Pixelwise asphalt concrete pavement crack detection via deep learning‐based semantic segmentation method
Summary Explicit gaps exist between the advanced deep learning technologies and the less satisfied pixel‐level crack detection algorithms. Therefore, this research sought to bridge this gap via outlining the deep neural network model for pixelwise pavement crack detection. Two state‐of‐the‐art deep...
        Saved in:
      
    
          | Published in | Structural control and health monitoring Vol. 29; no. 8 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Pavia
          John Wiley & Sons, Inc
    
        01.08.2022
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1545-2255 1545-2263  | 
| DOI | 10.1002/stc.2974 | 
Cover
| Abstract | Summary
Explicit gaps exist between the advanced deep learning technologies and the less satisfied pixel‐level crack detection algorithms. Therefore, this research sought to bridge this gap via outlining the deep neural network model for pixelwise pavement crack detection. Two state‐of‐the‐art deep neural network models are constructed for the semantic segmentation of crack images. The first architecture, VGGCrackU‐net, is composed of 10
3×3 convolutional layers, 4 max‐pooling layers, 4 up‐sampling layers, and 4 concatenate operations. Another architecture, ResCrackU‐net, is composed of 7‐level residual units with a total of 22 convolutional layers. Asphalt concrete pavement crack images are collected by smartphones, action cameras, and automatic pavement monitoring systems from diverse functional classes of AC pavements. The crack images are manually labeled and double‐checked by trained operators for quality insurance. After that, 500 crack images are randomly divided into training, validating, and test datasets according to the ratio of 3:1:1. Both architectures are trained on GPU facilitated Keras platform with Python version of 3.5, which demonstrated fast convergence. Results prove that the proposed models exhibit significant advantages for pixelwise crack detection when compared with the performance of widely used FCN net and PSPnet. Meanwhile, ResCrackU‐net slightly outperforms VGGCrackU‐net, which, however, can provide acceptable results as well. Though significant false negative and false positive errors are observed in both network models, the contributions are noticeable, which can provide innovative guidance for future work in figuring out solutions to the problems. | 
    
|---|---|
| AbstractList | Explicit gaps exist between the advanced deep learning technologies and the less satisfied pixel‐level crack detection algorithms. Therefore, this research sought to bridge this gap via outlining the deep neural network model for pixelwise pavement crack detection. Two state‐of‐the‐art deep neural network models are constructed for the semantic segmentation of crack images. The first architecture, VGGCrackU‐net, is composed of 10 3×3 convolutional layers, 4 max‐pooling layers, 4 up‐sampling layers, and 4 concatenate operations. Another architecture, ResCrackU‐net, is composed of 7‐level residual units with a total of 22 convolutional layers. Asphalt concrete pavement crack images are collected by smartphones, action cameras, and automatic pavement monitoring systems from diverse functional classes of AC pavements. The crack images are manually labeled and double‐checked by trained operators for quality insurance. After that, 500 crack images are randomly divided into training, validating, and test datasets according to the ratio of 3:1:1. Both architectures are trained on GPU facilitated Keras platform with Python version of 3.5, which demonstrated fast convergence. Results prove that the proposed models exhibit significant advantages for pixelwise crack detection when compared with the performance of widely used FCN net and PSPnet. Meanwhile, ResCrackU‐net slightly outperforms VGGCrackU‐net, which, however, can provide acceptable results as well. Though significant false negative and false positive errors are observed in both network models, the contributions are noticeable, which can provide innovative guidance for future work in figuring out solutions to the problems. Summary Explicit gaps exist between the advanced deep learning technologies and the less satisfied pixel‐level crack detection algorithms. Therefore, this research sought to bridge this gap via outlining the deep neural network model for pixelwise pavement crack detection. Two state‐of‐the‐art deep neural network models are constructed for the semantic segmentation of crack images. The first architecture, VGGCrackU‐net, is composed of 10 3×3 convolutional layers, 4 max‐pooling layers, 4 up‐sampling layers, and 4 concatenate operations. Another architecture, ResCrackU‐net, is composed of 7‐level residual units with a total of 22 convolutional layers. Asphalt concrete pavement crack images are collected by smartphones, action cameras, and automatic pavement monitoring systems from diverse functional classes of AC pavements. The crack images are manually labeled and double‐checked by trained operators for quality insurance. After that, 500 crack images are randomly divided into training, validating, and test datasets according to the ratio of 3:1:1. Both architectures are trained on GPU facilitated Keras platform with Python version of 3.5, which demonstrated fast convergence. Results prove that the proposed models exhibit significant advantages for pixelwise crack detection when compared with the performance of widely used FCN net and PSPnet. Meanwhile, ResCrackU‐net slightly outperforms VGGCrackU‐net, which, however, can provide acceptable results as well. Though significant false negative and false positive errors are observed in both network models, the contributions are noticeable, which can provide innovative guidance for future work in figuring out solutions to the problems.  | 
    
| Author | Li, Wei Huyan, Ju Ma, Tao Yang, Handuo Xu, Zhengchao  | 
    
| Author_xml | – sequence: 1 givenname: Ju surname: Huyan fullname: Huyan, Ju organization: Southeast University – sequence: 2 givenname: Tao orcidid: 0000-0002-7963-9370 surname: Ma fullname: Ma, Tao email: matao@seu.edu.cn organization: Southeast University – sequence: 3 givenname: Wei orcidid: 0000-0003-4508-3076 surname: Li fullname: Li, Wei organization: Chang'an University – sequence: 4 givenname: Handuo surname: Yang fullname: Yang, Handuo organization: Southeast University – sequence: 5 givenname: Zhengchao surname: Xu fullname: Xu, Zhengchao organization: Chang'an University  | 
    
| BookMark | eNp1kE1OwzAQhS0EEm1B4giR2LBJcWzHSZao4k-qBBJlHbn2uHVJnWCnLd1xBM7ISXAbxALBat6Mvjczen10aGsLCJ0leJhgTC59K4ekyNgB6iUpS2NCOD380Wl6jPreLwLJSZ720OLRvEG1MR4i4Zu5qNpI1lY6aCFqxBqWYMPECfkSqTCTralttDYidNBEFQhnjZ19vn9MhQcVeVgK2xoZxGxnFXt-Ce28VifoSIvKw-l3HaDnm-vJ6C4eP9zej67GsSSEspgzliuca8mmDEAWRErF8mkhCoppJhKhgWCOldZcc6JzSTXORMq1YlwqmdIBOu_2Nq5-XYFvy0W9cjacLAnPaVYwTrNADTtKutp7B7qUpnu3dcJUZYLLXZ5lyLPc5RkMF78MjTNL4bZ_oXGHbkwF23-58mky2vNf9p2KHA | 
    
| CitedBy_id | crossref_primary_10_1016_j_autcon_2024_105682 crossref_primary_10_1080_10298436_2023_2246096 crossref_primary_10_1016_j_ijrmms_2025_106038 crossref_primary_10_1109_TITS_2024_3511036 crossref_primary_10_1016_j_measurement_2022_112427 crossref_primary_10_1016_j_engappai_2024_108312 crossref_primary_10_1186_s40537_024_00981_y crossref_primary_10_1109_JSEN_2023_3267834 crossref_primary_10_1016_j_autcon_2024_105772 crossref_primary_10_1038_s41598_025_90924_1 crossref_primary_10_1016_j_autcon_2024_105297 crossref_primary_10_1016_j_autcon_2024_105770 crossref_primary_10_3390_electronics12020255 crossref_primary_10_1080_10298436_2024_2402838 crossref_primary_10_1016_j_autcon_2024_105612 crossref_primary_10_1155_2023_6932621 crossref_primary_10_3390_app14188100 crossref_primary_10_1016_j_kscej_2025_100203 crossref_primary_10_1016_j_autcon_2022_104666 crossref_primary_10_1016_j_autcon_2023_105112 crossref_primary_10_1007_s00521_023_08277_7 crossref_primary_10_1080_17445760_2024_2405966 crossref_primary_10_1109_JIOT_2025_3527233 crossref_primary_10_1016_j_displa_2024_102787 crossref_primary_10_3390_drones7020143 crossref_primary_10_1016_j_heliyon_2024_e26142 crossref_primary_10_1016_j_engstruct_2024_118171  | 
    
| Cites_doi | 10.1016/j.imavis.2005.05.017 10.1016/j.jhydrol.2021.126028 10.1016/j.conbuildmat.2019.117426 10.1109/CVPR.2016.90 10.1155/2018/6290498 10.1016/j.conbuildmat.2013.07.091 10.1061/9780784480922.015 10.1109/TIP.2018.2878966 10.1016/j.conbuildmat.2020.119332 10.1016/j.autcon.2020.103152 10.1061/(ASCE)CP.1943-5487.0000781 10.1111/mice.12297 10.1111/mice.12409 10.1016/j.jclepro.2020.121208 10.1016/j.jclepro.2020.121733 10.1016/j.jclepro.2020.125135 10.3141/2024-09 10.1016/j.imavis.2016.11.018 10.1061/JPEODX.0000028 10.1016/j.imavis.2011.10.003 10.1016/j.measurement.2021.109914 10.1088/1757-899X/236/1/012101 10.1016/j.conbuildmat.2019.117912 10.1016/j.conbuildmat.2020.121899 10.1002/stc.2551 10.1016/j.conbuildmat.2021.123051 10.1016/0968-090X(93)90002-W 10.1016/j.jclepro.2020.124583 10.1016/j.jclepro.2020.120629 10.1016/j.jclepro.2020.121467 10.1016/j.conbuildmat.2021.122457 10.1002/stc.2286 10.1016/j.jclepro.2020.124447 10.1111/mice.12440 10.1016/j.conbuildmat.2019.01.137 10.1109/ICTIS.2017.8047878 10.1002/stc.2452 10.1002/stc.2381e2381 10.1177/0361198105194000107 10.1007/978-3-662-56689-3_7 10.1016/j.conbuildmat.2017.04.097 10.1016/j.conbuildmat.2020.118099 10.1117/1.JEI.26.5.053008 10.1109/ICIP.1995.529742 10.1061/(ASCE)0733-947X(1994)120:4(552) 10.1155/2018/5989246 10.1061/(ASCE)CP.1943-5487.0000775  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2022 John Wiley & Sons, Ltd. | 
    
| Copyright_xml | – notice: 2022 John Wiley & Sons, Ltd. | 
    
| DBID | AAYXX CITATION 7ST 8FD C1K FR3 KR7 SOI  | 
    
| DOI | 10.1002/stc.2974 | 
    
| DatabaseName | CrossRef Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts Environment Abstracts  | 
    
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Environment Abstracts Environmental Sciences and Pollution Management  | 
    
| DatabaseTitleList | Civil Engineering Abstracts | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1545-2263 | 
    
| EndPage | n/a | 
    
| ExternalDocumentID | 10_1002_stc_2974 STC2974  | 
    
| Genre | article | 
    
| GrantInformation_xml | – fundername: Fundamental Research Funds for the Central University of China funderid: 300102249306; 300102249301 – fundername: National Key R&D Program of China funderid: 2021YFB2600600; 2021YFB2600604 – fundername: National Natural Science Foundation of China funderid: 52108403  | 
    
| GroupedDBID | .3N .GA .Y3 05W 0R~ 123 1L6 1OC 24P 31~ 33P 3SF 3WU 4.4 50Y 50Z 52M 52O 52T 52U 52W 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAJEY AANHP AAONW AASGY AAXRX AAZKR ABCUV ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCMX ACCZN ACGFO ACGFS ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFZJQ AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F21 FEDTE G-S G.N GNP GODZA GROUPED_DOAJ H.T H.X H13 HBH HF~ HHY HVGLF HZ~ IX1 KQQ LATKE LAW LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2W P2X P4D Q.N QB0 QRW R.K RHX ROL RWI RX1 RYL SUPJJ UB1 V2E V8K W8V W99 WBKPD WIH WIK WLBEL WOHZO WYISQ XV2 ~IA ~WT AAMMB AAYXX ABJCF ADMLS AEFGJ AEUYN AFKRA AGQPQ AGXDD AIDQK AIDYY BENPR BGLVJ CCPQU CITATION HCIFZ M7S PHGZM PHGZT PQGLB PTHSS 1OB 7ST 8FD C1K FR3 KR7 SOI  | 
    
| ID | FETCH-LOGICAL-c2234-6448d08fc4b4eec92ccd48b9a93037a1afe2060dff6f62f8c3f07a56fd46cdc53 | 
    
| IEDL.DBID | DR2 | 
    
| ISSN | 1545-2255 | 
    
| IngestDate | Wed Aug 13 07:32:12 EDT 2025 Wed Oct 01 04:44:11 EDT 2025 Thu Apr 24 23:04:14 EDT 2025 Wed Jan 22 16:24:23 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 8 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c2234-6448d08fc4b4eec92ccd48b9a93037a1afe2060dff6f62f8c3f07a56fd46cdc53 | 
    
| Notes | Funding information Fundamental Research Funds for the Central University of China, Grant/Award Numbers: 300102249306, 300102249301; National Key R&D Program of China, Grant/Award Numbers: 2021YFB2600600, 2021YFB2600604; National Natural Science Foundation of China, Grant/Award Number: 52108403 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-7963-9370 0000-0003-4508-3076  | 
    
| PQID | 2683794637 | 
    
| PQPubID | 2034347 | 
    
| PageCount | 21 | 
    
| ParticipantIDs | proquest_journals_2683794637 crossref_citationtrail_10_1002_stc_2974 crossref_primary_10_1002_stc_2974 wiley_primary_10_1002_stc_2974_STC2974  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | August 2022 2022-08-00 20220801  | 
    
| PublicationDateYYYYMMDD | 2022-08-01 | 
    
| PublicationDate_xml | – month: 08 year: 2022 text: August 2022  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Pavia | 
    
| PublicationPlace_xml | – name: Pavia | 
    
| PublicationTitle | Structural control and health monitoring | 
    
| PublicationYear | 2022 | 
    
| Publisher | John Wiley & Sons, Inc | 
    
| Publisher_xml | – name: John Wiley & Sons, Inc | 
    
| References | 2013; 26 2020; 240 2021; 289 2020; 241 2021; 283 2021; 282 2021; 287 2019; 206 1993; 1 2017; 236 2005; 23 1993; 6 2021; 279 2017; 32 2007; 2024 2019; 26 2020; 259 2009; 7251 2019; 28 2021; 272 2020; 255 1996; 1 2021; 595 2018; 32 2011; 29 2018; 35 2018; 144 2013; 48 2020; 262 2017; 26 2011 2020; 263 2019; 34 2020; 269 2021; 184 1993 2018; 2018 1994; 120 2017; 57 2017; 56 2019 2020; 27 2018 2014; 35 2017 2016 2015 2020; 113 2014 2020; 234 2017; 146 2005; 1940 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 Chambon S (e_1_2_10_27_1) 2009; 7251 e_1_2_10_2_1 Ioffe S (e_1_2_10_59_1) 2015 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_55_1 e_1_2_10_8_1 Kaseko M (e_1_2_10_13_1) 1993; 6 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_51_1 Hizukuri A (e_1_2_10_29_1) 2017 e_1_2_10_61_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_45_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 Ginsberg MD (e_1_2_10_12_1) 1993; 6 Lu ZW (e_1_2_10_22_1) 2014; 35 Gulli A (e_1_2_10_62_1) 2017 Zhang D (e_1_2_10_35_1) 2017; 56 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_54_1 Simonyan K (e_1_2_10_60_1) 2014 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_9_1 e_1_2_10_10_1 e_1_2_10_33_1 Liu Y (e_1_2_10_24_1) 2013; 26 e_1_2_10_31_1 Klassen G (e_1_2_10_14_1) 1993 e_1_2_10_50_1 Hoang ND (e_1_2_10_30_1) 2018; 35 Fujita Y (e_1_2_10_37_1) 2017 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_26_1 e_1_2_10_47_1  | 
    
| References_xml | – volume: 289 issue: 20 year: 2021 article-title: Preparation and evaluation of cooling asphalt concrete modified with SBS and tourmaline anion powder publication-title: J Clean Prod – volume: 7251 year: 2009 article-title: Introduction of a wavelet transform based on 2D matched filter in a Markov random field for fine structure extraction: application on road crack detection publication-title: Proc SPIE Int Soc Opt Eng – start-page: 10338 year: 2017 article-title: Development of a classification method for a crack on a pavement surface images using machine learning publication-title: Proc SPIE Int Soc Opt Eng – volume: 32 start-page: 805 issue: 10 year: 2017 end-page: 819 article-title: Automated pixel‐level pavement crack detection on 3D asphalt surfaces using a deep‐learning network publication-title: Comput Aided Civ Inf Eng – volume: 23 start-page: 921 issue: 10 year: 2005 end-page: 933 article-title: A robust approach for automatic detection and segmentation of cracks in underground pipeline images publication-title: Image Vis Comput – volume: 255 year: 2020 article-title: Molecular dynamics simulation of distribution and adhesion of asphalt components on steel slag publication-title: Construct Build Mater – start-page: 770 year: 2016 end-page: 778 – volume: 241 year: 2020 article-title: Fatigue resistance of aged asphalt binders: An investigation of different analytical methods in linear amplitude sweep test publication-title: Construct Build Mater – volume: 6 start-page: 56 year: 1993 end-page: 60 article-title: Algorithm for crack detection in automated pavement analysis publication-title: Proc Infrastruct Plann Manag – volume: 26 issue: 8 year: 2019 article-title: Image‐based concrete crack assessment using mask and region‐based convolutional neural network publication-title: Struct Control Health Monit – volume: 2024 start-page: 73 issue: 1 year: 2007 end-page: 81 article-title: Wavelet‐based pavement distress image edge detection with a trous algorithm publication-title: Transp Res Rec – volume: 6 start-page: 277 year: 1993 end-page: 281 article-title: Evaluation of two automated thresholding techniques for pavement images publication-title: Proc Infrastruct Plann Manag – volume: 29 start-page: 861 issue: 12 year: 2011 end-page: 872 article-title: FoSA: F* seed‐growing approach for crack‐line detection from pavement images publication-title: Image Vis Comput – volume: 26 start-page: 70 issue: 3 year: 2013 end-page: 76 article-title: Edge detection based on 2D Rosin threshold method in road crack images publication-title: Zhongguo Gonglu Xuebao/China Journal of Highway and Transport – volume: 2018 start-page: 16 issue: 1 year: 2018 article-title: Automatic recognition of asphalt pavement cracks based on image processing and machine learning approaches: a comparative study on classifier performance publication-title: Math Probl Eng – volume: 234 year: 2020 article-title: Evaluation of optimum mixing conditions for rubberized asphalt mixture containing reclaimed asphalt pavement publication-title: Construct Build Mater – volume: 282 year: 2021 article-title: Recycling of steel slag aggregate in portland cement concrete: An overview publication-title: J Clean Prod – start-page: 82 year: 2018 end-page: 89 – volume: 28 start-page: 1498 issue: 3 year: 2019 end-page: 1512 article-title: DeepCrack: learning hierarchical convolutional features for crack detection publication-title: IEEE Trans Image Process – volume: 263 issue: 1 year: 2020 article-title: Microstructure of synthetic composite interfaces and verification of mixing order in cold‐recycled asphalt emulsion mixture publication-title: J Clean Prod – year: 2014 – volume: 269 issue: 1 year: 2020 article-title: Application of steel slag in cement treated aggregate base course publication-title: J Clean Prod – volume: 595 year: 2021 article-title: DEM‐CFD simulation on clogging and degradation of air voids in double‐layer porous asphalt pavement under rainfall publication-title: J Hydrol – volume: 259 year: 2020 article-title: A multiphysics evaluation of the rejuvenator effects on aged asphalt using molecular dynamics simulations publication-title: J Clean Prod – start-page: 11 year: 2011 end-page: 16 – volume: 1 start-page: 446 year: 1996 end-page: 449 article-title: Markov random field for rectilinear structure extraction in pavement distress image analysis publication-title: IEEE Intl Conf Image Process – volume: 35 start-page: 622 issue: 5 year: 2014 end-page: 625 article-title: Pavement Crack Detection Algorithm Based on Sub‐Region and Multi‐Scale Analysis publication-title: Dongbei Daxue Xuebao/Journal of Northeastern University – year: 1993 – year: 2015 – volume: 120 start-page: 552 issue: 4 year: 1994 end-page: 569 article-title: Comparison of traditional and neural classifiers for pavement‐crack detection publication-title: J Transport Eng – volume: 2018 start-page: 17 issue: 1 year: 2018 article-title: Fast local laplacian‐based steerable and sobel filters integrated with adaptive boosting classification tree for automatic recognition of asphalt pavement cracks publication-title: Adv Civil Eng – volume: 35 start-page: 1 issue: 2 year: 2018 end-page: 12 article-title: A novel method for asphalt pavement crack classification based on image processing and machine learning publication-title: Eng Comput – volume: 272 year: 2021 article-title: Fatigue crack density of asphalt binders under controlled‐stress rotational shear load testing publication-title: Construct Build Mater – volume: 57 start-page: 130 year: 2017 end-page: 146 article-title: An efficient and reliable coarse‐to‐fine approach for asphalt pavement crack detection publication-title: Image Vis Comput – volume: 279 year: 2021 article-title: A feasibility study exploring limestone in porous asphalt concrete: Performance evaluation and superpave compaction characteristics publication-title: Construct Build Mater – volume: 287 year: 2021 article-title: Research on application feasibility of limestone in sublayer of doublelayer permeable asphalt pavement publication-title: Construct Build Mater – start-page: 10338 year: 2017 article-title: A method based on machine learning using hand‐crafted features for crack detection from asphalt pavement surface images publication-title: Proc SPIE Int Soc Opt Eng – volume: 144 issue: 2 year: 2018 article-title: Pavement cracking detection based on three‐dimensional data using improved active contour model publication-title: J Transp Eng B: Pavements – volume: 32 issue: 5 year: 2018 article-title: Deep learning‐based fully automated pavement crack detection on 3D asphalt surfaces with an improved CrackNet publication-title: J Comput Civil Eng – volume: 34 start-page: 713 issue: 8 year: 2019 end-page: 727 article-title: Encoder–decoder network for pixel‐level road crack detection in black‐box images publication-title: Comput Aided Civ Inf Eng – volume: 34 start-page: 213 issue: 3 year: 2019 end-page: 229 article-title: Automated pixel‐level pavement crack detection on 3D asphalt surfaces with a recurrent neural network publication-title: Comput Aided Civ Inf Eng – volume: 184 issue: 1 year: 2021 article-title: Pixel‐level pavement crack segmentation with encoder‐decoder network publication-title: Measurement – volume: 48 start-page: 853 year: 2013 end-page: 857 article-title: Pavement crack classification based on tensor factorization publication-title: Construct Build Mater – volume: 32 issue: 5 year: 2018 article-title: Image processing‐based classification of asphalt pavement cracks using support vector machine optimized by artificial bee colony publication-title: J Comput Civil Eng – volume: 240 year: 2020 article-title: Characterization of agglomeration of reclaimed asphalt pavement for cold recycling publication-title: Construct Build Mater – volume: 206 start-page: 35 year: 2019 end-page: 45 article-title: Three‐dimensional micromechanical pavement model development for the study of block cracking publication-title: Construct Build Mater – volume: 1 start-page: 275 issue: 4 year: 1993 end-page: 291 article-title: A neural network‐based methodology for pavement crack detection and classification publication-title: Transport Res Part C – start-page: 26 issue: 11 year: 2019 article-title: Detecting concealed damage in asphalt pavement based on a composite lead zirconate titanate/polyvinylidene fluoride aggregate publication-title: Struct Control Health Monit – volume: 26 issue: 5 year: 2017 article-title: Detection of pavement cracks using tiled fuzzy Hough transform publication-title: J Electron Imag – volume: 27 issue: 8 year: 2020 article-title: CrackU‐net: a novel deep convolutional neural network for pixelwise pavement crack detection publication-title: Struct Control Health Monit – volume: 26 issue: 1 year: 2019 – volume: 262 year: 2020 article-title: Mechanical performance study of pervious concrete using steel slag aggregate through laboratory tests and numerical simulation publication-title: J Clean Prod – volume: 1940 start-page: 55 year: 2005 end-page: 62 article-title: Statistical analysis of automated versus manual pavement condition surveys publication-title: Transp Res Rec – volume: 236 issue: 1 year: 2017 article-title: Crack identification for rigid pavements using unmanned aerial vehicles publication-title: IOP Conf Ser: Mater Sci Eng – volume: 113 year: 2020 article-title: Integrating three‐dimensional road design and pavement structure analysis based on BIM publication-title: Autom Construct – volume: 146 start-page: 775 year: 2017 end-page: 787 article-title: Recognition, location, measurement, and 3D reconstruction of concealed cracks using convolutional neural networks publication-title: Construct Build Mater – volume: 56 start-page: 68 issue: 4 year: 2017 end-page: 74 article-title: Crack detection for bituminous pavements based on cluster and minimum spanning tree publication-title: Zhongshan Daxue Xuebao/Acta Scientiarum Natralium Universitatis Sunyatseni – year: 2017 – volume: 283 start-page: 124583 issue: 10 year: 2021 article-title: LCA and LCCA based multi‐objective optimization of pavement maintenance publication-title: J Clean Prod – ident: e_1_2_10_23_1 doi: 10.1016/j.imavis.2005.05.017 – ident: e_1_2_10_52_1 doi: 10.1016/j.jhydrol.2021.126028 – ident: e_1_2_10_46_1 doi: 10.1016/j.conbuildmat.2019.117426 – ident: e_1_2_10_61_1 doi: 10.1109/CVPR.2016.90 – volume: 56 start-page: 68 issue: 4 year: 2017 ident: e_1_2_10_35_1 article-title: Crack detection for bituminous pavements based on cluster and minimum spanning tree publication-title: Zhongshan Daxue Xuebao/Acta Scientiarum Natralium Universitatis Sunyatseni – ident: e_1_2_10_31_1 doi: 10.1155/2018/6290498 – ident: e_1_2_10_20_1 doi: 10.1016/j.conbuildmat.2013.07.091 – volume-title: Very deep convolutional networks for large‐scale image recognition year: 2014 ident: e_1_2_10_60_1 – ident: e_1_2_10_43_1 doi: 10.1061/9780784480922.015 – ident: e_1_2_10_41_1 doi: 10.1109/TIP.2018.2878966 – ident: e_1_2_10_19_1 – ident: e_1_2_10_4_1 doi: 10.1016/j.conbuildmat.2020.119332 – ident: e_1_2_10_11_1 doi: 10.1016/j.autcon.2020.103152 – ident: e_1_2_10_34_1 doi: 10.1061/(ASCE)CP.1943-5487.0000781 – ident: e_1_2_10_53_1 doi: 10.1111/mice.12297 – ident: e_1_2_10_55_1 doi: 10.1111/mice.12409 – ident: e_1_2_10_8_1 doi: 10.1016/j.jclepro.2020.121208 – ident: e_1_2_10_45_1 doi: 10.1016/j.jclepro.2020.121733 – ident: e_1_2_10_51_1 doi: 10.1016/j.jclepro.2020.125135 – ident: e_1_2_10_26_1 doi: 10.3141/2024-09 – ident: e_1_2_10_25_1 doi: 10.1016/j.imavis.2016.11.018 – ident: e_1_2_10_17_1 doi: 10.1061/JPEODX.0000028 – ident: e_1_2_10_44_1 doi: 10.1016/j.imavis.2011.10.003 – ident: e_1_2_10_58_1 doi: 10.1016/j.measurement.2021.109914 – volume: 35 start-page: 622 issue: 5 year: 2014 ident: e_1_2_10_22_1 article-title: Pavement Crack Detection Algorithm Based on Sub‐Region and Multi‐Scale Analysis publication-title: Dongbei Daxue Xuebao/Journal of Northeastern University – ident: e_1_2_10_39_1 doi: 10.1088/1757-899X/236/1/012101 – volume: 26 start-page: 70 issue: 3 year: 2013 ident: e_1_2_10_24_1 article-title: Edge detection based on 2D Rosin threshold method in road crack images publication-title: Zhongguo Gonglu Xuebao/China Journal of Highway and Transport – ident: e_1_2_10_5_1 doi: 10.1016/j.conbuildmat.2019.117912 – ident: e_1_2_10_7_1 doi: 10.1016/j.conbuildmat.2020.121899 – ident: e_1_2_10_42_1 doi: 10.1002/stc.2551 – start-page: 10338 year: 2017 ident: e_1_2_10_37_1 article-title: A method based on machine learning using hand‐crafted features for crack detection from asphalt pavement surface images publication-title: Proc SPIE Int Soc Opt Eng – volume: 6 start-page: 56 year: 1993 ident: e_1_2_10_12_1 article-title: Algorithm for crack detection in automated pavement analysis publication-title: Proc Infrastruct Plann Manag – ident: e_1_2_10_6_1 doi: 10.1016/j.conbuildmat.2021.123051 – ident: e_1_2_10_33_1 doi: 10.1016/0968-090X(93)90002-W – volume-title: Automated crack detection system implementation in ARAN year: 1993 ident: e_1_2_10_14_1 – ident: e_1_2_10_47_1 doi: 10.1016/j.jclepro.2020.124583 – ident: e_1_2_10_10_1 doi: 10.1016/j.jclepro.2020.120629 – ident: e_1_2_10_40_1 doi: 10.1016/j.jclepro.2020.121467 – ident: e_1_2_10_3_1 doi: 10.1016/j.conbuildmat.2021.122457 – volume: 35 start-page: 1 issue: 2 year: 2018 ident: e_1_2_10_30_1 article-title: A novel method for asphalt pavement crack classification based on image processing and machine learning publication-title: Eng Comput – ident: e_1_2_10_57_1 doi: 10.1002/stc.2286 – ident: e_1_2_10_9_1 doi: 10.1016/j.jclepro.2020.124447 – ident: e_1_2_10_56_1 doi: 10.1111/mice.12440 – ident: e_1_2_10_18_1 doi: 10.1016/j.conbuildmat.2019.01.137 – ident: e_1_2_10_50_1 doi: 10.1109/ICTIS.2017.8047878 – start-page: 10338 year: 2017 ident: e_1_2_10_29_1 article-title: Development of a classification method for a crack on a pavement surface images using machine learning publication-title: Proc SPIE Int Soc Opt Eng – ident: e_1_2_10_38_1 doi: 10.1002/stc.2452 – ident: e_1_2_10_49_1 doi: 10.1002/stc.2381e2381 – volume: 7251 start-page: 72510A year: 2009 ident: e_1_2_10_27_1 article-title: Introduction of a wavelet transform based on 2D matched filter in a Markov random field for fine structure extraction: application on road crack detection publication-title: Proc SPIE Int Soc Opt Eng – volume-title: Batch normalization: accelerating deep network training by reducing internal covariate shift year: 2015 ident: e_1_2_10_59_1 – ident: e_1_2_10_16_1 doi: 10.1177/0361198105194000107 – ident: e_1_2_10_48_1 doi: 10.1007/978-3-662-56689-3_7 – volume: 6 start-page: 277 year: 1993 ident: e_1_2_10_13_1 article-title: Evaluation of two automated thresholding techniques for pavement images publication-title: Proc Infrastruct Plann Manag – ident: e_1_2_10_32_1 doi: 10.1016/j.conbuildmat.2017.04.097 – ident: e_1_2_10_2_1 doi: 10.1016/j.conbuildmat.2020.118099 – ident: e_1_2_10_28_1 doi: 10.1117/1.JEI.26.5.053008 – ident: e_1_2_10_21_1 doi: 10.1109/ICIP.1995.529742 – ident: e_1_2_10_15_1 doi: 10.1061/(ASCE)0733-947X(1994)120:4(552) – volume-title: Deep Learning with Keras year: 2017 ident: e_1_2_10_62_1 – ident: e_1_2_10_36_1 doi: 10.1155/2018/5989246 – ident: e_1_2_10_54_1 doi: 10.1061/(ASCE)CP.1943-5487.0000775  | 
    
| SSID | ssj0026285 | 
    
| Score | 2.45246 | 
    
| Snippet | Summary
Explicit gaps exist between the advanced deep learning technologies and the less satisfied pixel‐level crack detection algorithms. Therefore, this... Explicit gaps exist between the advanced deep learning technologies and the less satisfied pixel‐level crack detection algorithms. Therefore, this research...  | 
    
| SourceID | proquest crossref wiley  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| SubjectTerms | Algorithms Artificial neural networks Asphalt Cameras Concrete Concrete pavements Deep learning Image processing Image quality Image segmentation Machine learning Neural networks pavement cracks pixel‐level crack detection Semantic segmentation Semantics U‐net  | 
    
| Title | Pixelwise asphalt concrete pavement crack detection via deep learning‐based semantic segmentation method | 
    
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fstc.2974 https://www.proquest.com/docview/2683794637  | 
    
| Volume | 29 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1545-2263 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0026285 issn: 1545-2255 databaseCode: ADMLS dateStart: 20120801 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1545-2255 databaseCode: DR2 dateStart: 20020101 customDbUrl: isFulltext: true eissn: 1545-2263 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0026285 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQXOBAKRSVQpErIThlyXptb3JEPISqgqruIq3EIfJjjJZHWJHwECd-Ar-RX9KxkyxQgVRxykNjxfHYnm-SmW8IWTMuEcyBixS4JEJ7nEaJ0mlkhGbgyT5YyK84OJT7R_znQAzqqEqfC1PxQ4w_uPmVEfZrv8CVLjafSUMLz0CIaBi333ZHBm_qz5g5ivnMwECVykWEU1Y0vLMx22wavrZEz_DyJUgNVmbvEzlu-lcFl5y1rkvdMvf_UDd-7AXmyGwNPulWNVs-kwnI58nMC0rCBXL6e3gH57fDAqgqRv5nOkWPGaFlCXSkArk43rlS5oxaKEMcV05vhgqvYETrGhQnTw-P3jxaWsAFqm5o8OTkok5zymlVtvoLOdrb7W_vR3U9hsggiOCRd-VsnDjDNQcwKTPG8kSnKkU72FVt5YDFMrbOSSeZS0zHxV0lpLNcGmtEZ5FM5pc5fCU0ddomwiK6EpZblmpwsq2MbINxlrHuEtlodJOZmqzc18w4zyqaZZbh6GV-9JbIj7HkqCLoeENmpVFvVi_RImMSffOUyw4-bD3o6d32Wa-_7Y_f_ldwmUwznyYRAgVXyGR5dQ3fEbyUepVMbe0c_Oqthun6FwTm8ms | 
    
| linkProvider | Wiley-Blackwell | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xOEAPfaNuS4uRKjgFsl7bm6inChUtFBCii8ShUuTYY7SFTVcktBUnfkJ_Y39Jx06yUESlqqc8ZCuOx5P5xpn5BuCtcYnkDl2k0SUR2eM0SnSeRkbmHD3ZBw_5FfsHanAsdk_kyQy8a3Nhan6I6Yab14zwvfYK7jekN29YQ0tPQUhweBbmhSI3xSOioyl3FPe5gYEsVciIFq1smWdjvtn2_NMW3QDM2zA12JntR_C5HWEdXnK2cVnlG-bqDnnjf77CY3jY4E_2vl4wT2AGi6fw4BYr4TP4cjj6geffRyUyXU78_3RGTjOhywrZRAd-cbpzoc0Zs1iFUK6CfRtpusIJa8pQnP66_uktpGUljkl6I0Mnp-Mm06lgdeXq53C8_WG4NYiakgyRIRwhIu_N2ThxRuQC0aTcGCuSPNUpmcK-7mqHPFaxdU45xV1iei7ua6mcFcpYI3tLMFd8LfAFsNTlNpGWAJa0wvI0R6e62qguGmc573dgvRVOZhq-cl824zyrmZZ5RrOX-dnrwOq05aTm6LinzXIr36zR0jLjitzzVKgePWwtCOqv_bNPwy1_fPmvDVdgYTDc38v2dg4-voJF7rMmQtzgMsxVF5f4mrBMlb8Ja_Y3fH_0-A | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RKqH2QAttVSgPIyF6CmS9tjcWJwSsoDyEKEgcKkWOPUZbIEQkUMSJn9DfyC_BdpKFVq1U9ZSHxkriGWe-SWa-AVjUNuHUoo0U2iRy_lhGicpkpHlG0ZN90FBfsbcvto7ZlxN-MgKrbS1MzQ8x_ODmV0Z4X_sFjoWxK0-soaWnIHRw-AW8ZFwmPp9v43DIHUV9bWAgS2U8ckbLW-bZmK60I3_1RU8A8zlMDX6m_wa-tXdYp5ecLV9X2bK--4288T8f4S2MN_iTrNUGMwEjmE_C62eshO_g-8HgFs9_DEokqiz8_3TigmaHLiskhQr84u7MldJnxGAVUrlycjNQ7ggL0rShOH24_-k9pCElXjjtDbTbOb1oKp1yUneufg_H_c2j9a2oackQaYcjWOSjORMnVrOMIWpJtTYsyaSSzhX2VEdZpLGIjbXCCmoT3bVxT3FhDRPaaN79AKP5ZY4fgUibmYQbB7C4YYbKDK3oKC06qK2htDcFn1vlpLrhK_dtM87TmmmZpm72Uj97U7AwlCxqjo4_yMy0-k2bVVqmVLjwXDLRdRdbCor66_j069G6307_q-A8jB1s9NPd7f2dT_CK-qKJkDY4A6PV1TXOOihTZXPBZB8BNZH0fA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pixelwise+asphalt+concrete+pavement+crack+detection+via+deep+learning%E2%80%90based+semantic+segmentation+method&rft.jtitle=Structural+control+and+health+monitoring&rft.au=Huyan%2C+Ju&rft.au=Ma%2C+Tao&rft.au=Li%2C+Wei&rft.au=Yang%2C+Handuo&rft.date=2022-08-01&rft.issn=1545-2255&rft.eissn=1545-2263&rft.volume=29&rft.issue=8&rft_id=info:doi/10.1002%2Fstc.2974&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_stc_2974 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-2255&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-2255&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-2255&client=summon |