Energy and spectral efficiency improvement using improved shark smell‐coyote optimization for massive MIMO system

Summary Massive multiple‐input multiple‐output (MIMO) can considerably enhance the “spectral efficiency and energy efficiency” since it is a major technique for future wireless networks. Thus, the performance needs a huge count of base station antennas to serve a smaller number of terminals in conve...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of communication systems Vol. 36; no. 2
Main Authors Byreddy, Amarender Reddy, Logashanmugam, E.
Format Journal Article
LanguageEnglish
Published Chichester Wiley Subscription Services, Inc 25.01.2023
Subjects
Online AccessGet full text
ISSN1074-5351
1099-1131
DOI10.1002/dac.5381

Cover

Abstract Summary Massive multiple‐input multiple‐output (MIMO) can considerably enhance the “spectral efficiency and energy efficiency” since it is a major technique for future wireless networks. Thus, the performance needs a huge count of base station antennas to serve a smaller number of terminals in conventional MIMO methodology. Large‐scale radio frequency (RF) chains represent the large‐scale antennas. There is a need of implementing an effective massive MIMO system for maximizing the efficient performance of the system with high “spectral efficiency and energy efficiency” owing to the high cost of RF chains, and the higher power consumption. In this paper, a massive MIMO communication system is implemented to satisfy the requirements regarding “energy efficiency and spectral efficiency.” Here, the number of base station antennas, the transmit power, and beam forming vectors are optimized to maximize “energy efficiency and spectral efficiency” when the channel capacity is known to be higher than some threshold values. The novelty of this work is a new hybrid optimization adaptive shark smell‐coyote optimization (ASS‐CO) algorithm is developed for improving energy efficiency. The optimization is done with the help of the hybrid optimization ASS‐CO Algorithm. The proposed ASS‐CO algorithm‐based massive MIMO communication system is evaluated by experimental analysis. From the result analysis, the maximum resource efficiency is observed by SS‐WOA, which is 6.6%, 50%, 6.6%, 6.6%, and 6.6% maximized than rider optimization algorithm (ROA), spotted hyena optimization (SHO), lion algorithm (LA), Shark Smell Optimization (SSO), and Coyote Optimization Algorithm (COA) by taking the count of base stations as 4. The superior performance enhancement regarding “spectral efficiency and energy efficiency” is accomplished over the traditional systems. A novel massive multiple‐input multiple‐output (MIMO) communication system is developed by suggesting a new algorithm to maximize the “energy efficiency and spectral efficiency” trade‐off through solving the resource efficiency. The major goal of this framework is to achieve a trade‐off between “spectral efficiency and energy efficiency” in a massive MIMO system by solving the resource efficiency. Here, the number of base station antennas, power allocation for all u‐users (transmit power), and beamforming vectors are optimized using an adaptive shark smell‐coyote optimization (ASS‐CO) algorithm.
AbstractList Summary Massive multiple‐input multiple‐output (MIMO) can considerably enhance the “spectral efficiency and energy efficiency” since it is a major technique for future wireless networks. Thus, the performance needs a huge count of base station antennas to serve a smaller number of terminals in conventional MIMO methodology. Large‐scale radio frequency (RF) chains represent the large‐scale antennas. There is a need of implementing an effective massive MIMO system for maximizing the efficient performance of the system with high “spectral efficiency and energy efficiency” owing to the high cost of RF chains, and the higher power consumption. In this paper, a massive MIMO communication system is implemented to satisfy the requirements regarding “energy efficiency and spectral efficiency.” Here, the number of base station antennas, the transmit power, and beam forming vectors are optimized to maximize “energy efficiency and spectral efficiency” when the channel capacity is known to be higher than some threshold values. The novelty of this work is a new hybrid optimization adaptive shark smell‐coyote optimization (ASS‐CO) algorithm is developed for improving energy efficiency. The optimization is done with the help of the hybrid optimization ASS‐CO Algorithm. The proposed ASS‐CO algorithm‐based massive MIMO communication system is evaluated by experimental analysis. From the result analysis, the maximum resource efficiency is observed by SS‐WOA, which is 6.6%, 50%, 6.6%, 6.6%, and 6.6% maximized than rider optimization algorithm (ROA), spotted hyena optimization (SHO), lion algorithm (LA), Shark Smell Optimization (SSO), and Coyote Optimization Algorithm (COA) by taking the count of base stations as 4. The superior performance enhancement regarding “spectral efficiency and energy efficiency” is accomplished over the traditional systems. A novel massive multiple‐input multiple‐output (MIMO) communication system is developed by suggesting a new algorithm to maximize the “energy efficiency and spectral efficiency” trade‐off through solving the resource efficiency. The major goal of this framework is to achieve a trade‐off between “spectral efficiency and energy efficiency” in a massive MIMO system by solving the resource efficiency. Here, the number of base station antennas, power allocation for all u‐users (transmit power), and beamforming vectors are optimized using an adaptive shark smell‐coyote optimization (ASS‐CO) algorithm.
Massive multiple‐input multiple‐output (MIMO) can considerably enhance the “spectral efficiency and energy efficiency” since it is a major technique for future wireless networks. Thus, the performance needs a huge count of base station antennas to serve a smaller number of terminals in conventional MIMO methodology. Large‐scale radio frequency (RF) chains represent the large‐scale antennas. There is a need of implementing an effective massive MIMO system for maximizing the efficient performance of the system with high “spectral efficiency and energy efficiency” owing to the high cost of RF chains, and the higher power consumption. In this paper, a massive MIMO communication system is implemented to satisfy the requirements regarding “energy efficiency and spectral efficiency.” Here, the number of base station antennas, the transmit power, and beam forming vectors are optimized to maximize “energy efficiency and spectral efficiency” when the channel capacity is known to be higher than some threshold values. The novelty of this work is a new hybrid optimization adaptive shark smell‐coyote optimization (ASS‐CO) algorithm is developed for improving energy efficiency. The optimization is done with the help of the hybrid optimization ASS‐CO Algorithm. The proposed ASS‐CO algorithm‐based massive MIMO communication system is evaluated by experimental analysis. From the result analysis, the maximum resource efficiency is observed by SS‐WOA, which is 6.6%, 50%, 6.6%, 6.6%, and 6.6% maximized than rider optimization algorithm (ROA), spotted hyena optimization (SHO), lion algorithm (LA), Shark Smell Optimization (SSO), and Coyote Optimization Algorithm (COA) by taking the count of base stations as 4. The superior performance enhancement regarding “spectral efficiency and energy efficiency” is accomplished over the traditional systems.
Author Byreddy, Amarender Reddy
Logashanmugam, E.
Author_xml – sequence: 1
  givenname: Amarender Reddy
  orcidid: 0000-0003-0813-9755
  surname: Byreddy
  fullname: Byreddy, Amarender Reddy
  email: amarenderreddybyreddy@gmail.com
  organization: Sathyabama Institute of Science and Technology
– sequence: 2
  givenname: E.
  surname: Logashanmugam
  fullname: Logashanmugam, E.
  email: logu999@yahoo.com
  organization: Sathyabama Institute of Science and Technology
BookMark eNp1kEtOwzAQhi1UJKAgcQRLbNik-BHHzrIqr0qt2MA6Ms4EDIkd7BQUVhyBM3ISUgobBKsZjb6Z-fXtoZHzDhA6pGRCCWEnpTYTwRXdQruU5HlCKaejdS_TRHBBd9BejA-EEMUysYvimYNw12PtShxbMF3QNYaqssaCMz22TRv8MzTgOryK1t39TAb8XodHHBuo64-3d-N73wH2bWcb-6o76x2ufMCNjtE-A17Ol1c49rGDZh9tV7qOcPBdx-jm_Ox6dpksri7ms-kiMYxxmpTyNlMiI6kieaUMNzItqVZE51LnZaa0NFqligt1S5lMKwmMAxGQUioY5IKP0dHm7hD4aQWxKx78KrjhZcGkSDOmuJQDNdlQJvgYA1SFsd1X_sGFrQtKirXYYhBbrMUOC8e_FtpgGx36v9Bkg77YGvp_ueJ0OvviPwHl8Irt
CitedBy_id crossref_primary_10_3233_JHS_230173
crossref_primary_10_1515_joc_2023_0271
crossref_primary_10_1007_s11277_023_10529_7
crossref_primary_10_1007_s13042_024_02315_z
crossref_primary_10_1080_1448837X_2024_2380603
crossref_primary_10_3390_electronics12163505
Cites_doi 10.1016/j.phycom.2021.101348
10.1109/TR.2022.3148114
10.1109/TSP.2015.2453134
10.1109/TWC.2022.3186084
10.1109/TIM.2018.2836058
10.1017/CBO9780511804441
10.1109/TWC.2015.2404839
10.1016/S1005-8885(14)60338-1
10.1016/j.egyr.2020.04.032
10.1109/JCN.2020.000027
10.1016/j.phycom.2021.101516
10.1109/TCOMM.2022.3151893
10.1016/j.advengsoft.2017.05.014
10.1109/TVT.2018.2824311
10.1109/TVT.2015.2483519
10.3390/sym14040780
10.1186/s40537‐022‐00592‐5
10.1109/GLOCOM.2012.6503652
10.1109/TWC.2014.2316791
10.1002/cplx.21634
10.1109/TSP.2020.2986391
10.1177/14759217211073335
10.1109/TVT.2014.2311235
10.1002/stc.2690
10.1016/j.phycom.2021.101430
10.1109/WCL.2012.022812.120048
10.1109/TWC.2011.120911.111494
10.1109/MILCOM.2011.6127719
10.1109/TWC.2022.3141653
10.1109/TWC.2011.091411.110249
10.3390/electronics11131948
10.1109/TCOMM.2013.071813.120823
10.1109/TVT.2015.2432073
10.1109/TCCN.2022.3187098
10.1109/TVT.2016.2526628
10.1109/TCOMM.2015.2502941
10.1109/TSP.2015.2502550
10.1016/j.comcom.2021.01.012
10.1109/JSAC.2022.3155515
10.1049/sil2.12123
10.1007/s12065‐018‐0168‐y
10.1109/TVT.2022.3183596
10.1109/TCOMM.2013.091813.120874
ContentType Journal Article
Copyright 2022 John Wiley & Sons Ltd.
2023 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2022 John Wiley & Sons Ltd.
– notice: 2023 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SP
8FD
JQ2
L7M
DOI 10.1002/dac.5381
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
ProQuest Computer Science Collection
DatabaseTitleList
CrossRef
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-1131
EndPage n/a
ExternalDocumentID 10_1002_dac_5381
DAC5381
Genre article
GroupedDBID .3N
.GA
05W
0R~
10A
1L6
1OB
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ESX
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HGLYW
HHY
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MK~
ML~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WWI
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
7SP
8FD
JQ2
L7M
ID FETCH-LOGICAL-c2231-d7b685604809f8c3c74d1a80a97a9d68a7ca848358b1274f7e23e05e41152e953
IEDL.DBID DR2
ISSN 1074-5351
IngestDate Fri Jul 25 12:06:23 EDT 2025
Wed Oct 01 03:18:04 EDT 2025
Thu Apr 24 22:57:31 EDT 2025
Wed Jan 22 16:25:57 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2231-d7b685604809f8c3c74d1a80a97a9d68a7ca848358b1274f7e23e05e41152e953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0813-9755
PQID 2754628377
PQPubID 996367
PageCount 20
ParticipantIDs proquest_journals_2754628377
crossref_citationtrail_10_1002_dac_5381
crossref_primary_10_1002_dac_5381
wiley_primary_10_1002_dac_5381_DAC5381
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 25 January 2023
PublicationDateYYYYMMDD 2023-01-25
PublicationDate_xml – month: 01
  year: 2023
  text: 25 January 2023
  day: 25
PublicationDecade 2020
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle International journal of communication systems
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 47
2015; 14
2021; 48
2021; 21
2012
2022; 70
2011
2022; 71
2022; 50
2021; 169
2013; 61
2021; 28
2011; 10
2004
2022; 21
2014; 63
2018; 67
2012; 11
2017; 114
2014; 21
2020; 6
2012; 1
2022
2022; 40
2015; 63
2022; 9
2016; 65
2016; 64
2022; 14
2014; 13
2020; 68
2020; 22
2022; 11
2018; 11
2022; 16
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 11
  start-page: 1948.
  issue: 13
  year: 2022
  article-title: A stochastic confocal elliptic‐cylinder channel model for 3D MIMO in millimeter‐wave high‐speed train communication system
  publication-title: Electronics
– start-page: 3472
  year: 2012
  end-page: 3477
– volume: 65
  start-page: 9715
  issue: 12
  year: 2016
  end-page: 9731
  article-title: Spectral, energy, and economic efficiency of 5G multicell massive MIMO systems with generalized spatial modulation
  publication-title: IEEE Trans Veh Technol
– volume: 21
  start-page: 2719
  issue: 6
  year: 2021
  end-page: 2731
  article-title: Statistics‐based baseline‐free approach for rapid inspection of delamination in composite structures using ultrasonic guided waves
  publication-title: Struct Health Monit
– volume: 13
  start-page: 4656
  issue: 8
  year: 2014
  end-page: 4669
  article-title: Resource efficiency: a new paradigm on energy efficiency and spectral efficiency tradeoff
  publication-title: IEEE Trans Wirel Commun
– volume: 64
  start-page: 790
  issue: 2
  year: 2016
  end-page: 804
  article-title: Energy‐efficient zero‐forcing precoding design for small‐cell networks
  publication-title: IEEE Trans Commun
– volume: 10
  start-page: 3874
  issue: 11
  year: 2011
  end-page: 3886
  article-title: Energy‐ and spectral efficiency tradeoff in downlink OFDMA networks
  publication-title: IEEE Trans Wirel Commun
– volume: 70
  start-page: 2820
  issue: 4
  year: 2022
  end-page: 2837
  article-title: Double‐IRS aided MIMO communication under LoS channels: capacity maximization and scaling
  publication-title: IEEE Trans Commun
– volume: 64
  start-page: 1461
  issue: 6
  year: 2016
  end-page: 1476
  article-title: Channel acquisition for massive MIMO‐OFDM with adjustable phase shift pilots
  publication-title: IEEE Trans Signal Proc
– volume: 22
  start-page: 390
  issue: 5
  year: 2020
  end-page: 398
  article-title: Spectral and energy efficient power allocation for MIMO broadcast channels with individual delay and QoS constraints
  publication-title: J Commun Netw
– year: 2022
  article-title: Power distribution based beamspace channel estimation for mm wave massive MIMO system with lens antenna array
  publication-title: IEEE Trans Wirel Commun
– volume: 48
  year: 2021
  article-title: Maximizing the spectral efficiency of finite dimensional multiuser massive MIMO
  publication-title: Phys Commun
– volume: 63
  start-page: 5574
  issue: 20
  year: 2015
  end-page: 5588
  article-title: Optimal energy‐efficient transmit beamforming for multi‐user MISO downlink
  publication-title: IEEE Trans Signal Proc
– volume: 47
  year: 2021
  article-title: Energy and spectral efficiencies trade‐off in MIMO‐NOMA system under user‐rate fairness and variable user per cluster
  publication-title: Phys Commun
– start-page: 495
  year: 2011
  end-page: 500
– volume: 65
  start-page: 7228
  issue: 9
  year: 2016
  end-page: 7243
  article-title: Energyefficient optimization for downlink massive MIMO FDD systems with transmit‐side channel correlation
  publication-title: IEEE Trans Veh Technol
– volume: 28
  issue: 3
  year: 2021
  article-title: Outlier analysis for defect detection using sparse sampling in guided wave structural health monitoring
  publication-title: Struct Contr Health Monit
– volume: 11
  start-page: 556
  issue: 2
  year: 2012
  end-page: 561
  article-title: On the energy efficiency‐spectral efficiency trade‐off in the uplink of CoMP system
  publication-title: IEEE Trans Wirel Commun
– volume: 71
  start-page: 1104
  issue: 2
  year: 2022
  end-page: 1115
  article-title: A deep learning‐based intelligent receiver for improving the reliability of the MIMO wireless communication system
  publication-title: IEEE Trans Reliab
– volume: 61
  start-page: 3741
  issue: 9
  year: 2013
  end-page: 3753
  article-title: On the energy efficiency‐spectral efficiency trade‐off of distributed MIMO systems
  publication-title: IEEE Trans Commun
– volume: 11
  start-page: 31
  issue: 1‐2
  year: 2018
  end-page: 52
  article-title: Optimization using lion algorithm: a biological inspiration from lion's social behavior
  publication-title: Evolutionary Intelligence
– volume: 67
  start-page: 6991
  issue: 8
  year: 2018
  end-page: 7002
  article-title: Spectral and energy efficiency tradeoff for massive MIMO
  publication-title: IEEE Trans Veh Technol
– volume: 169
  start-page: 232
  year: 2021
  end-page: 242
  article-title: Increasing energy efficiency of massive‐MIMO network via base stations switching using reinforcement learning and radio environment maps
  publication-title: Computer Communications
– volume: 65
  start-page: 2208
  issue: 4
  year: 2016
  end-page: 2218
  article-title: Energy‐spectral efficiency tradeoff in cognitive radio networks
  publication-title: IEEE Trans Veh Technol
– volume: 1
  start-page: 153
  issue: 3
  year: 2012
  end-page: 156
  article-title: Energy efficiency and spectral efficiency tradeoff in downlink distributed antenna systems
  publication-title: IEEE Commun Lett
– volume: 40
  start-page: 1795
  issue: 6
  year: 2022
  end-page: 1808
  article-title: Generalized transceiver beamforming for DFRC with MIMO radar and MU‐MIMO communication
  publication-title: IEEE J Selected Areas Commun
– volume: 50
  year: 2022
  article-title: Spectral and energy efficiency for uplink massive MIMO systems with mixed‐ADC architecture
  publication-title: Phys Commun
– volume: 16
  start-page: 838
  issue: 7
  year: 2022
  end-page: 850
  article-title: Transceiver coexistence design of MIMO radar and MIMO communication under Gaussian model uncertainty
  publication-title: Adv Signal Proc Integ Radar Commun (IRC)
– volume: 14
  start-page: 780.
  issue: 4
  year: 2022
  article-title: Energy efficiency optimization of massive MIMO system with uplink multi‐cell based on imperfect CSI with power control
  publication-title: Symmetry
– volume: 21
  start-page: 1
  issue: 6
  year: 2014
  end-page: 8
  article-title: Energy efficiency of massive MIMO wireless communication systems with antenna selection
  publication-title: J China Univ Posts Telecommun
– volume: 68
  start-page: 2645
  year: 2020
  end-page: 2659
  article-title: Spectral efficiency and energy efficiency tradeoff in massive MIMO downlink transmission with statistical CSIT
  publication-title: IEEE Transact Sig Proc
– volume: 21
  start-page: 5514
  issue: 7
  year: 2022
  end-page: 5525
  article-title: Binarized aggregated network with quantization: flexible deep learning deployment for CSI feedback in massive MIMO systems
  publication-title: IEEE Trans Wirel Commun
– year: 2004
– volume: 114
  start-page: 48
  year: 2017
  end-page: 70
  article-title: Spotted hyena optimizer: a novel bio‐inspired based metaheuristic technique for engineering applications
  publication-title: Adv Eng Softw
– volume: 14
  start-page: 3352
  issue: 6
  year: 2015
  end-page: 3366
  article-title: Pilot reuse for massive MIMO transmission over spatially correlated Rayleigh fading channels
  publication-title: IEEE Trans Wirel Commun
– start-page: 1
  year: 2022
  end-page: 6
  article-title: Dilated convolution based CSI feedback compression for massive MIMO systems
  publication-title: IEEE Trans Vehicular Technol
– volume: 61
  start-page: 4551
  issue: 11
  year: 2013
  end-page: 4564
  article-title: Precoder design for multiuser MISO systems exploiting statistical and outdated CSIT
  publication-title: IEEE Trans Commun
– year: 2022
  article-title: UAV‐aided aerial reconfigurable intelligent surface communications with massive MIMO system
  publication-title: IEEE Trans Cognitive Commun Netw
– volume: 63
  start-page: 2139
  issue: 5
  year: 2014
  end-page: 2150
  article-title: Energy‐efficient resource allocation in downlink OFDM wireless systems with proportional rate constraints
  publication-title: IEEE Trans Veh Technol
– volume: 9
  start-page: 59.
  issue: 1
  year: 2022
  article-title: A systematic review and research perspective on recommender systems
  publication-title: J Big Data
– volume: 6
  start-page: 1106
  year: 2020
  end-page: 1117
  article-title: Developed coyote optimization algorithm and its application to optimal parameters estimation of PEMFC model
  publication-title: Energy Rep
– volume: 21
  start-page: 97
  issue: 5
  year: 2014
  end-page: 116
  article-title: A new metaheuristic algorithm based on shark smell optimization
  publication-title: Complexity
– ident: e_1_2_9_25_1
  doi: 10.1016/j.phycom.2021.101348
– ident: e_1_2_9_27_1
  doi: 10.1109/TR.2022.3148114
– ident: e_1_2_9_9_1
  doi: 10.1109/TSP.2015.2453134
– ident: e_1_2_9_37_1
  doi: 10.1109/TWC.2022.3186084
– ident: e_1_2_9_44_1
  doi: 10.1109/TIM.2018.2836058
– ident: e_1_2_9_39_1
  doi: 10.1017/CBO9780511804441
– ident: e_1_2_9_16_1
  doi: 10.1109/TWC.2015.2404839
– ident: e_1_2_9_22_1
  doi: 10.1016/S1005-8885(14)60338-1
– ident: e_1_2_9_6_1
  doi: 10.1016/j.egyr.2020.04.032
– ident: e_1_2_9_11_1
  doi: 10.1109/JCN.2020.000027
– ident: e_1_2_9_21_1
  doi: 10.1016/j.phycom.2021.101516
– ident: e_1_2_9_29_1
  doi: 10.1109/TCOMM.2022.3151893
– ident: e_1_2_9_45_1
  doi: 10.1016/j.advengsoft.2017.05.014
– ident: e_1_2_9_19_1
  doi: 10.1109/TVT.2018.2824311
– ident: e_1_2_9_15_1
  doi: 10.1109/TVT.2015.2483519
– ident: e_1_2_9_41_1
  doi: 10.3390/sym14040780
– ident: e_1_2_9_43_1
  doi: 10.1186/s40537‐022‐00592‐5
– ident: e_1_2_9_8_1
  doi: 10.1109/GLOCOM.2012.6503652
– ident: e_1_2_9_38_1
  doi: 10.1109/TWC.2014.2316791
– ident: e_1_2_9_32_1
  doi: 10.1002/cplx.21634
– ident: e_1_2_9_20_1
  doi: 10.1109/TSP.2020.2986391
– ident: e_1_2_9_31_1
  doi: 10.1177/14759217211073335
– ident: e_1_2_9_33_1
  doi: 10.1016/j.egyr.2020.04.032
– ident: e_1_2_9_3_1
  doi: 10.1109/TVT.2014.2311235
– ident: e_1_2_9_30_1
  doi: 10.1002/stc.2690
– ident: e_1_2_9_24_1
  doi: 10.1016/j.phycom.2021.101430
– ident: e_1_2_9_12_1
  doi: 10.1109/WCL.2012.022812.120048
– ident: e_1_2_9_4_1
  doi: 10.1109/TWC.2011.120911.111494
– ident: e_1_2_9_5_1
  doi: 10.1002/cplx.21634
– ident: e_1_2_9_7_1
  doi: 10.1109/MILCOM.2011.6127719
– ident: e_1_2_9_40_1
  doi: 10.1109/TWC.2022.3141653
– ident: e_1_2_9_13_1
  doi: 10.1109/TWC.2011.091411.110249
– ident: e_1_2_9_28_1
  doi: 10.3390/electronics11131948
– ident: e_1_2_9_26_1
  doi: 10.1109/TCOMM.2013.071813.120823
– ident: e_1_2_9_14_1
  doi: 10.1109/TVT.2015.2432073
– ident: e_1_2_9_36_1
  doi: 10.1109/TCCN.2022.3187098
– ident: e_1_2_9_2_1
  doi: 10.1109/TVT.2016.2526628
– ident: e_1_2_9_10_1
  doi: 10.1109/TCOMM.2015.2502941
– ident: e_1_2_9_17_1
  doi: 10.1109/TSP.2015.2502550
– ident: e_1_2_9_23_1
  doi: 10.1016/j.comcom.2021.01.012
– ident: e_1_2_9_34_1
  doi: 10.1109/JSAC.2022.3155515
– ident: e_1_2_9_35_1
  doi: 10.1049/sil2.12123
– ident: e_1_2_9_46_1
  doi: 10.1007/s12065‐018‐0168‐y
– ident: e_1_2_9_42_1
  doi: 10.1109/TVT.2022.3183596
– ident: e_1_2_9_18_1
  doi: 10.1109/TCOMM.2013.091813.120874
SSID ssj0008265
Score 2.325766
Snippet Summary Massive multiple‐input multiple‐output (MIMO) can considerably enhance the “spectral efficiency and energy efficiency” since it is a major technique...
Massive multiple‐input multiple‐output (MIMO) can considerably enhance the “spectral efficiency and energy efficiency” since it is a major technique for future...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms adaptive shark smell‐coyote optimization algorithm
Algorithms
Antennas
Beamforming
Chains
Channel capacity
Communications systems
Energy efficiency
hybrid meta‐heuristic learning
massive multiple‐input multiple‐output system
MIMO communication
multi‐objective function
Optimization
Optimization algorithms
Performance enhancement
Power consumption
Radio equipment
Radio frequency
Wireless networks
“spectral efficiency and energy efficiency” enhancement
Title Energy and spectral efficiency improvement using improved shark smell‐coyote optimization for massive MIMO system
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fdac.5381
https://www.proquest.com/docview/2754628377
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1099-1131
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0008265
  issn: 1074-5351
  databaseCode: ABDBF
  dateStart: 19940101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1074-5351
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1099-1131
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008265
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA6yJ33wLk6nRBB96tamTdM-jrkxhSmIg4EPJU1SlV0quzzokz_B3-gv8SRttykK4lOhPSFtknPyndNzviB0yjRs0zyVCfOU5SkVWtxmxPIZVw73wecyf3Q713676131aC_PqtS1MBk_xDzgpjXD2Gut4Dye1BakoRL6A23Vno_j-sabul0wRwFqpkW6IXWpU_DO2qRWNPy6Ey3g5TJINbtMawPdF--XJZf0q7NpXBWv36gb__cBm2g9B5-4nq2WLbSiRttobYmScAdNmqYYEPORxKYKcwwNlOGZ0EWa-MkEIUxMEeuc-YfiDog_8nEfT4ZqMPh4exfpSzpVOAWTNMxrPTEAZDwEtA4WFncuOzc445HeRd1W867RtvKDGSwBaMKxJIv9AKCSF9hhEghXME86PLB5yHgo_YAzwQMPsF0QO-D1JkwRV9lUeQA_iQqpu4dKo3Sk9hF2lHB9RhIpwTAIKsNEaohF7FjKEJ6U0XkxSZHIWcv14RmDKONbJhEMY6SHsYxO5pLPGVPHDzKVYp6jXFcnEWFUF-i6DDo7MxP2a_voot7Q14O_Ch6iVX0-vY7ZEFpBpel4po4AxUzjY7NePwFcEe-p
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yHtSDb3F11Qiip65t2jQtnhYf7KqrIAp7EEqapCr7kn0c9ORP8Df6S5yk7e4qCuKp0E5Im8lMvplmviC0xzRs0zyVCfOU5SkVWtxmxPIZVw73IeYyf3TrV371zjtv0MYUOsprYVJ-iFHCTVuG8dfawHVC-nDMGiqhQzBXCH2mPR_CFI2IbsbcUYCbab7hkLrUyZlnbXKYt_y6Fo0B5iRMNevM2QK6z98w3V7SLA8HcVm8fiNv_OcnLKL5DH_iSjphltCU6iyjuQlWwhXUPzX1gJh3JDaFmD1ooAzVhK7TxE8mD2HSilhvm3_I74D4I-81cb-tWq2Pt3fRfekOFO6CV2pn5Z4YMDJuA2AHJ4vrtfo1TqmkV9Hd2entcdXKzmawBAAKx5Is9gNAS15gh0kgXME86fDA5iHjofQDzgQPPIB3QexA4JswRVxlU-UBAiUqpO4aKnS6HbWOsKOE6zOSSAm-QVAZJlKjLGLHUobwpIgOci1FIiMu1-dntKKUcplEMIyRHsYi2h1JPqdkHT_IlHJFR5m59iPCqK7RdRl0tm809mv76KRyrK8bfxXcQTPV2_pldFm7uthEs_q4ep3CIbSECoPeUG0BqBnE22byfgJb9fPK
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA4yQfTBuzivEUSfurVp07T4JM4xL5siCnsQSpqkKm6dbPNBn_wJ_kZ_iSdp61QUxKdCe0LaJOfkO6fnfEFom2nYpnkqE-Ypy1MqtLjNiOUzrhzug89l_ug2W37jyjtu0_YY2itqYTJ-iI-Am9YMY6-1gqsHmVRHrKESOgR1Bddn3KNhoPP5ahcj7ijAzbRIOKQudQrmWZtUi5Zf96IRwPwMU80-U59B18UbZukl95XHYVwRz9_IG__5CbNoOsefeD9bMHNoTKXzaOoTK-ECGhyaekDMU4lNIWYfGihDNaHrNPGdiUOYsCLWafM3xR0Qv-X9ezzoqk7n7eVV9J56Q4V7YJW6ebknBoyMuwDYwcji5lHzDGdU0ovoqn54edCw8rMZLAGAwrEki_0A0JIX2GESCFcwTzo8sHnIeCj9gDPBAw_gXRA74PgmTBFX2VR5gECJCqm7hEppL1XLCDtKuD4jiZRgGwSVYSI1yiJ2LGUIT8pot5ilSOTE5fr8jE6UUS6TCIYx0sNYRlsfkg8ZWccPMmvFREe5ug4iwqiu0XUZdLZjZuzX9lFt_0BfV_4quIkmzmv16PSodbKKJvVp9TqCQ-gaKg37j2odMM0w3jBr9x0VFfNO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+and+spectral+efficiency+improvement+using+improved+shark+smell%E2%80%90coyote+optimization+for+massive+MIMO+system&rft.jtitle=International+journal+of+communication+systems&rft.au=Byreddy%2C+Amarender+Reddy&rft.au=Logashanmugam%2C+E.&rft.date=2023-01-25&rft.issn=1074-5351&rft.eissn=1099-1131&rft.volume=36&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fdac.5381&rft.externalDBID=10.1002%252Fdac.5381&rft.externalDocID=DAC5381
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1074-5351&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1074-5351&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1074-5351&client=summon