Optimal electric load forecasting for systems by an adaptive Crow Search Algorithm: A case study
Summary In this paper, a new technique is suggested for best electric load forecasting of South Korea. The proposed study is based on an improved metaheuristic methodology. This paper proposes a new improved version of Support Vector Machine for Regression (SVR) base on the proposed algorithm. The a...
        Saved in:
      
    
          | Published in | Concurrency and computation Vol. 34; no. 21 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Hoboken, USA
          John Wiley & Sons, Inc
    
        25.09.2022
     Wiley Subscription Services, Inc  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1532-0626 1532-0634  | 
| DOI | 10.1002/cpe.7120 | 
Cover
| Abstract | Summary
In this paper, a new technique is suggested for best electric load forecasting of South Korea. The proposed study is based on an improved metaheuristic methodology. This paper proposes a new improved version of Support Vector Machine for Regression (SVR) base on the proposed algorithm. The algorithm is based on a modified version of Crow Search Algorithm (ACSA), where, by combining by the SVR, generates an efficient classifier. Although, different drawbacks of using original CSA are stated, the proposed ACSA method provides a proper modification for resolving of these shortcomings. The forecasting model has been then performed to a historical data from South Korea to indicate the algorithm efficiency and the results are compared with some other methods, including SVR‐CGA, SVR‐CAS, ANN, and simple Regression to show the suggested method performance. Final results show that MAPD, MSE, and RMSE values of the test data with lower values for South, North, Center, and East, provided better results based on the proposed SVR‐ACSA based on different values of center and kernel of the SVR. Experimental results on the case study shows that the minimum MAPD has been added which is happened in Northern regional is 1.1062, 1.1336, 1.1065, 1.02, 2.23, 1.96, and 1.49 for SVR‐ACSA, SVR‐CGA, SVR‐CAS, ANN, Regression, LSTM‐RNN, and ELM which indicates the method's higher efficiency. | 
    
|---|---|
| AbstractList | In this paper, a new technique is suggested for best electric load forecasting of South Korea. The proposed study is based on an improved metaheuristic methodology. This paper proposes a new improved version of Support Vector Machine for Regression (SVR) base on the proposed algorithm. The algorithm is based on a modified version of Crow Search Algorithm (ACSA), where, by combining by the SVR, generates an efficient classifier. Although, different drawbacks of using original CSA are stated, the proposed ACSA method provides a proper modification for resolving of these shortcomings. The forecasting model has been then performed to a historical data from South Korea to indicate the algorithm efficiency and the results are compared with some other methods, including SVR‐CGA, SVR‐CAS, ANN, and simple Regression to show the suggested method performance. Final results show that MAPD, MSE, and RMSE values of the test data with lower values for South, North, Center, and East, provided better results based on the proposed SVR‐ACSA based on different values of center and kernel of the SVR. Experimental results on the case study shows that the minimum MAPD has been added which is happened in Northern regional is 1.1062, 1.1336, 1.1065, 1.02, 2.23, 1.96, and 1.49 for SVR‐ACSA, SVR‐CGA, SVR‐CAS, ANN, Regression, LSTM‐RNN, and ELM which indicates the method's higher efficiency. Summary In this paper, a new technique is suggested for best electric load forecasting of South Korea. The proposed study is based on an improved metaheuristic methodology. This paper proposes a new improved version of Support Vector Machine for Regression (SVR) base on the proposed algorithm. The algorithm is based on a modified version of Crow Search Algorithm (ACSA), where, by combining by the SVR, generates an efficient classifier. Although, different drawbacks of using original CSA are stated, the proposed ACSA method provides a proper modification for resolving of these shortcomings. The forecasting model has been then performed to a historical data from South Korea to indicate the algorithm efficiency and the results are compared with some other methods, including SVR‐CGA, SVR‐CAS, ANN, and simple Regression to show the suggested method performance. Final results show that MAPD, MSE, and RMSE values of the test data with lower values for South, North, Center, and East, provided better results based on the proposed SVR‐ACSA based on different values of center and kernel of the SVR. Experimental results on the case study shows that the minimum MAPD has been added which is happened in Northern regional is 1.1062, 1.1336, 1.1065, 1.02, 2.23, 1.96, and 1.49 for SVR‐ACSA, SVR‐CGA, SVR‐CAS, ANN, Regression, LSTM‐RNN, and ELM which indicates the method's higher efficiency.  | 
    
| Author | Sun, Hongbin Teimourian, Milad Li, Bo  | 
    
| Author_xml | – sequence: 1 givenname: Bo surname: Li fullname: Li, Bo email: libobb22@163.com organization: Changchun Institute of Technology – sequence: 2 givenname: Hongbin surname: Sun fullname: Sun, Hongbin organization: Changchun Institute of Technology – sequence: 3 givenname: Milad orcidid: 0000-0001-9636-077X surname: Teimourian fullname: Teimourian, Milad email: teimourianmilad@gmail.com organization: Islamic Azad University  | 
    
| BookMark | eNp1kEtLw0AUhQepYFsFf8KAGzep80gyqbsS6gMKFdR1nExu2ilpJs5MLfn3Tq24EF1c7l1851zOGaFBa1pA6JKSCSWE3agOJoIycoKGNOEsIimPBz83S8_QyLkNIZQSTofobdl5vZUNhgaUt1rhxsgK18aCks7rdnW4seudh63DZY9li2Ulg-oDcG7NHj-DtGqNZ83KWO3X21s8w0EL2Pld1Z-j01o2Di6-9xi93s1f8odosbx_zGeLSDHGSRQLJVhNkjhOQoqSs4pmU8krILGicckEhUzUMmUZyyBJk7SaZmUmuCh5Vgmu-BhdHX07a9534HyxMTvbhpcFEyHqlIYJ1PWRUtY4Z6EuOhvi276gpDj0V4T-ikN_AZ38QpX20mvTeit185cgOgr2uoH-X-Mif5p_8Z-IO4EU | 
    
| CitedBy_id | crossref_primary_10_59782_sidr_v1i1_28 | 
    
| Cites_doi | 10.1016/j.neucom.2018.05.068 10.1080/15567036.2020.1716111 10.1002/er.6891 10.1016/j.epsr.2019.105952 10.1016/j.energy.2017.07.150 10.1007/s12530-019-09271-y 10.1109/CEC.2014.6900380 10.1007/s10614-017-9716-2 10.1016/j.applthermaleng.2018.04.008 10.1016/j.asoc.2018.06.040 10.1016/j.rser.2021.111295 10.1002/cplx.21537 10.1109/JSYST.2016.2633512 10.1007/978-3-540-73190-0_7 10.1016/j.applthermaleng.2018.11.122 10.1007/s12652-017-0600-7 10.1109/CEC.2007.4424748 10.1155/2021/5595180 10.1016/j.est.2019.101057 10.1016/j.advengsoft.2017.05.014 10.1002/cplx.21560 10.1007/s40009-014-0260-5 10.1109/NILES50944.2020.9257924 10.3390/en13020391 10.1007/s00500-016-2474-6 10.1016/j.renene.2019.05.008 10.1007/978-3-030-58930-1_7 10.1016/j.enconman.2008.08.031 10.1007/s40010-017-0475-1 10.1007/s42452-018-0049-0 10.1109/ACCESS.2020.3002902 10.1016/j.egyr.2017.10.002 10.1007/s00521-015-1870-7 10.1007/978-3-030-16339-6_5 10.3233/IFS-151807 10.1016/j.swevo.2018.10.006 10.1016/j.est.2019.101054 10.1016/j.engappai.2019.103300 10.1016/j.compeleceng.2018.04.014 10.3390/su132212771 10.1515/med-2020-0131 10.1007/s40313-019-00531-5 10.1016/j.jclepro.2019.01.085 10.1049/iet-gtd.2019.1625 10.1002/cplx.21544 10.1016/j.segan.2019.100274 10.1016/j.engappai.2019.103294 10.1016/j.ijepes.2018.07.014 10.1049/iet-rpg.2019.0485 10.1016/j.enpol.2010.05.033  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2022 John Wiley & Sons, Ltd. | 
    
| Copyright_xml | – notice: 2022 John Wiley & Sons, Ltd. | 
    
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D  | 
    
| DOI | 10.1002/cpe.7120 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Computer and Information Systems Abstracts CrossRef  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1532-0634 | 
    
| EndPage | n/a | 
    
| ExternalDocumentID | 10_1002_cpe_7120 CPE7120  | 
    
| Genre | article | 
    
| GeographicLocations | South Korea | 
    
| GeographicLocations_xml | – name: South Korea | 
    
| GrantInformation_xml | – fundername: Youth Fund Project of Changchun Institute of Engineering funderid: 320190015 – fundername: The Nature Science Foundation of Jilin China funderid: 2018010107JC – fundername: Jilin Science and Technology development technology research project funderid: 20190302110gx  | 
    
| GroupedDBID | .3N .DC .GA 05W 0R~ 10A 1L6 1OC 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ACAHQ ACCFJ ACCZN ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA HGLYW HHY HZ~ IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 SUPJJ TN5 UB1 V2E W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT AAYXX ADMLS AEYWJ AGHNM AGYGG CITATION 7SC 8FD JQ2 L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c2230-47c72f05445002b32d189a3de04c14b271e87fa62828e5656d98b8737b38d73c3 | 
    
| IEDL.DBID | DR2 | 
    
| ISSN | 1532-0626 | 
    
| IngestDate | Fri Jul 25 02:59:39 EDT 2025 Thu Apr 24 23:01:47 EDT 2025 Wed Oct 01 00:59:52 EDT 2025 Wed Jan 22 16:24:43 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 21 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c2230-47c72f05445002b32d189a3de04c14b271e87fa62828e5656d98b8737b38d73c3 | 
    
| Notes | Funding information Jilin Science and Technology development technology research project, Grant/Award Number: 20190302110gx; The Nature Science Foundation of Jilin China, Grant/Award Number: 2018010107JC; Youth Fund Project of Changchun Institute of Engineering, Grant/Award Number: 320190015 ObjectType-Case Study-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-4 ObjectType-Report-1 ObjectType-Article-3  | 
    
| ORCID | 0000-0001-9636-077X | 
    
| PQID | 2703191319 | 
    
| PQPubID | 2045170 | 
    
| PageCount | 15 | 
    
| ParticipantIDs | proquest_journals_2703191319 crossref_primary_10_1002_cpe_7120 crossref_citationtrail_10_1002_cpe_7120 wiley_primary_10_1002_cpe_7120_CPE7120  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 25 September 2022 | 
    
| PublicationDateYYYYMMDD | 2022-09-25 | 
    
| PublicationDate_xml | – month: 09 year: 2022 text: 25 September 2022 day: 25  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Hoboken, USA | 
    
| PublicationPlace_xml | – name: Hoboken, USA – name: Hoboken  | 
    
| PublicationTitle | Concurrency and computation | 
    
| PublicationYear | 2022 | 
    
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc  | 
    
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc  | 
    
| References | 2010; 38 2021; 45 2019; 50 2019; 53 2021; 148 2019; 10 2019; 1 2019; 13 2019; 148 2019; 104 2008 2020; 15 2016; 30 2007 2020; 14 2005 2020; 13 2020; 11 2018; 22 2017; 114 2017; 139 2019; 143 2018; 68 2020; 8 2021; 13 2018; 4 2020; 31 2019; 20 2021 2009; 50 2020 2019; 89 2018; 137 2015; 21 2018; 312 2020; 27 2014; 37 2019; 215 2014 2018; 71 2020; 87 2018; 12 2016; 27 2021; 2021 2019; 176 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 Cai X (e_1_2_8_5_1) 2021; 2021 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 Ye H (e_1_2_8_3_1) 2020 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_52_1 e_1_2_8_50_1  | 
    
| References_xml | – start-page: 139 year: 2020 end-page: 159 – volume: 45 start-page: 16436 issue: 11 year: 2021 end-page: 16455 article-title: Numerical investigation of a new combined energy system includes parabolic dish solar collector, Stirling engine and thermoelectric device publication-title: Int J Energy Res – volume: 21 start-page: 78 issue: 1 year: 2015 end-page: 93 article-title: A new hybrid algorithm based on optimal fuzzy controller in multimachine power system publication-title: Complexity – volume: 215 start-page: 878 year: 2019 end-page: 889 article-title: Optimal offering and bidding strategies of renewable energy based large consumer using a novel hybrid robust‐stochastic approach publication-title: J Clean Prod – year: 2005 – volume: 50 start-page: 105 issue: 1 year: 2009 end-page: 117 article-title: Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model publication-title: Energ Conver Manage – volume: 87 year: 2020 article-title: Manta ray foraging optimization: an effective bio‐inspired optimizer for engineering applications publication-title: Eng Appl Artif Intel – volume: 8 start-page: 131975 year: 2020 end-page: 131987 article-title: High voltage gain DC/DC converter using coupled inductor and VM techniques publication-title: IEEE Access – volume: 71 start-page: 51 year: 2018 end-page: 65 article-title: A modified crow search algorithm (MCSA) for solving economic load dispatch problem publication-title: Appl Soft Comput – volume: 143 start-page: 1 year: 2019 end-page: 8 article-title: Optimal bidding and offering strategies of compressed air energy storage: a hybrid robust‐stochastic approach publication-title: Renew Energy – volume: 13 issue: 22 year: 2021 article-title: Optimization of PEMFC model parameters using meta‐heuristics publication-title: Sustainability – year: 2014 – volume: 104 start-page: 423 year: 2019 end-page: 435 article-title: Different states of multi‐block based forecast engine for price and load prediction publication-title: Int J Electric Power Energy Syst – volume: 114 start-page: 48 year: 2017 end-page: 70 article-title: Spotted hyena optimizer: a novel bio‐inspired based metaheuristic technique for engineering applications publication-title: Adv Eng Software – volume: 11 start-page: 559 issue: 4 year: 2020 end-page: 573 article-title: Application of hybrid forecast engine based intelligent algorithm and feature selection for wind signal prediction publication-title: Evol Syst – volume: 50 year: 2019 article-title: Novel mutation strategy for enhancing SHADE and LSHADE algorithms for global numerical optimization publication-title: Swarm Evol Comput – volume: 22 start-page: 387 issue: 2 year: 2018 end-page: 408 article-title: Particle swarm optimization algorithm: an overview publication-title: Soft Comput – volume: 21 start-page: 242 issue: 1 year: 2015 end-page: 258 article-title: Optimal location and optimized parameters for robust power system stabilizer using honeybee mating optimization publication-title: Complexity – volume: 148 start-page: 1081 year: 2019 end-page: 1091 article-title: Robust optimization based optimal chiller loading under cooling demand uncertainty publication-title: Appl Therm Eng – start-page: 165 year: 2008 end-page: 209 – volume: 20 year: 2019 article-title: Optimal operation of CCHP and renewable generation‐based energy hub considering environmental perspective: an epsilon constraint and fuzzy methods publication-title: Sustain Energy Grids Networks – volume: 31 start-page: 257 issue: 1 year: 2020 end-page: 270 article-title: A single‐phase transformer‐less grid‐tied inverter based on switched capacitor for PV application publication-title: J Control Autom Electric Syst – volume: 68 start-page: 412 year: 2018 end-page: 424 article-title: Improved diagnosis of Parkinson's disease using optimized crow search algorithm publication-title: Comput Electric Eng – volume: 148 year: 2021 article-title: Robust multi‐objective optimal design of islanded hybrid system with renewable and diesel sources/stationary and mobile energy storage systems publication-title: Renew Sustain Energy Rev – volume: 27 start-page: 495 issue: 2 year: 2016 end-page: 513 article-title: Multi‐verse optimizer: a nature‐inspired algorithm for global optimization publication-title: Neural Comput Appl – volume: 38 start-page: 5830 issue: 10 year: 2010 end-page: 5839 article-title: Application of chaotic ant swarm optimization in electric load forecasting publication-title: Energy Policy – volume: 27 year: 2020 article-title: An IGDT‐based risk‐involved optimal bidding strategy for hydrogen storage‐based intelligent parking lot of electric vehicles publication-title: J Energy Storage – start-page: 103 year: 2021 end-page: 121 – volume: 139 start-page: 18 year: 2017 end-page: 30 article-title: Electricity load forecasting by an improved forecast engine for building level consumers publication-title: Energy – volume: 37 start-page: 447 issue: 5 year: 2014 end-page: 450 article-title: MDE with considered different load scenarios for solving optimal location and sizing of shunt capacitors publication-title: Natl Acad Sci Lett – volume: 10 start-page: 77 issue: 1 year: 2019 end-page: 87 article-title: A new prediction model of battery and wind‐solar output in hybrid power system publication-title: J Ambient Intellig Hum Comput Secur – volume: 312 start-page: 90 year: 2018 end-page: 106 article-title: Mixed kernel based extreme learning machine for electric load forecasting publication-title: Neurocomputing – volume: 13 start-page: 2587 issue: 14 year: 2019 end-page: 2593 article-title: Reliability constraint stochastic UC by considering the correlation of random variables with copula theory publication-title: IET Renew Power Gen – start-page: 1 year: 2020 end-page: 20 article-title: High step‐up interleaved DC/DC converter with high efficiency publication-title: Energy Sour, Part A: Recov Utiliz Environ Effects – year: 2007 – volume: 12 start-page: 2782 issue: 3 year: 2018 end-page: 2790 article-title: Planning in microgrids with conservation of voltage reduction publication-title: IEEE Syst J – volume: 4 start-page: 218 year: 2018 end-page: 225 article-title: Multi‐objective energy management in a micro‐grid publication-title: Energy Rep – volume: 21 start-page: 10 issue: 1 year: 2015 end-page: 20 article-title: An adaptive neuro‐fuzzy inference system for islanding detection in wind turbine as distributed generation publication-title: Complexity – volume: 53 start-page: 1 issue: 1 year: 2019 end-page: 26 article-title: Extracting appropriate nodal marginal prices for all types of committed reserve publication-title: Comput Econ – volume: 14 start-page: 3478 issue: 17 year: 2020 end-page: 3487 article-title: Probabilistic decomposition‐based security constrained transmission expansion planning incorporating distributed series reactor publication-title: IET Gen Transm Distrib – volume: 15 start-page: 860 issue: 1 year: 2020 end-page: 871 article-title: Computer‐aided diagnosis of skin cancer based on soft computing techniques publication-title: Open Med – volume: 137 start-page: 395 year: 2018 end-page: 405 article-title: Fuzzy‐based heat and power hub models for cost‐emission operation of an industrial consumer using compromise programming publication-title: Appl Therm Eng – volume: 13 start-page: 391 issue: 2 year: 2020 article-title: Multi‐sequence LSTM‐RNN deep learning and metaheuristics for electric load forecasting publication-title: Energies – volume: 27 year: 2020 article-title: Energy management of wind‐PV‐storage‐grid based large electricity consumer using robust optimization technique publication-title: J Energy Storage – year: 2020 – volume: 89 start-page: 311 issue: 2 year: 2019 end-page: 321 article-title: A new formulation to reduce the number of variables and constraints to expedite SCUC in bulky power systems publication-title: Proc Natl Acad Sci – volume: 2021 start-page: 1 year: 2021 end-page: 13 article-title: Breast cancer diagnosis by convolutional neural network and advanced thermal exchange optimization algorithm publication-title: Comput Math Methods Med – volume: 1 start-page: 1 issue: 1 year: 2019 end-page: 9 article-title: An analytical methodology for reliability assessment and failure analysis in distributed power system publication-title: SN Appl Sci – volume: 176 year: 2019 article-title: Reliability based optimal allocation of distributed generations in transmission systems under demand response program publication-title: Electr Power Syst Res – volume: 30 start-page: 845 issue: 2 year: 2016 end-page: 859 article-title: Concordant controllers based on FACTS and FPSS for solving wide‐area in multi‐machine power system publication-title: J Intellig Fuzzy Syst – volume: 87 year: 2020 article-title: A powerful variant of symbiotic organisms search algorithm for global optimization publication-title: Eng Appl Artif Intel – ident: e_1_2_8_53_1 doi: 10.1016/j.neucom.2018.05.068 – ident: e_1_2_8_37_1 – start-page: 1 year: 2020 ident: e_1_2_8_3_1 article-title: High step‐up interleaved DC/DC converter with high efficiency publication-title: Energy Sour, Part A: Recov Utiliz Environ Effects doi: 10.1080/15567036.2020.1716111 – ident: e_1_2_8_7_1 doi: 10.1002/er.6891 – ident: e_1_2_8_30_1 doi: 10.1016/j.epsr.2019.105952 – ident: e_1_2_8_24_1 doi: 10.1016/j.energy.2017.07.150 – ident: e_1_2_8_27_1 doi: 10.1007/s12530-019-09271-y – ident: e_1_2_8_48_1 doi: 10.1109/CEC.2014.6900380 – ident: e_1_2_8_40_1 – ident: e_1_2_8_9_1 doi: 10.1007/s10614-017-9716-2 – ident: e_1_2_8_22_1 doi: 10.1016/j.applthermaleng.2018.04.008 – ident: e_1_2_8_35_1 doi: 10.1016/j.asoc.2018.06.040 – ident: e_1_2_8_4_1 doi: 10.1016/j.rser.2021.111295 – ident: e_1_2_8_14_1 doi: 10.1002/cplx.21537 – ident: e_1_2_8_17_1 doi: 10.1109/JSYST.2016.2633512 – ident: e_1_2_8_41_1 doi: 10.1007/978-3-540-73190-0_7 – ident: e_1_2_8_25_1 doi: 10.1016/j.applthermaleng.2018.11.122 – ident: e_1_2_8_6_1 doi: 10.1007/s12652-017-0600-7 – ident: e_1_2_8_39_1 doi: 10.1109/CEC.2007.4424748 – volume: 2021 start-page: 1 year: 2021 ident: e_1_2_8_5_1 article-title: Breast cancer diagnosis by convolutional neural network and advanced thermal exchange optimization algorithm publication-title: Comput Math Methods Med doi: 10.1155/2021/5595180 – ident: e_1_2_8_16_1 doi: 10.1016/j.est.2019.101057 – ident: e_1_2_8_46_1 doi: 10.1016/j.advengsoft.2017.05.014 – ident: e_1_2_8_18_1 doi: 10.1002/cplx.21560 – ident: e_1_2_8_19_1 doi: 10.1007/s40009-014-0260-5 – ident: e_1_2_8_47_1 doi: 10.1109/NILES50944.2020.9257924 – ident: e_1_2_8_52_1 doi: 10.3390/en13020391 – ident: e_1_2_8_42_1 doi: 10.1007/s00500-016-2474-6 – ident: e_1_2_8_20_1 doi: 10.1016/j.renene.2019.05.008 – ident: e_1_2_8_50_1 doi: 10.1007/978-3-030-58930-1_7 – ident: e_1_2_8_51_1 doi: 10.1016/j.enconman.2008.08.031 – ident: e_1_2_8_10_1 doi: 10.1007/s40010-017-0475-1 – ident: e_1_2_8_33_1 doi: 10.1007/s42452-018-0049-0 – ident: e_1_2_8_2_1 doi: 10.1109/ACCESS.2020.3002902 – ident: e_1_2_8_23_1 doi: 10.1016/j.egyr.2017.10.002 – ident: e_1_2_8_43_1 doi: 10.1007/s00521-015-1870-7 – ident: e_1_2_8_45_1 doi: 10.1007/978-3-030-16339-6_5 – ident: e_1_2_8_21_1 doi: 10.3233/IFS-151807 – ident: e_1_2_8_49_1 doi: 10.1016/j.swevo.2018.10.006 – ident: e_1_2_8_31_1 doi: 10.1016/j.est.2019.101054 – ident: e_1_2_8_44_1 doi: 10.1016/j.engappai.2019.103300 – ident: e_1_2_8_34_1 doi: 10.1016/j.compeleceng.2018.04.014 – ident: e_1_2_8_8_1 doi: 10.3390/su132212771 – ident: e_1_2_8_13_1 doi: 10.1515/med-2020-0131 – ident: e_1_2_8_26_1 doi: 10.1007/s40313-019-00531-5 – ident: e_1_2_8_29_1 doi: 10.1016/j.jclepro.2019.01.085 – ident: e_1_2_8_12_1 doi: 10.1049/iet-gtd.2019.1625 – ident: e_1_2_8_15_1 doi: 10.1002/cplx.21544 – ident: e_1_2_8_32_1 doi: 10.1016/j.segan.2019.100274 – ident: e_1_2_8_38_1 doi: 10.1016/j.engappai.2019.103294 – ident: e_1_2_8_28_1 doi: 10.1016/j.ijepes.2018.07.014 – ident: e_1_2_8_11_1 doi: 10.1049/iet-rpg.2019.0485 – ident: e_1_2_8_36_1 doi: 10.1016/j.enpol.2010.05.033  | 
    
| SSID | ssj0011031 | 
    
| Score | 2.309942 | 
    
| Snippet | Summary
In this paper, a new technique is suggested for best electric load forecasting of South Korea. The proposed study is based on an improved metaheuristic... In this paper, a new technique is suggested for best electric load forecasting of South Korea. The proposed study is based on an improved metaheuristic...  | 
    
| SourceID | proquest crossref wiley  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| SubjectTerms | Adaptive algorithms Adaptive Crow Search Optimizer Algorithms Case studies electric load Electrical loads Forecasting Heuristic methods Regression Search algorithms Support vector machines Support Vector Regression  | 
    
| Title | Optimal electric load forecasting for systems by an adaptive Crow Search Algorithm: A case study | 
    
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.7120 https://www.proquest.com/docview/2703191319  | 
    
| Volume | 34 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1532-0634 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0011031 issn: 1532-0626 databaseCode: ADMLS dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1532-0626 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1532-0634 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011031 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF7EkxfrE6tVVhA9pU120-zGWyktRfCBWCh4iPuKFvuij4P-eneySauiIB5CcpiBze7O7DfJzDcInUVpFCvBtCcJlOTISHpcp9yTPlVEUSK0gXrn65uo0w2vevVenlUJtTCOH2L5wQ0sI_PXYOBCzmor0lA1MVUWEAjXAxpl0dT9kjkqgO4FjiqVeL4F7QXvrE9qheLXk2gFLz-D1OyUaZfQYzE-l1zyWl3MZVW9f6Nu_N8LbKHNHHzihtst22jNjHZQqWjsgHM730VPt9aRDK2ka5LTV3gwFhpbfGuUmEGiNDxjxwI9w_INixEWWkzAd-KmjeyxS2PGjcHzeNqfvwwvcQNbXYMzPts91G23HpodL2_F4CmLH3wvZIqR1AfmHjt4SYkOeCyoNn6oglASFhjOUhFBAGcAI-qYS84ok5RrRhXdR-uj8cgcIEy4qnMjYhsopqE2jAd2q9ggygI1Fps6LaOLYlkSlfOUQ7uMQeIYlkliJy6BiSuj06XkxHFz_CBTKVY2ya1zlhAg7Y8De5XRebZEv-onzbsW3A__KniENghUSMCPq3oFrc-nC3NscctcnmQ79AMgEuik | 
    
| linkProvider | Wiley-Blackwell | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED4h9rC9wBib1g2YJ6HxlJLYaezAU1WBCgOGJpB4mJT5V1i10la0PMBfz12clIE2aeIhSh7uJMe-s7-zfd8BbGZlllstXWQ4peSYzETKlSoysbDcCq6dp3zn45Osf54eXnQuFmC3yYUJ_BDzDTfyjGq-JgenDentB9ZQO_FtmXCM11-kGYYphIi-z7mjEqpfEMhSeRQjbG-YZ2O-3Wg-XoseAOafMLVaZ_aX4UfTwnC95Hf7Zmba9u4JeeMzf-E1LNX4k3WDwazAgh-9geWmtgOrXX0Vfn7DueQKJUOdnIFlw7F2DCGut3pKd6XpmwUi6Ckzt0yPmHZ6QtMn62Fwz8JNZtYdXo6vB7NfVzusy1DXs4rS9i2c7--d9fpRXY0hsggh4iiVVvIyJvIebLwR3CUq18L5OLVJarhMvJKlziiG8wQTXa6MkkIaoZwUVryDxdF45N8D48p2lNc5xopl6rxUCVoLxlGI1WTuO6IFW824FLamKqeKGcMikCzzAjuuoI5rwee55CTQc_xFZq0Z2qJ20GnBibc_T_BpwZdqjP6pX_RO9-j94X8FP8HL_tnxUXF0cPL1I7zilDBB51idNVicXd_4dYQxM7NRmes9vobsxQ | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hKiEu0PIQS6E1EoJTlsROYqc9rfYh3iBUJA5IqV8B1GV3xS6H8uvriZOlVFRCHKLkMCM5tmf8TTLzDcB2WqSZltwEimJJjkpVIEwhAhUyTTWj0lisdz45Tfcv48Or5GoGvte1MJ4fYvrBDS2j9Ndo4HZkir1n1lA9sk0eURevf4iTTGA-X-diyh0VYf8CT5ZKg9DB9pp5NqR7tebLs-gZYP4NU8tzprcI1_UIfXrJr-bjRDX10z_kje98hY-wUOFP0vIb5hPM2MESLNa9HUhl6svw88z5knsn6fvk3GnSH0pDHMS1Wo4xVxqfiSeCHhP1m8gBkUaO0H2Stgvuic9kJq3-zfDhbnJ7_420iNO1pKS0XYHLXvdHez-oujEE2kGIMIi55rQIkbzHDV4xaiKRSWZsGOsoVpRHVvBCphjDWYSJJhNKcMYVE4YzzVZhdjAc2DUgVOhEWJm5WLGIjeUicrvFxVEOq_HMJqwBu_W65LqiKseOGf3ckyzT3E1cjhPXgK2p5MjTc7wis1EvbV4Z6DinyNufRe5qwE65Rv_Vz9vnXbyvv1XwK8ydd3r58cHp0WeYp1gvgb-xkg2YnTw82k2HYibqS7lb_wCAcuxJ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+electric+load+forecasting+for+systems+by+an+adaptive+Crow+Search+Algorithm%3A+A+case+study&rft.jtitle=Concurrency+and+computation&rft.au=Li%2C+Bo&rft.au=Sun%2C+Hongbin&rft.au=Teimourian%2C+Milad&rft.date=2022-09-25&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=34&rft.issue=21&rft_id=info:doi/10.1002%2Fcpe.7120&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon |