_10_5_1
  doi: 10.1016/j.conbuildmat.2019.117912
– ident: e_1_2_10_7_1
  doi: 10.1016/j.conbuildmat.2020.121899
– ident: e_1_2_10_42_1
  doi: 10.1002/stc.2551
– start-page: 10338
  year: 2017
  ident: e_1_2_10_37_1
  article-title: A method based on machine learning using hand‐crafted features for crack detection from asphalt pavement surface images
  publication-title: Proc SPIE Int Soc Opt Eng
– volume: 6
  start-page: 56
  year: 1993
  ident: e_1_2_10_12_1
  article-title: Algorithm for crack detection in automated pavement analysis
  publication-title: Proc Infrastruct Plann Manag
– ident: e_1_2_10_6_1
  doi: 10.1016/j.conbuildmat.2021.123051
– ident: e_1_2_10_33_1
  doi: 10.1016/0968-090X(93)90002-W
– volume-title: Automated crack detection system implementation in ARAN
  year: 1993
  ident: e_1_2_10_14_1
– ident: e_1_2_10_47_1
  doi: 10.1016/j.jclepro.2020.124583
– ident: e_1_2_10_10_1
  doi: 10.1016/j.jclepro.2020.120629
– ident: e_1_2_10_40_1
  doi: 10.1016/j.jclepro.2020.121467
– ident: e_1_2_10_3_1
  doi: 10.1016/j.conbuildmat.2021.122457
– volume: 35
  start-page: 1
  issue: 2
  year: 2018
  ident: e_1_2_10_30_1
  article-title: A novel method for asphalt pavement crack classification based on image processing and machine learning
  publication-title: Eng Comput
– ident: e_1_2_10_57_1
  doi: 10.1002/stc.2286
– ident: e_1_2_10_9_1
  doi: 10.1016/j.jclepro.2020.124447
– ident: e_1_2_10_56_1
  doi: 10.1111/mice.12440
– ident: e_1_2_10_18_1
  doi: 10.1016/j.conbuildmat.2019.01.137
– ident: e_1_2_10_50_1
  doi: 10.1109/ICTIS.2017.8047878
– start-page: 10338
  year: 2017
  ident: e_1_2_10_29_1
  article-title: Development of a classification method for a crack on a pavement surface images using machine learning
  publication-title: Proc SPIE Int Soc Opt Eng
– ident: e_1_2_10_38_1
  doi: 10.1002/stc.2452
– ident: e_1_2_10_49_1
  doi: 10.1002/stc.2381e2381
– volume: 7251
  start-page: 72510A
  year: 2009
  ident: e_1_2_10_27_1
  article-title: Introduction of a wavelet transform based on 2D matched filter in a Markov random field for fine structure extraction: application on road crack detection
  publication-title: Proc SPIE Int Soc Opt Eng
– volume-title: Batch normalization: accelerating deep network training by reducing internal covariate shift
  year: 2015
  ident: e_1_2_10_59_1
– ident: e_1_2_10_16_1
  doi: 10.1177/0361198105194000107
– ident: e_1_2_10_48_1
  doi: 10.1007/978-3-662-56689-3_7
– volume: 6
  start-page: 277
  year: 1993
  ident: e_1_2_10_13_1
  article-title: Evaluation of two automated thresholding techniques for pavement images
  publication-title: Proc Infrastruct Plann Manag
– ident: e_1_2_10_32_1
  doi: 10.1016/j.conbuildmat.2017.04.097
– ident: e_1_2_10_2_1
  doi: 10.1016/j.conbuildmat.2020.118099
– ident: e_1_2_10_28_1
  doi: 10.1117/1.JEI.26.5.053008
– ident: e_1_2_10_21_1
  doi: 10.1109/ICIP.1995.529742
– ident: e_1_2_10_15_1
  doi: 10.1061/(ASCE)0733-947X(1994)120:4(552)
– volume-title: Deep Learning with Keras
  year: 2017
  ident: e_1_2_10_62_1
– ident: e_1_2_10_36_1
  doi: 10.1155/2018/5989246
– ident: e_1_2_10_54_1
  doi: 10.1061/(ASCE)CP.1943-5487.0000775
SSID ssj0026285
Score 2.45246
Snippet Summary Explicit gaps exist between the advanced deep learning technologies and the less satisfied pixel‐level crack detection algorithms. Therefore, this...
Explicit gaps exist between the advanced deep learning technologies and the less satisfied pixel‐level crack detection algorithms. Therefore, this research...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Artificial neural networks
Asphalt
Cameras
Concrete
Concrete pavements
Deep learning
Image processing
Image quality
Image segmentation
Machine learning
Neural networks
pavement cracks
pixel‐level crack detection
Semantic segmentation
Semantics
U‐net
Title Pixelwise asphalt concrete pavement crack detection via deep learning‐based semantic segmentation method
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fstc.2974
https://www.proquest.com/docview/2683794637
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1545-2263
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0026285
  issn: 1545-2255
  databaseCode: ADMLS
  dateStart: 20120801
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1545-2255
  databaseCode: DR2
  dateStart: 20020101
  customDbUrl:
  isFulltext: true
  eissn: 1545-2263
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0026285
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQXOBAKRSVQpErIThlyXptb3JEPISqgqruIq3EIfJjjJZHWJHwECd-Ar-RX9KxkyxQgVRxykNjxfHYnm-SmW8IWTMuEcyBixS4JEJ7nEaJ0mlkhGbgyT5YyK84OJT7R_znQAzqqEqfC1PxQ4w_uPmVEfZrv8CVLjafSUMLz0CIaBi333ZHBm_qz5g5ivnMwECVykWEU1Y0vLMx22wavrZEz_DyJUgNVmbvEzlu-lcFl5y1rkvdMvf_UDd-7AXmyGwNPulWNVs-kwnI58nMC0rCBXL6e3gH57fDAqgqRv5nOkWPGaFlCXSkArk43rlS5oxaKEMcV05vhgqvYETrGhQnTw-P3jxaWsAFqm5o8OTkok5zymlVtvoLOdrb7W_vR3U9hsggiOCRd-VsnDjDNQcwKTPG8kSnKkU72FVt5YDFMrbOSSeZS0zHxV0lpLNcGmtEZ5FM5pc5fCU0ddomwiK6EpZblmpwsq2MbINxlrHuEtlodJOZmqzc18w4zyqaZZbh6GV-9JbIj7HkqCLoeENmpVFvVi_RImMSffOUyw4-bD3o6d32Wa-_7Y_f_ldwmUwznyYRAgVXyGR5dQ3fEbyUepVMbe0c_Oqthun6FwTm8ms
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xOEAPfaNuS4uRKjgFsl7bm6inChUtFBCii8ShUuTYY7SFTVcktBUnfkJ_Y39Jx06yUESlqqc8ZCuOx5P5xpn5BuCtcYnkDl2k0SUR2eM0SnSeRkbmHD3ZBw_5FfsHanAsdk_kyQy8a3Nhan6I6Yab14zwvfYK7jekN29YQ0tPQUhweBbmhSI3xSOioyl3FPe5gYEsVciIFq1smWdjvtn2_NMW3QDM2zA12JntR_C5HWEdXnK2cVnlG-bqDnnjf77CY3jY4E_2vl4wT2AGi6fw4BYr4TP4cjj6geffRyUyXU78_3RGTjOhywrZRAd-cbpzoc0Zs1iFUK6CfRtpusIJa8pQnP66_uktpGUljkl6I0Mnp-Mm06lgdeXq53C8_WG4NYiakgyRIRwhIu_N2ThxRuQC0aTcGCuSPNUpmcK-7mqHPFaxdU45xV1iei7ua6mcFcpYI3tLMFd8LfAFsNTlNpGWAJa0wvI0R6e62qguGmc573dgvRVOZhq-cl824zyrmZZ5RrOX-dnrwOq05aTm6LinzXIr36zR0jLjitzzVKgePWwtCOqv_bNPwy1_fPmvDVdgYTDc38v2dg4-voJF7rMmQtzgMsxVF5f4mrBMlb8Ja_Y3fH_0-A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RKqH2QAttVSgPIyF6CmS9tjcWJwSsoDyEKEgcKkWOPUZbIEQkUMSJn9DfyC_BdpKFVq1U9ZSHxkriGWe-SWa-AVjUNuHUoo0U2iRy_lhGicpkpHlG0ZN90FBfsbcvto7ZlxN-MgKrbS1MzQ8x_ODmV0Z4X_sFjoWxK0-soaWnIHRw-AW8ZFwmPp9v43DIHUV9bWAgS2U8ckbLW-bZmK60I3_1RU8A8zlMDX6m_wa-tXdYp5ecLV9X2bK--4288T8f4S2MN_iTrNUGMwEjmE_C62eshO_g-8HgFs9_DEokqiz8_3TigmaHLiskhQr84u7MldJnxGAVUrlycjNQ7ggL0rShOH24_-k9pCElXjjtDbTbOb1oKp1yUneufg_H_c2j9a2oackQaYcjWOSjORMnVrOMIWpJtTYsyaSSzhX2VEdZpLGIjbXCCmoT3bVxT3FhDRPaaN79AKP5ZY4fgUibmYQbB7C4YYbKDK3oKC06qK2htDcFn1vlpLrhK_dtM87TmmmZpm72Uj97U7AwlCxqjo4_yMy0-k2bVVqmVLjwXDLRdRdbCor66_j069G6307_q-A8jB1s9NPd7f2dT_CK-qKJkDY4A6PV1TXOOihTZXPBZB8BNZH0fA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pixelwise+asphalt+concrete+pavement+crack+detection+via+deep+learning%E2%80%90based+semantic+segmentation+method&rft.jtitle=Structural+control+and+health+monitoring&rft.au=Huyan%2C+Ju&rft.au=Ma%2C+Tao&rft.au=Li%2C+Wei&rft.au=Yang%2C+Handuo&rft.date=2022-08-01&rft.issn=1545-2255&rft.eissn=1545-2263&rft.volume=29&rft.issue=8&rft_id=info:doi/10.1002%2Fstc.2974&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_stc_2974
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-2255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-2255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-2255&client=summon