Energy and spectral efficiency improvement using improved shark smell‐coyote optimization for massive MIMO system
Summary Massive multiple‐input multiple‐output (MIMO) can considerably enhance the “spectral efficiency and energy efficiency” since it is a major technique for future wireless networks. Thus, the performance needs a huge count of base station antennas to serve a smaller number of terminals in conve...
Saved in:
| Published in | International journal of communication systems Vol. 36; no. 2 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Chichester
Wiley Subscription Services, Inc
25.01.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1074-5351 1099-1131 |
| DOI | 10.1002/dac.5381 |
Cover
| Abstract | Summary
Massive multiple‐input multiple‐output (MIMO) can considerably enhance the “spectral efficiency and energy efficiency” since it is a major technique for future wireless networks. Thus, the performance needs a huge count of base station antennas to serve a smaller number of terminals in conventional MIMO methodology. Large‐scale radio frequency (RF) chains represent the large‐scale antennas. There is a need of implementing an effective massive MIMO system for maximizing the efficient performance of the system with high “spectral efficiency and energy efficiency” owing to the high cost of RF chains, and the higher power consumption. In this paper, a massive MIMO communication system is implemented to satisfy the requirements regarding “energy efficiency and spectral efficiency.” Here, the number of base station antennas, the transmit power, and beam forming vectors are optimized to maximize “energy efficiency and spectral efficiency” when the channel capacity is known to be higher than some threshold values. The novelty of this work is a new hybrid optimization adaptive shark smell‐coyote optimization (ASS‐CO) algorithm is developed for improving energy efficiency. The optimization is done with the help of the hybrid optimization ASS‐CO Algorithm. The proposed ASS‐CO algorithm‐based massive MIMO communication system is evaluated by experimental analysis. From the result analysis, the maximum resource efficiency is observed by SS‐WOA, which is 6.6%, 50%, 6.6%, 6.6%, and 6.6% maximized than rider optimization algorithm (ROA), spotted hyena optimization (SHO), lion algorithm (LA), Shark Smell Optimization (SSO), and Coyote Optimization Algorithm (COA) by taking the count of base stations as 4. The superior performance enhancement regarding “spectral efficiency and energy efficiency” is accomplished over the traditional systems.
A novel massive multiple‐input multiple‐output (MIMO) communication system is developed by suggesting a new algorithm to maximize the “energy efficiency and spectral efficiency” trade‐off through solving the resource efficiency. The major goal of this framework is to achieve a trade‐off between “spectral efficiency and energy efficiency” in a massive MIMO system by solving the resource efficiency. Here, the number of base station antennas, power allocation for all
u‐users (transmit power), and beamforming vectors are optimized using an adaptive shark smell‐coyote optimization (ASS‐CO) algorithm. |
|---|---|
| AbstractList | Summary
Massive multiple‐input multiple‐output (MIMO) can considerably enhance the “spectral efficiency and energy efficiency” since it is a major technique for future wireless networks. Thus, the performance needs a huge count of base station antennas to serve a smaller number of terminals in conventional MIMO methodology. Large‐scale radio frequency (RF) chains represent the large‐scale antennas. There is a need of implementing an effective massive MIMO system for maximizing the efficient performance of the system with high “spectral efficiency and energy efficiency” owing to the high cost of RF chains, and the higher power consumption. In this paper, a massive MIMO communication system is implemented to satisfy the requirements regarding “energy efficiency and spectral efficiency.” Here, the number of base station antennas, the transmit power, and beam forming vectors are optimized to maximize “energy efficiency and spectral efficiency” when the channel capacity is known to be higher than some threshold values. The novelty of this work is a new hybrid optimization adaptive shark smell‐coyote optimization (ASS‐CO) algorithm is developed for improving energy efficiency. The optimization is done with the help of the hybrid optimization ASS‐CO Algorithm. The proposed ASS‐CO algorithm‐based massive MIMO communication system is evaluated by experimental analysis. From the result analysis, the maximum resource efficiency is observed by SS‐WOA, which is 6.6%, 50%, 6.6%, 6.6%, and 6.6% maximized than rider optimization algorithm (ROA), spotted hyena optimization (SHO), lion algorithm (LA), Shark Smell Optimization (SSO), and Coyote Optimization Algorithm (COA) by taking the count of base stations as 4. The superior performance enhancement regarding “spectral efficiency and energy efficiency” is accomplished over the traditional systems.
A novel massive multiple‐input multiple‐output (MIMO) communication system is developed by suggesting a new algorithm to maximize the “energy efficiency and spectral efficiency” trade‐off through solving the resource efficiency. The major goal of this framework is to achieve a trade‐off between “spectral efficiency and energy efficiency” in a massive MIMO system by solving the resource efficiency. Here, the number of base station antennas, power allocation for all
u‐users (transmit power), and beamforming vectors are optimized using an adaptive shark smell‐coyote optimization (ASS‐CO) algorithm. Massive multiple‐input multiple‐output (MIMO) can considerably enhance the “spectral efficiency and energy efficiency” since it is a major technique for future wireless networks. Thus, the performance needs a huge count of base station antennas to serve a smaller number of terminals in conventional MIMO methodology. Large‐scale radio frequency (RF) chains represent the large‐scale antennas. There is a need of implementing an effective massive MIMO system for maximizing the efficient performance of the system with high “spectral efficiency and energy efficiency” owing to the high cost of RF chains, and the higher power consumption. In this paper, a massive MIMO communication system is implemented to satisfy the requirements regarding “energy efficiency and spectral efficiency.” Here, the number of base station antennas, the transmit power, and beam forming vectors are optimized to maximize “energy efficiency and spectral efficiency” when the channel capacity is known to be higher than some threshold values. The novelty of this work is a new hybrid optimization adaptive shark smell‐coyote optimization (ASS‐CO) algorithm is developed for improving energy efficiency. The optimization is done with the help of the hybrid optimization ASS‐CO Algorithm. The proposed ASS‐CO algorithm‐based massive MIMO communication system is evaluated by experimental analysis. From the result analysis, the maximum resource efficiency is observed by SS‐WOA, which is 6.6%, 50%, 6.6%, 6.6%, and 6.6% maximized than rider optimization algorithm (ROA), spotted hyena optimization (SHO), lion algorithm (LA), Shark Smell Optimization (SSO), and Coyote Optimization Algorithm (COA) by taking the count of base stations as 4. The superior performance enhancement regarding “spectral efficiency and energy efficiency” is accomplished over the traditional systems. |
| Author | Byreddy, Amarender Reddy Logashanmugam, E. |
| Author_xml | – sequence: 1 givenname: Amarender Reddy orcidid: 0000-0003-0813-9755 surname: Byreddy fullname: Byreddy, Amarender Reddy email: amarenderreddybyreddy@gmail.com organization: Sathyabama Institute of Science and Technology – sequence: 2 givenname: E. surname: Logashanmugam fullname: Logashanmugam, E. email: logu999@yahoo.com organization: Sathyabama Institute of Science and Technology |
| BookMark | eNp1kEtOwzAQhi1UJKAgcQRLbNik-BHHzrIqr0qt2MA6Ms4EDIkd7BQUVhyBM3ISUgobBKsZjb6Z-fXtoZHzDhA6pGRCCWEnpTYTwRXdQruU5HlCKaejdS_TRHBBd9BejA-EEMUysYvimYNw12PtShxbMF3QNYaqssaCMz22TRv8MzTgOryK1t39TAb8XodHHBuo64-3d-N73wH2bWcb-6o76x2ufMCNjtE-A17Ol1c49rGDZh9tV7qOcPBdx-jm_Ox6dpksri7ms-kiMYxxmpTyNlMiI6kieaUMNzItqVZE51LnZaa0NFqligt1S5lMKwmMAxGQUioY5IKP0dHm7hD4aQWxKx78KrjhZcGkSDOmuJQDNdlQJvgYA1SFsd1X_sGFrQtKirXYYhBbrMUOC8e_FtpgGx36v9Bkg77YGvp_ueJ0OvviPwHl8Irt |
| CitedBy_id | crossref_primary_10_3233_JHS_230173 crossref_primary_10_1515_joc_2023_0271 crossref_primary_10_1007_s11277_023_10529_7 crossref_primary_10_1007_s13042_024_02315_z crossref_primary_10_1080_1448837X_2024_2380603 crossref_primary_10_3390_electronics12163505 |
| Cites_doi | 10.1016/j.phycom.2021.101348 10.1109/TR.2022.3148114 10.1109/TSP.2015.2453134 10.1109/TWC.2022.3186084 10.1109/TIM.2018.2836058 10.1017/CBO9780511804441 10.1109/TWC.2015.2404839 10.1016/S1005-8885(14)60338-1 10.1016/j.egyr.2020.04.032 10.1109/JCN.2020.000027 10.1016/j.phycom.2021.101516 10.1109/TCOMM.2022.3151893 10.1016/j.advengsoft.2017.05.014 10.1109/TVT.2018.2824311 10.1109/TVT.2015.2483519 10.3390/sym14040780 10.1186/s40537‐022‐00592‐5 10.1109/GLOCOM.2012.6503652 10.1109/TWC.2014.2316791 10.1002/cplx.21634 10.1109/TSP.2020.2986391 10.1177/14759217211073335 10.1109/TVT.2014.2311235 10.1002/stc.2690 10.1016/j.phycom.2021.101430 10.1109/WCL.2012.022812.120048 10.1109/TWC.2011.120911.111494 10.1109/MILCOM.2011.6127719 10.1109/TWC.2022.3141653 10.1109/TWC.2011.091411.110249 10.3390/electronics11131948 10.1109/TCOMM.2013.071813.120823 10.1109/TVT.2015.2432073 10.1109/TCCN.2022.3187098 10.1109/TVT.2016.2526628 10.1109/TCOMM.2015.2502941 10.1109/TSP.2015.2502550 10.1016/j.comcom.2021.01.012 10.1109/JSAC.2022.3155515 10.1049/sil2.12123 10.1007/s12065‐018‐0168‐y 10.1109/TVT.2022.3183596 10.1109/TCOMM.2013.091813.120874 |
| ContentType | Journal Article |
| Copyright | 2022 John Wiley & Sons Ltd. 2023 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2022 John Wiley & Sons Ltd. – notice: 2023 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 7SP 8FD JQ2 L7M |
| DOI | 10.1002/dac.5381 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts ProQuest Computer Science Collection |
| DatabaseTitleList | CrossRef Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1099-1131 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_dac_5381 DAC5381 |
| Genre | article |
| GroupedDBID | .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIJN ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ESX F00 F01 F04 G-S G.N GNP GODZA H.T H.X HGLYW HHY HZ~ I-F IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MK~ ML~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ TUS UB1 V2E W8V W99 WBKPD WIH WIK WLBEL WOHZO WQJ WRC WWI WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY CITATION 7SP 8FD JQ2 L7M |
| ID | FETCH-LOGICAL-c2231-d7b685604809f8c3c74d1a80a97a9d68a7ca848358b1274f7e23e05e41152e953 |
| IEDL.DBID | DR2 |
| ISSN | 1074-5351 |
| IngestDate | Fri Jul 25 12:06:23 EDT 2025 Wed Oct 01 03:18:04 EDT 2025 Thu Apr 24 22:57:31 EDT 2025 Wed Jan 22 16:25:57 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2231-d7b685604809f8c3c74d1a80a97a9d68a7ca848358b1274f7e23e05e41152e953 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0813-9755 |
| PQID | 2754628377 |
| PQPubID | 996367 |
| PageCount | 20 |
| ParticipantIDs | proquest_journals_2754628377 crossref_citationtrail_10_1002_dac_5381 crossref_primary_10_1002_dac_5381 wiley_primary_10_1002_dac_5381_DAC5381 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 25 January 2023 |
| PublicationDateYYYYMMDD | 2023-01-25 |
| PublicationDate_xml | – month: 01 year: 2023 text: 25 January 2023 day: 25 |
| PublicationDecade | 2020 |
| PublicationPlace | Chichester |
| PublicationPlace_xml | – name: Chichester |
| PublicationTitle | International journal of communication systems |
| PublicationYear | 2023 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2021; 47 2015; 14 2021; 48 2021; 21 2012 2022; 70 2011 2022; 71 2022; 50 2021; 169 2013; 61 2021; 28 2011; 10 2004 2022; 21 2014; 63 2018; 67 2012; 11 2017; 114 2014; 21 2020; 6 2012; 1 2022 2022; 40 2015; 63 2022; 9 2016; 65 2016; 64 2022; 14 2014; 13 2020; 68 2020; 22 2022; 11 2018; 11 2022; 16 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_42_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
| References_xml | – volume: 11 start-page: 1948. issue: 13 year: 2022 article-title: A stochastic confocal elliptic‐cylinder channel model for 3D MIMO in millimeter‐wave high‐speed train communication system publication-title: Electronics – start-page: 3472 year: 2012 end-page: 3477 – volume: 65 start-page: 9715 issue: 12 year: 2016 end-page: 9731 article-title: Spectral, energy, and economic efficiency of 5G multicell massive MIMO systems with generalized spatial modulation publication-title: IEEE Trans Veh Technol – volume: 21 start-page: 2719 issue: 6 year: 2021 end-page: 2731 article-title: Statistics‐based baseline‐free approach for rapid inspection of delamination in composite structures using ultrasonic guided waves publication-title: Struct Health Monit – volume: 13 start-page: 4656 issue: 8 year: 2014 end-page: 4669 article-title: Resource efficiency: a new paradigm on energy efficiency and spectral efficiency tradeoff publication-title: IEEE Trans Wirel Commun – volume: 64 start-page: 790 issue: 2 year: 2016 end-page: 804 article-title: Energy‐efficient zero‐forcing precoding design for small‐cell networks publication-title: IEEE Trans Commun – volume: 10 start-page: 3874 issue: 11 year: 2011 end-page: 3886 article-title: Energy‐ and spectral efficiency tradeoff in downlink OFDMA networks publication-title: IEEE Trans Wirel Commun – volume: 70 start-page: 2820 issue: 4 year: 2022 end-page: 2837 article-title: Double‐IRS aided MIMO communication under LoS channels: capacity maximization and scaling publication-title: IEEE Trans Commun – volume: 64 start-page: 1461 issue: 6 year: 2016 end-page: 1476 article-title: Channel acquisition for massive MIMO‐OFDM with adjustable phase shift pilots publication-title: IEEE Trans Signal Proc – volume: 22 start-page: 390 issue: 5 year: 2020 end-page: 398 article-title: Spectral and energy efficient power allocation for MIMO broadcast channels with individual delay and QoS constraints publication-title: J Commun Netw – year: 2022 article-title: Power distribution based beamspace channel estimation for mm wave massive MIMO system with lens antenna array publication-title: IEEE Trans Wirel Commun – volume: 48 year: 2021 article-title: Maximizing the spectral efficiency of finite dimensional multiuser massive MIMO publication-title: Phys Commun – volume: 63 start-page: 5574 issue: 20 year: 2015 end-page: 5588 article-title: Optimal energy‐efficient transmit beamforming for multi‐user MISO downlink publication-title: IEEE Trans Signal Proc – volume: 47 year: 2021 article-title: Energy and spectral efficiencies trade‐off in MIMO‐NOMA system under user‐rate fairness and variable user per cluster publication-title: Phys Commun – start-page: 495 year: 2011 end-page: 500 – volume: 65 start-page: 7228 issue: 9 year: 2016 end-page: 7243 article-title: Energyefficient optimization for downlink massive MIMO FDD systems with transmit‐side channel correlation publication-title: IEEE Trans Veh Technol – volume: 28 issue: 3 year: 2021 article-title: Outlier analysis for defect detection using sparse sampling in guided wave structural health monitoring publication-title: Struct Contr Health Monit – volume: 11 start-page: 556 issue: 2 year: 2012 end-page: 561 article-title: On the energy efficiency‐spectral efficiency trade‐off in the uplink of CoMP system publication-title: IEEE Trans Wirel Commun – volume: 71 start-page: 1104 issue: 2 year: 2022 end-page: 1115 article-title: A deep learning‐based intelligent receiver for improving the reliability of the MIMO wireless communication system publication-title: IEEE Trans Reliab – volume: 61 start-page: 3741 issue: 9 year: 2013 end-page: 3753 article-title: On the energy efficiency‐spectral efficiency trade‐off of distributed MIMO systems publication-title: IEEE Trans Commun – volume: 11 start-page: 31 issue: 1‐2 year: 2018 end-page: 52 article-title: Optimization using lion algorithm: a biological inspiration from lion's social behavior publication-title: Evolutionary Intelligence – volume: 67 start-page: 6991 issue: 8 year: 2018 end-page: 7002 article-title: Spectral and energy efficiency tradeoff for massive MIMO publication-title: IEEE Trans Veh Technol – volume: 169 start-page: 232 year: 2021 end-page: 242 article-title: Increasing energy efficiency of massive‐MIMO network via base stations switching using reinforcement learning and radio environment maps publication-title: Computer Communications – volume: 65 start-page: 2208 issue: 4 year: 2016 end-page: 2218 article-title: Energy‐spectral efficiency tradeoff in cognitive radio networks publication-title: IEEE Trans Veh Technol – volume: 1 start-page: 153 issue: 3 year: 2012 end-page: 156 article-title: Energy efficiency and spectral efficiency tradeoff in downlink distributed antenna systems publication-title: IEEE Commun Lett – volume: 40 start-page: 1795 issue: 6 year: 2022 end-page: 1808 article-title: Generalized transceiver beamforming for DFRC with MIMO radar and MU‐MIMO communication publication-title: IEEE J Selected Areas Commun – volume: 50 year: 2022 article-title: Spectral and energy efficiency for uplink massive MIMO systems with mixed‐ADC architecture publication-title: Phys Commun – volume: 16 start-page: 838 issue: 7 year: 2022 end-page: 850 article-title: Transceiver coexistence design of MIMO radar and MIMO communication under Gaussian model uncertainty publication-title: Adv Signal Proc Integ Radar Commun (IRC) – volume: 14 start-page: 780. issue: 4 year: 2022 article-title: Energy efficiency optimization of massive MIMO system with uplink multi‐cell based on imperfect CSI with power control publication-title: Symmetry – volume: 21 start-page: 1 issue: 6 year: 2014 end-page: 8 article-title: Energy efficiency of massive MIMO wireless communication systems with antenna selection publication-title: J China Univ Posts Telecommun – volume: 68 start-page: 2645 year: 2020 end-page: 2659 article-title: Spectral efficiency and energy efficiency tradeoff in massive MIMO downlink transmission with statistical CSIT publication-title: IEEE Transact Sig Proc – volume: 21 start-page: 5514 issue: 7 year: 2022 end-page: 5525 article-title: Binarized aggregated network with quantization: flexible deep learning deployment for CSI feedback in massive MIMO systems publication-title: IEEE Trans Wirel Commun – year: 2004 – volume: 114 start-page: 48 year: 2017 end-page: 70 article-title: Spotted hyena optimizer: a novel bio‐inspired based metaheuristic technique for engineering applications publication-title: Adv Eng Softw – volume: 14 start-page: 3352 issue: 6 year: 2015 end-page: 3366 article-title: Pilot reuse for massive MIMO transmission over spatially correlated Rayleigh fading channels publication-title: IEEE Trans Wirel Commun – start-page: 1 year: 2022 end-page: 6 article-title: Dilated convolution based CSI feedback compression for massive MIMO systems publication-title: IEEE Trans Vehicular Technol – volume: 61 start-page: 4551 issue: 11 year: 2013 end-page: 4564 article-title: Precoder design for multiuser MISO systems exploiting statistical and outdated CSIT publication-title: IEEE Trans Commun – year: 2022 article-title: UAV‐aided aerial reconfigurable intelligent surface communications with massive MIMO system publication-title: IEEE Trans Cognitive Commun Netw – volume: 63 start-page: 2139 issue: 5 year: 2014 end-page: 2150 article-title: Energy‐efficient resource allocation in downlink OFDM wireless systems with proportional rate constraints publication-title: IEEE Trans Veh Technol – volume: 9 start-page: 59. issue: 1 year: 2022 article-title: A systematic review and research perspective on recommender systems publication-title: J Big Data – volume: 6 start-page: 1106 year: 2020 end-page: 1117 article-title: Developed coyote optimization algorithm and its application to optimal parameters estimation of PEMFC model publication-title: Energy Rep – volume: 21 start-page: 97 issue: 5 year: 2014 end-page: 116 article-title: A new metaheuristic algorithm based on shark smell optimization publication-title: Complexity – ident: e_1_2_9_25_1 doi: 10.1016/j.phycom.2021.101348 – ident: e_1_2_9_27_1 doi: 10.1109/TR.2022.3148114 – ident: e_1_2_9_9_1 doi: 10.1109/TSP.2015.2453134 – ident: e_1_2_9_37_1 doi: 10.1109/TWC.2022.3186084 – ident: e_1_2_9_44_1 doi: 10.1109/TIM.2018.2836058 – ident: e_1_2_9_39_1 doi: 10.1017/CBO9780511804441 – ident: e_1_2_9_16_1 doi: 10.1109/TWC.2015.2404839 – ident: e_1_2_9_22_1 doi: 10.1016/S1005-8885(14)60338-1 – ident: e_1_2_9_6_1 doi: 10.1016/j.egyr.2020.04.032 – ident: e_1_2_9_11_1 doi: 10.1109/JCN.2020.000027 – ident: e_1_2_9_21_1 doi: 10.1016/j.phycom.2021.101516 – ident: e_1_2_9_29_1 doi: 10.1109/TCOMM.2022.3151893 – ident: e_1_2_9_45_1 doi: 10.1016/j.advengsoft.2017.05.014 – ident: e_1_2_9_19_1 doi: 10.1109/TVT.2018.2824311 – ident: e_1_2_9_15_1 doi: 10.1109/TVT.2015.2483519 – ident: e_1_2_9_41_1 doi: 10.3390/sym14040780 – ident: e_1_2_9_43_1 doi: 10.1186/s40537‐022‐00592‐5 – ident: e_1_2_9_8_1 doi: 10.1109/GLOCOM.2012.6503652 – ident: e_1_2_9_38_1 doi: 10.1109/TWC.2014.2316791 – ident: e_1_2_9_32_1 doi: 10.1002/cplx.21634 – ident: e_1_2_9_20_1 doi: 10.1109/TSP.2020.2986391 – ident: e_1_2_9_31_1 doi: 10.1177/14759217211073335 – ident: e_1_2_9_33_1 doi: 10.1016/j.egyr.2020.04.032 – ident: e_1_2_9_3_1 doi: 10.1109/TVT.2014.2311235 – ident: e_1_2_9_30_1 doi: 10.1002/stc.2690 – ident: e_1_2_9_24_1 doi: 10.1016/j.phycom.2021.101430 – ident: e_1_2_9_12_1 doi: 10.1109/WCL.2012.022812.120048 – ident: e_1_2_9_4_1 doi: 10.1109/TWC.2011.120911.111494 – ident: e_1_2_9_5_1 doi: 10.1002/cplx.21634 – ident: e_1_2_9_7_1 doi: 10.1109/MILCOM.2011.6127719 – ident: e_1_2_9_40_1 doi: 10.1109/TWC.2022.3141653 – ident: e_1_2_9_13_1 doi: 10.1109/TWC.2011.091411.110249 – ident: e_1_2_9_28_1 doi: 10.3390/electronics11131948 – ident: e_1_2_9_26_1 doi: 10.1109/TCOMM.2013.071813.120823 – ident: e_1_2_9_14_1 doi: 10.1109/TVT.2015.2432073 – ident: e_1_2_9_36_1 doi: 10.1109/TCCN.2022.3187098 – ident: e_1_2_9_2_1 doi: 10.1109/TVT.2016.2526628 – ident: e_1_2_9_10_1 doi: 10.1109/TCOMM.2015.2502941 – ident: e_1_2_9_17_1 doi: 10.1109/TSP.2015.2502550 – ident: e_1_2_9_23_1 doi: 10.1016/j.comcom.2021.01.012 – ident: e_1_2_9_34_1 doi: 10.1109/JSAC.2022.3155515 – ident: e_1_2_9_35_1 doi: 10.1049/sil2.12123 – ident: e_1_2_9_46_1 doi: 10.1007/s12065‐018‐0168‐y – ident: e_1_2_9_42_1 doi: 10.1109/TVT.2022.3183596 – ident: e_1_2_9_18_1 doi: 10.1109/TCOMM.2013.091813.120874 |
| SSID | ssj0008265 |
| Score | 2.325766 |
| Snippet | Summary
Massive multiple‐input multiple‐output (MIMO) can considerably enhance the “spectral efficiency and energy efficiency” since it is a major technique... Massive multiple‐input multiple‐output (MIMO) can considerably enhance the “spectral efficiency and energy efficiency” since it is a major technique for future... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | adaptive shark smell‐coyote optimization algorithm Algorithms Antennas Beamforming Chains Channel capacity Communications systems Energy efficiency hybrid meta‐heuristic learning massive multiple‐input multiple‐output system MIMO communication multi‐objective function Optimization Optimization algorithms Performance enhancement Power consumption Radio equipment Radio frequency Wireless networks “spectral efficiency and energy efficiency” enhancement |
| Title | Energy and spectral efficiency improvement using improved shark smell‐coyote optimization for massive MIMO system |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fdac.5381 https://www.proquest.com/docview/2754628377 |
| Volume | 36 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1099-1131 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0008265 issn: 1074-5351 databaseCode: ABDBF dateStart: 19940101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1074-5351 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1099-1131 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008265 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA6yJ33wLk6nRBB96tamTdM-jrkxhSmIg4EPJU1SlV0quzzokz_B3-gv8SRttykK4lOhPSFtknPyndNzviB0yjRs0zyVCfOU5SkVWtxmxPIZVw73wecyf3Q713676131aC_PqtS1MBk_xDzgpjXD2Gut4Dye1BakoRL6A23Vno_j-sabul0wRwFqpkW6IXWpU_DO2qRWNPy6Ey3g5TJINbtMawPdF--XJZf0q7NpXBWv36gb__cBm2g9B5-4nq2WLbSiRttobYmScAdNmqYYEPORxKYKcwwNlOGZ0EWa-MkEIUxMEeuc-YfiDog_8nEfT4ZqMPh4exfpSzpVOAWTNMxrPTEAZDwEtA4WFncuOzc445HeRd1W867RtvKDGSwBaMKxJIv9AKCSF9hhEghXME86PLB5yHgo_YAzwQMPsF0QO-D1JkwRV9lUeQA_iQqpu4dKo3Sk9hF2lHB9RhIpwTAIKsNEaohF7FjKEJ6U0XkxSZHIWcv14RmDKONbJhEMY6SHsYxO5pLPGVPHDzKVYp6jXFcnEWFUF-i6DDo7MxP2a_voot7Q14O_Ch6iVX0-vY7ZEFpBpel4po4AxUzjY7NePwFcEe-p |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yHtSDb3F11Qiip65t2jQtnhYf7KqrIAp7EEqapCr7kn0c9ORP8Df6S5yk7e4qCuKp0E5Im8lMvplmviC0xzRs0zyVCfOU5SkVWtxmxPIZVw73IeYyf3TrV371zjtv0MYUOsprYVJ-iFHCTVuG8dfawHVC-nDMGiqhQzBXCH2mPR_CFI2IbsbcUYCbab7hkLrUyZlnbXKYt_y6Fo0B5iRMNevM2QK6z98w3V7SLA8HcVm8fiNv_OcnLKL5DH_iSjphltCU6iyjuQlWwhXUPzX1gJh3JDaFmD1ooAzVhK7TxE8mD2HSilhvm3_I74D4I-81cb-tWq2Pt3fRfekOFO6CV2pn5Z4YMDJuA2AHJ4vrtfo1TqmkV9Hd2entcdXKzmawBAAKx5Is9gNAS15gh0kgXME86fDA5iHjofQDzgQPPIB3QexA4JswRVxlU-UBAiUqpO4aKnS6HbWOsKOE6zOSSAm-QVAZJlKjLGLHUobwpIgOci1FIiMu1-dntKKUcplEMIyRHsYi2h1JPqdkHT_IlHJFR5m59iPCqK7RdRl0tm809mv76KRyrK8bfxXcQTPV2_pldFm7uthEs_q4ep3CIbSECoPeUG0BqBnE22byfgJb9fPK |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA4yQfTBuzivEUSfurVp07T4JM4xL5siCnsQSpqkKm6dbPNBn_wJ_kZ_iSdp61QUxKdCe0LaJOfkO6fnfEFom2nYpnkqE-Ypy1MqtLjNiOUzrhzug89l_ug2W37jyjtu0_YY2itqYTJ-iI-Am9YMY6-1gqsHmVRHrKESOgR1Bddn3KNhoPP5ahcj7ijAzbRIOKQudQrmWZtUi5Zf96IRwPwMU80-U59B18UbZukl95XHYVwRz9_IG__5CbNoOsefeD9bMHNoTKXzaOoTK-ECGhyaekDMU4lNIWYfGihDNaHrNPGdiUOYsCLWafM3xR0Qv-X9ezzoqk7n7eVV9J56Q4V7YJW6ebknBoyMuwDYwcji5lHzDGdU0ovoqn54edCw8rMZLAGAwrEki_0A0JIX2GESCFcwTzo8sHnIeCj9gDPBAw_gXRA74PgmTBFX2VR5gECJCqm7hEppL1XLCDtKuD4jiZRgGwSVYSI1yiJ2LGUIT8pot5ilSOTE5fr8jE6UUS6TCIYx0sNYRlsfkg8ZWccPMmvFREe5ug4iwqiu0XUZdLZjZuzX9lFt_0BfV_4quIkmzmv16PSodbKKJvVp9TqCQ-gaKg37j2odMM0w3jBr9x0VFfNO |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+and+spectral+efficiency+improvement+using+improved+shark+smell%E2%80%90coyote+optimization+for+massive+MIMO+system&rft.jtitle=International+journal+of+communication+systems&rft.au=Byreddy%2C+Amarender+Reddy&rft.au=Logashanmugam%2C+E.&rft.date=2023-01-25&rft.issn=1074-5351&rft.eissn=1099-1131&rft.volume=36&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fdac.5381&rft.externalDBID=10.1002%252Fdac.5381&rft.externalDocID=DAC5381 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1074-5351&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1074-5351&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1074-5351&client=summon |