A new class of inertial algorithms with monotonic step sizes for solving fixed point and variational inequalities

This study presents two inertial type extragradient algorithms for finding a common solution to the monotone variational inequalities and fixed point problems for ρ$$ \rho $$‐demicontractive mapping in real Hilbert spaces. We provide inertial type iterative algorithms with self‐adaptive variable ste...

Full description

Saved in:
Bibliographic Details
Published inMathematical methods in the applied sciences Vol. 45; no. 16; pp. 9061 - 9088
Main Authors Rehman, Habib ur, Kumam, Poom, Kumam, Wiyada, Sombut, Kamonrat
Format Journal Article
LanguageEnglish
Published Freiburg Wiley Subscription Services, Inc 15.11.2022
Subjects
Online AccessGet full text
ISSN0170-4214
1099-1476
DOI10.1002/mma.8293

Cover

Abstract This study presents two inertial type extragradient algorithms for finding a common solution to the monotone variational inequalities and fixed point problems for ρ$$ \rho $$‐demicontractive mapping in real Hilbert spaces. We provide inertial type iterative algorithms with self‐adaptive variable step size rules that do not require prior knowledge of the operator value. Our algorithms employ a basic step size rule, which is derived by certain computations at each iteration. Without previous knowledge of the operators Lipschitz constant, two strong convergence theorems were obtained. Finally, we present a number of numerical experiments to evaluate the efficacy and applicability of the proposed algorithms. The conclusions of this study on variational inequality and fixed point problems support and extend previous findings.
AbstractList This study presents two inertial type extragradient algorithms for finding a common solution to the monotone variational inequalities and fixed point problems for ρ$$ \rho $$‐demicontractive mapping in real Hilbert spaces. We provide inertial type iterative algorithms with self‐adaptive variable step size rules that do not require prior knowledge of the operator value. Our algorithms employ a basic step size rule, which is derived by certain computations at each iteration. Without previous knowledge of the operators Lipschitz constant, two strong convergence theorems were obtained. Finally, we present a number of numerical experiments to evaluate the efficacy and applicability of the proposed algorithms. The conclusions of this study on variational inequality and fixed point problems support and extend previous findings.
This study presents two inertial type extragradient algorithms for finding a common solution to the monotone variational inequalities and fixed point problems for ‐demicontractive mapping in real Hilbert spaces. We provide inertial type iterative algorithms with self‐adaptive variable step size rules that do not require prior knowledge of the operator value. Our algorithms employ a basic step size rule, which is derived by certain computations at each iteration. Without previous knowledge of the operators Lipschitz constant, two strong convergence theorems were obtained. Finally, we present a number of numerical experiments to evaluate the efficacy and applicability of the proposed algorithms. The conclusions of this study on variational inequality and fixed point problems support and extend previous findings.
This study presents two inertial type extragradient algorithms for finding a common solution to the monotone variational inequalities and fixed point problems for ρ$$ \rho $$‐demicontractive mapping in real Hilbert spaces. We provide inertial type iterative algorithms with self‐adaptive variable step size rules that do not require prior knowledge of the operator value. Our algorithms employ a basic step size rule, which is derived by certain computations at each iteration. Without previous knowledge of the operators Lipschitz constant, two strong convergence theorems were obtained. Finally, we present a number of numerical experiments to evaluate the efficacy and applicability of the proposed algorithms. The conclusions of this study on variational inequality and fixed point problems support and extend previous findings.
Author Kumam, Wiyada
Kumam, Poom
Sombut, Kamonrat
Rehman, Habib ur
Author_xml – sequence: 1
  givenname: Habib ur
  orcidid: 0000-0003-2659-8226
  surname: Rehman
  fullname: Rehman, Habib ur
  organization: King Mongkut's University of Technology Thonburi (KMUTT)
– sequence: 2
  givenname: Poom
  orcidid: 0000-0002-5463-4581
  surname: Kumam
  fullname: Kumam, Poom
  email: poom.kum@kmutt.ac.th
  organization: China Medical University Hospital, China Medical University
– sequence: 3
  givenname: Wiyada
  surname: Kumam
  fullname: Kumam, Wiyada
  organization: Rajamangala University of Technology Thanyaburi (RMUTT)
– sequence: 4
  givenname: Kamonrat
  surname: Sombut
  fullname: Sombut, Kamonrat
  organization: Rajamangala University of Technology Thanyaburi (RMUTT)
BookMark eNp1kEtPAjEUhRuDiYgm_oQmbtwM9nZenSUhvhKIG11PLjMtlsy0Q1tA_PUO4Mro6my-8-Xec0kGxhpJyA2wMTDG79sWx4IX8RkZAiuKCJI8G5Ahg5xFCYfkglx6v2KMCQA-JOsJNXJHqwa9p1ZRbaQLGhuKzdI6HT5aT3d90NYaG6zRFfVBdtTrL-mpso5622y1WVKlP2VNO6tNoGhqukWnMWhrellvXW-w0UFLf0XOFTZeXv_kiLw_PrxNn6PZ69PLdDKLKs7jOKoRUQrkGVdCQZJBkaewqGKoC4YKMoCiECgqVecJsGRRp3klQaQC8yRPlYxH5Pbk7Zxdb6QP5cpuXH-NL3nOY8agSKCn7k5U5az3Tqqyc7pFty-BlYdBy37Q8jBoj45_oZUOxw-DQ938VYhOhZ1u5P5fcTmfT478N5HZiiI
CitedBy_id crossref_primary_10_1002_mma_10147
crossref_primary_10_1002_mma_10879
crossref_primary_10_1186_s13660_023_02948_8
crossref_primary_10_3390_sym15101866
crossref_primary_10_1002_mma_10174
crossref_primary_10_1007_s12215_025_01187_8
crossref_primary_10_3390_math13010133
Cites_doi 10.1016/S0377-2217(02)00290-4
10.23952/jnfa.2020.35
10.1080/02331934.2010.539689
10.1081/NFA-200045815
10.1137/1029059
10.1007/s11075-017-0468-9
10.1137/080716542
10.1007/s10957-013-0494-2
10.1080/02331930701762829
10.1007/s12190‐021‐01576‐z
10.1137/S0363012998338806
10.1007/978-1-4757-3005-0_1
10.1007/s10898-019-00834-6
10.1515/9783110667097
10.1007/s10898-017-0506-0
10.1007/s10589-016-9857-6
10.1016/j.na.2011.09.005
10.1016/0041-5553(64)90137-5
10.1007/s10598-010-9057-7
10.1007/s11075-017-0412-z
10.1007/s10957-010-9757-3
10.1007/s43036-021-00155-0
10.1137/060675319
10.1006/jmaa.1999.6615
10.1007/s10589-019-00124-7
10.1007/s11075-017-0452-4
10.1090/S0002-9939-1953-0054846-3
10.1137/S0363012997317475
10.1080/02331939708844365
ContentType Journal Article
Copyright 2022 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2022 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7TB
8FD
FR3
JQ2
KR7
DOI 10.1002/mma.8293
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
DatabaseTitleList
CrossRef
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1099-1476
EndPage 9088
ExternalDocumentID 10_1002_mma_8293
MMA8293
Genre article
GrantInformation_xml – fundername: The Center of Excellence in Theoretical and Computational Science (TaCS‐CoE), KMUTT
– fundername: Thailand Science Research and Innovation (TSRI) Basic Research Fund: Fiscal year 2022
  funderid: FRB65E0633M.2; FRB65E0632M.1
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CO8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RWS
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
AMVHM
CITATION
7TB
8FD
FR3
JQ2
KR7
ID FETCH-LOGICAL-c2233-daaae8a262f8f14619751bc31d90af1611998a8cfd74104bd57ce1858a7475fe3
IEDL.DBID DR2
ISSN 0170-4214
IngestDate Fri Jul 25 12:09:32 EDT 2025
Wed Oct 01 00:37:21 EDT 2025
Thu Apr 24 22:56:03 EDT 2025
Wed Jan 22 16:22:52 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2233-daaae8a262f8f14619751bc31d90af1611998a8cfd74104bd57ce1858a7475fe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2659-8226
0000-0002-5463-4581
PQID 2723001941
PQPubID 1016386
PageCount 28
ParticipantIDs proquest_journals_2723001941
crossref_primary_10_1002_mma_8293
crossref_citationtrail_10_1002_mma_8293
wiley_primary_10_1002_mma_8293_MMA8293
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 15 November 2022
PublicationDateYYYYMMDD 2022-11-15
PublicationDate_xml – month: 11
  year: 2022
  text: 15 November 2022
  day: 15
PublicationDecade 2020
PublicationPlace Freiburg
PublicationPlace_xml – name: Freiburg
PublicationTitle Mathematical methods in the applied sciences
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2012; 61
2021; 6
2021; 5
2019; 74
1997; 42
2019; 76
1997; 41
2017; 66
2010; 148
1964; 4
2009
2022; 68
1953; 4
2013; 163
1964; 258
2012; 75
1999
2005; 25
2009; 58
2010; 21
1976; 12
2000; 38
2020; 2
2020; 2020
2017; 70
1990; 26
2002; 143
2000
2020
2017; 79
1999; 37
2017; 78
2008; 47
1999; 54
2000; 241
2009; 2
1987; 29
2018; 79
2016; 66
e_1_2_9_30_1
Kassay G (e_1_2_9_9_1) 1999; 54
e_1_2_9_31_1
Izuchukwu C (e_1_2_9_25_1) 2020; 2
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
Allgower G (e_1_2_9_39_1) 1990; 26
Ceng L (e_1_2_9_24_1) 2020; 2
e_1_2_9_15_1
Korpelevich G (e_1_2_9_17_1) 1976; 12
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
Xiao J (e_1_2_9_28_1) 2020; 2
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
Antipin AS (e_1_2_9_29_1) 1976; 12
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_5_1
e_1_2_9_4_1
Konnov IV (e_1_2_9_6_1) 1997; 41
e_1_2_9_3_1
e_1_2_9_2_1
Takahashi W (e_1_2_9_13_1) 2009
Liu L (e_1_2_9_26_1) 2021; 5
e_1_2_9_27_1
Stampacchia G (e_1_2_9_7_1) 1964; 258
References_xml – volume: 76
  start-page: 189
  issue: 1
  year: 2019
  end-page: 209
  article-title: Solving k‐center problems involving sets based on optimization techniques
  publication-title: J Glob Optim
– year: 2009
– volume: 2
  start-page: 213
  issue: 2
  year: 2020
  end-page: 233
  article-title: Two inertial linesearch extragradient algorithms for the bilevel split pseudomonotone variational inequality with constraints
  publication-title: J Appl Numer Optim
– volume: 54
  start-page: 267
  issue: 3‐4
  year: 1999
  end-page: 279
  article-title: On Nash stationary points
  publication-title: Publ Math
– volume: 4
  start-page: 1
  issue: 5
  year: 1964
  end-page: 17
  article-title: Some methods of speeding up the convergence of iteration methods
  publication-title: USSR Comput Math Math Phys
– volume: 241
  start-page: 46
  issue: 1
  year: 2000
  end-page: 55
  article-title: Viscosity approximation methods for fixed‐points problems
  publication-title: J Math Anal Appl
– volume: 25
  start-page: 619
  issue: 7‐8
  year: 2005
  end-page: 655
  article-title: Hybrid steepest descent method for variational inequality problem over the fixed point set of certain quasi‐nonexpansive mappings
  publication-title: Numer Funct Anal Optim
– volume: 68
  start-page: 1387
  year: 2022
  end-page: 1411
  article-title: Viscosity‐type inertial extragradient algorithms for solving variational inequality problems and fixed point problems
  publication-title: J Appl Math Comput
– volume: 163
  start-page: 399
  issue: 2
  year: 2013
  end-page: 412
  article-title: Strong convergence of the Halpern subgradient extragradient method for solving variational inequalities in Hilbert spaces
  publication-title: J Optim Theory Appl
– volume: 12
  start-page: 747
  year: 1976
  end-page: 756
  article-title: The extragradient method for finding saddle points and other problems
  publication-title: Matecon
– volume: 21
  start-page: 97
  issue: 1
  year: 2010
  end-page: 108
  article-title: Some iterative methods for nonconvex variational inequalities
  publication-title: Comput Math Model
– volume: 6
  issue: 4
  year: 2021
  article-title: Inertial extragradient algorithms with non‐monotonic step sizes for solving variational inequalities and fixed point problems
  publication-title: Adv Oper Theory
– volume: 4
  start-page: 506
  issue: 3
  year: 1953
  end-page: 506
  article-title: Mean value methods in iteration
  publication-title: Proc Am Math Soc
– volume: 41
  start-page: 77
  year: 1997
  end-page: 86
  article-title: On systems of variational inequalities
  publication-title: Russ Math C/C Izv‐Vysshie Uchebnye Zavedeniia Matematika
– volume: 2
  start-page: 249
  year: 2020
  end-page: 277
  article-title: Projection‐type methods with alternating inertial steps for solving multivalued variational inequalities beyond monotonicity
  publication-title: J Appl Numer Optim
– volume: 66
  start-page: 75
  issue: 1
  year: 2017
  end-page: 96
  article-title: Modified hybrid projection methods for finding common solutions to variational inequality problems
  publication-title: Comput Optim Appl
– year: 2000
– volume: 75
  start-page: 742
  issue: 2
  year: 2012
  end-page: 750
  article-title: Approximation of zeros of inverse strongly monotone operators in Banach spaces.
  publication-title: Nonlinear Anal: Theory Methods Appl
– volume: 70
  start-page: 687
  issue: 3
  year: 2017
  end-page: 704
  article-title: Inertial projection and contraction algorithms for variational inequalities
  publication-title: J Glob Optim
– volume: 61
  start-page: 1119
  issue: 9
  year: 2012
  end-page: 1132
  article-title: Extensions of Korpelevich extragradient method for the variational inequality problem in euclidean space
  publication-title: Optimization
– volume: 47
  start-page: 1499
  issue: 3
  year: 2008
  end-page: 1515
  article-title: A hybrid extragradient‐viscosity method for monotone operators and fixed point problems
  publication-title: SIAM J Control Optim
– volume: 258
  start-page: 4413
  issue: 18
  year: 1964
  article-title: Formes bilinéaires coercitives sur les ensembles convexes
  publication-title: C R Hebdomadaires Seances Acad Sci
– volume: 5
  start-page: 627
  issue: 4
  year: 2021
  end-page: 644
  article-title: Convergence analysis of an inertial Tseng's extragradient algorithm for solving pseudomonotone variational inequalities and applications
  publication-title: J Nonlinear Variational Anal
– volume: 2
  start-page: 183
  issue: 1
  year: 2009
  end-page: 202
  article-title: A fast iterative shrinkage‐thresholding algorithm for linear inverse problems
  publication-title: SIAM J Imaging Sci
– volume: 26
  start-page: 265
  year: 1990
  article-title: Computational solutions of nonlinear systems of equations
  publication-title: Lect Appl Math
– volume: 42
  start-page: 309
  issue: 4
  year: 1997
  end-page: 321
  article-title: A variant of Korpelevich's method for variational inequalities with a new search strategy
  publication-title: Optimization
– volume: 58
  start-page: 251
  issue: 2
  year: 2009
  end-page: 261
  article-title: A subgradient‐type method for the equilibrium problem over the fixed point set and its applications
  publication-title: Optimization
– volume: 148
  start-page: 318
  issue: 2
  year: 2010
  end-page: 335
  article-title: The subgradient extragradient method for solving variational inequalities in hilbert space
  publication-title: J Optim Theory Appl
– volume: 79
  start-page: 597
  issue: 2
  year: 2017
  end-page: 610
  article-title: Modified subgradient extragradient method for variational inequality problems
  publication-title: Numer Algoritm
– volume: 38
  start-page: 431
  issue: 2
  year: 2000
  end-page: 446
  article-title: A modified forward‐backward splitting method for maximal monotone mappings
  publication-title: SIAM J Control Optim
– year: 2020
– volume: 78
  start-page: 1045
  issue: 4
  year: 2017
  end-page: 1060
  article-title: Weak and strong convergence theorems for variational inequality problems
  publication-title: Numer Algoritm
– volume: 2020
  start-page: 35
  year: 2020
  article-title: Inertial modified Tsengs extragradient algorithms for solving monotone variational inequalities and fixed point problems
  publication-title: J Nonlinear Funct Anal
– volume: 29
  start-page: 314
  issue: 2
  year: 1987
  end-page: 315
  article-title: Variational and quasivariational inequalities applications to free—boundary problems. (Claudio Baiocchi and António Capelo)
  publication-title: SIAM Rev
– volume: 143
  start-page: 377
  issue: 2
  year: 2002
  end-page: 389
  article-title: Factorization of minty and Stampacchia variational inequality systems
  publication-title: Eur J Oper Res
– volume: 66
  start-page: 75
  issue: 1
  year: 2016
  end-page: 96
  article-title: Modified hybrid projection methods for finding common solutions to variational inequality problems
  publication-title: Comput Optim Appl
– volume: 74
  start-page: 821
  issue: 3
  year: 2019
  end-page: 850
  article-title: Smoothing algorithms for computing the projection onto a Minkowski sum of convex sets
  publication-title: Comput. Optim. Appl.
– volume: 79
  start-page: 941
  issue: 3
  year: 2018
  end-page: 956
  article-title: An inertial subgradient‐type method for solving single‐valued variational inequalities and fixed point problems
  publication-title: Numer Algoritm
– volume: 37
  start-page: 765
  issue: 3
  year: 1999
  end-page: 776
  article-title: A new projection method for variational inequality problems
  publication-title: SIAM J Control Optim
– volume: 2
  start-page: 317
  year: 2020
  end-page: 327
  article-title: Strong convergence of modified inertial Halpern simultaneous algorithms for a finite family of demicontractive mappings
  publication-title: J Nonlinear Variational Anal
– volume: 12
  start-page: 1164
  issue: 6
  year: 1976
  end-page: 1173
  article-title: On a method for convex programs using a symmetrical modification of the lagrange function
  publication-title: Ekon i Matematicheskie Metody
– year: 1999
– ident: e_1_2_9_10_1
  doi: 10.1016/S0377-2217(02)00290-4
– ident: e_1_2_9_27_1
  doi: 10.23952/jnfa.2020.35
– ident: e_1_2_9_15_1
  doi: 10.1080/02331934.2010.539689
– volume: 12
  start-page: 1164
  issue: 6
  year: 1976
  ident: e_1_2_9_29_1
  article-title: On a method for convex programs using a symmetrical modification of the lagrange function
  publication-title: Ekon i Matematicheskie Metody
– ident: e_1_2_9_30_1
  doi: 10.1081/NFA-200045815
– ident: e_1_2_9_8_1
  doi: 10.1137/1029059
– ident: e_1_2_9_23_1
  doi: 10.1007/s11075-017-0468-9
– ident: e_1_2_9_34_1
  doi: 10.1137/080716542
– ident: e_1_2_9_37_1
  doi: 10.1007/s10957-013-0494-2
– ident: e_1_2_9_3_1
  doi: 10.1080/02331930701762829
– ident: e_1_2_9_32_1
  doi: 10.1007/s12190‐021‐01576‐z
– volume-title: Introduction to Nonlinear and Convex Analysis
  year: 2009
  ident: e_1_2_9_13_1
– ident: e_1_2_9_22_1
  doi: 10.1137/S0363012998338806
– ident: e_1_2_9_12_1
  doi: 10.1007/978-1-4757-3005-0_1
– ident: e_1_2_9_2_1
  doi: 10.1007/s10898-019-00834-6
– ident: e_1_2_9_36_1
  doi: 10.1515/9783110667097
– ident: e_1_2_9_40_1
  doi: 10.1007/s10898-017-0506-0
– ident: e_1_2_9_41_1
  doi: 10.1007/s10589-016-9857-6
– volume: 26
  start-page: 265
  year: 1990
  ident: e_1_2_9_39_1
  article-title: Computational solutions of nonlinear systems of equations
  publication-title: Lect Appl Math
– ident: e_1_2_9_38_1
  doi: 10.1016/j.na.2011.09.005
– ident: e_1_2_9_35_1
  doi: 10.1016/0041-5553(64)90137-5
– ident: e_1_2_9_19_1
  doi: 10.1007/s10598-010-9057-7
– ident: e_1_2_9_21_1
  doi: 10.1007/s11075-017-0412-z
– ident: e_1_2_9_43_1
  doi: 10.1007/s10589-016-9857-6
– volume: 2
  start-page: 317
  year: 2020
  ident: e_1_2_9_28_1
  article-title: Strong convergence of modified inertial Halpern simultaneous algorithms for a finite family of demicontractive mappings
  publication-title: J Nonlinear Variational Anal
– ident: e_1_2_9_14_1
  doi: 10.1007/s10957-010-9757-3
– volume: 12
  start-page: 747
  year: 1976
  ident: e_1_2_9_17_1
  article-title: The extragradient method for finding saddle points and other problems
  publication-title: Matecon
– volume: 41
  start-page: 77
  year: 1997
  ident: e_1_2_9_6_1
  article-title: On systems of variational inequalities
  publication-title: Russ Math C/C Izv‐Vysshie Uchebnye Zavedeniia Matematika
– ident: e_1_2_9_31_1
  doi: 10.1007/s43036-021-00155-0
– volume: 5
  start-page: 627
  issue: 4
  year: 2021
  ident: e_1_2_9_26_1
  article-title: Convergence analysis of an inertial Tseng's extragradient algorithm for solving pseudomonotone variational inequalities and applications
  publication-title: J Nonlinear Variational Anal
– volume: 258
  start-page: 4413
  issue: 18
  year: 1964
  ident: e_1_2_9_7_1
  article-title: Formes bilinéaires coercitives sur les ensembles convexes
  publication-title: C R Hebdomadaires Seances Acad Sci
– ident: e_1_2_9_4_1
  doi: 10.1137/060675319
– ident: e_1_2_9_18_1
  doi: 10.1006/jmaa.1999.6615
– ident: e_1_2_9_5_1
  doi: 10.1007/s10589-019-00124-7
– volume: 2
  start-page: 213
  issue: 2
  year: 2020
  ident: e_1_2_9_24_1
  article-title: Two inertial linesearch extragradient algorithms for the bilevel split pseudomonotone variational inequality with constraints
  publication-title: J Appl Numer Optim
– ident: e_1_2_9_20_1
  doi: 10.1007/s11075-017-0452-4
– volume: 2
  start-page: 249
  year: 2020
  ident: e_1_2_9_25_1
  article-title: Projection‐type methods with alternating inertial steps for solving multivalued variational inequalities beyond monotonicity
  publication-title: J Appl Numer Optim
– ident: e_1_2_9_11_1
– ident: e_1_2_9_33_1
  doi: 10.1090/S0002-9939-1953-0054846-3
– volume: 54
  start-page: 267
  issue: 3
  year: 1999
  ident: e_1_2_9_9_1
  article-title: On Nash stationary points
  publication-title: Publ Math
– ident: e_1_2_9_42_1
  doi: 10.1137/S0363012997317475
– ident: e_1_2_9_16_1
  doi: 10.1080/02331939708844365
SSID ssj0008112
Score 2.360763
Snippet This study presents two inertial type extragradient algorithms for finding a common solution to the monotone variational inequalities and fixed point problems...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9061
SubjectTerms Adaptive algorithms
fixed point problem
Fixed points (mathematics)
Hilbert space
Inequalities
inertial algorithms
Iterative algorithms
Iterative methods
Mathematical analysis
strong convergence theorems
subgradient extragradient algorithm
Tseng's extragradient algorithm
variational inequalities
Title A new class of inertial algorithms with monotonic step sizes for solving fixed point and variational inequalities
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmma.8293
https://www.proquest.com/docview/2723001941
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCO Mathematics Source
  customDbUrl:
  eissn: 1099-1476
  dateEnd: 20241101
  omitProxy: false
  ssIdentifier: ssj0008112
  issn: 0170-4214
  databaseCode: AMVHM
  dateStart: 20120715
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0170-4214
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1099-1476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008112
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6h9gIHaAuI0FINEuJxcBqvd2P7GCGqCMkcEEWVOFjrfUBEYqe1W1X99cz4kQACCXHyZXZl7zz2m_HOtwAvdOEiUnUcpDZUgaQcJNAmFIG1aRobr6apa9k-P0znZ_L9uTrvT1VyL0zHD7EpuLFntPGaHVwX9cmWNHS10uOENisKv2E0bbOpj1vmqCRsf3QyO0wgRSgH3tmJOBkG_roTbeHlzyC13WVOH8CX4f26wyXfx1dNMTa3v1E3_t8H7MH9HnzirLOWfbjjygO4l22YW-sD2O-dvcbXPSP1m4dwMUNC32gYaWPlkRsGKTIsUS-_VpeL5tuqRi7oItl01TDZLpLxrLFe3NJEBIuRLJwrF-gXN87iulqUDerS4jWl6n05kmftWjwpeX8EZ6fvPr2dB_1dDYEhgBEFVmvtEi2mwiee7wpPYxUWJgptOtGeYCX38unEeEsQZiILq2LjCCskmvIZ5V30GHbKqnRPAJXU0jhTFGISyUjaxMVaeaN9aqwwcTqCV4PectMTmfN9Gsu8o2AWOa1szis7gucbyXVH3vEHmaNB9XnvvnUuYsrMCPzKcAQvWx3-dXyeZTN-Pv1XwUO4K7iFgo8SqiPYaS6v3DMCNk1xDLuz7PM8O25N-Qe5YviI
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VcgAOQAsVgQKDhHgcnMbr3dgWpwhRBWh6QK3UA5K13gdEJHaoXYT665nxIwEEEuLky-zK3pnZ_Wa88w3AU527iFQdB6kNVSApBgm0CUVgbZrGxqtx6hq2z-Px9FS-O1NnW_Cqr4Vp-SHWCTf2jGa_ZgfnhPTBhjV0udTDhE6rK3BVjilMYUT0YcMdlYTNr07mhwmkCGXPPDsSB_3IX8-iDcD8GaY258zhLfjYv2F7veTL8KLOh-byN_LG__yE23Czw584aQ1mB7ZcsQs3Zmvy1moXdjp_r_BFR0r98g58nSABcDQMtrH0yDWDtDksUC8-lefz-vOyQs7pIpl1WTPfLpL9rLCaX9JEhIyRjJyTF-jn353FVTkvatSFxW8UrXcZSZ61rfKk-P0unB6-OXk9Dbp2DYEhjBEFVmvtEi3Gwiee24WnsQpzE4U2HWlPyJLL-XRivCUUM5K5VbFxBBcSTSGN8i7ag-2iLNw9QCW1NM7kuRhFMpI2cbFW3mifGitMnA7gea-4zHRc5txSY5G1LMwio5XNeGUH8GQtuWr5O_4gs9_rPus8uMpETMEZ4V8ZDuBZo8S_js9mswk_7_-r4GO4Nj2ZHWVHb4_fP4Drgisq-Gah2oft-vzCPSScU-ePGnv-AWm6-w0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9qBdEHtVXxtNYVxI-HXC-b3UsWn47Wo61eEbHQByFs9kMP75KzSUvpX-9MPu5UFEqf8jK7JDszO7-Z7PwW4KXOXISqjgNlQxkIzEECbUIeWKtUbLwcKlezfR4N94_F4Yk8WYN3XS9Mww-xLLiRZ9T7NTm4W1i_s2INnc91P8FodQNuCqkSOs-393nFHZWE9a9O4ocJBA9Fxzw74DvdyD9j0Qpg_g5T6zgzvgdfuzdsjpf86J9VWd9c_kXeeM1PuA93W_zJRo3BbMCayzfhzmRJ3lpuwkbr7yV705JSv30AP0cMATgzBLZZ4Rn1DOLmMGN69q04nVbf5yWjmi5Dsy4q4ttlaD8LVk4vcSJExgyNnIoXzE8vnGWLYppXTOeWnWO23lYkadamyxPz94dwPH7_ZXc_aK9rCAxijCiwWmuXaD7kPvF0XbiKZZiZKLRqoD0iS2rn04nxFlHMQGRWxsYhXEg0pjTSu-gRrOdF7h4Dk0IL40yW8UEkImETF2vpjfbKWG5i1YPXneJS03KZ05Uas7RhYeYprmxKK9uDF0vJRcPf8Q-ZrU73aevBZcpjTM4Q_4qwB69qJf53fDqZjOj55KqCz-HWp71x-vHg6MNTuM2poYIOFsotWK9Oz9wzhDlVtl2b8y8ZNvqR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+class+of+inertial+algorithms+with+monotonic+step+sizes+for+solving+fixed+point+and+variational+inequalities&rft.jtitle=Mathematical+methods+in+the+applied+sciences&rft.au=Habib+ur+Rehman&rft.au=Kumam%2C+Poom&rft.au=Kumam%2C+Wiyada&rft.au=Sombut%2C+Kamonrat&rft.date=2022-11-15&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0170-4214&rft.eissn=1099-1476&rft.volume=45&rft.issue=16&rft.spage=9061&rft.epage=9088&rft_id=info:doi/10.1002%2Fmma.8293&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0170-4214&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0170-4214&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0170-4214&client=summon