Optimal electric load forecasting for systems by an adaptive Crow Search Algorithm: A case study

Summary In this paper, a new technique is suggested for best electric load forecasting of South Korea. The proposed study is based on an improved metaheuristic methodology. This paper proposes a new improved version of Support Vector Machine for Regression (SVR) base on the proposed algorithm. The a...

Full description

Saved in:
Bibliographic Details
Published inConcurrency and computation Vol. 34; no. 21
Main Authors Li, Bo, Sun, Hongbin, Teimourian, Milad
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 25.09.2022
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1532-0626
1532-0634
DOI10.1002/cpe.7120

Cover

Abstract Summary In this paper, a new technique is suggested for best electric load forecasting of South Korea. The proposed study is based on an improved metaheuristic methodology. This paper proposes a new improved version of Support Vector Machine for Regression (SVR) base on the proposed algorithm. The algorithm is based on a modified version of Crow Search Algorithm (ACSA), where, by combining by the SVR, generates an efficient classifier. Although, different drawbacks of using original CSA are stated, the proposed ACSA method provides a proper modification for resolving of these shortcomings. The forecasting model has been then performed to a historical data from South Korea to indicate the algorithm efficiency and the results are compared with some other methods, including SVR‐CGA, SVR‐CAS, ANN, and simple Regression to show the suggested method performance. Final results show that MAPD, MSE, and RMSE values of the test data with lower values for South, North, Center, and East, provided better results based on the proposed SVR‐ACSA based on different values of center and kernel of the SVR. Experimental results on the case study shows that the minimum MAPD has been added which is happened in Northern regional is 1.1062, 1.1336, 1.1065, 1.02, 2.23, 1.96, and 1.49 for SVR‐ACSA, SVR‐CGA, SVR‐CAS, ANN, Regression, LSTM‐RNN, and ELM which indicates the method's higher efficiency.
AbstractList In this paper, a new technique is suggested for best electric load forecasting of South Korea. The proposed study is based on an improved metaheuristic methodology. This paper proposes a new improved version of Support Vector Machine for Regression (SVR) base on the proposed algorithm. The algorithm is based on a modified version of Crow Search Algorithm (ACSA), where, by combining by the SVR, generates an efficient classifier. Although, different drawbacks of using original CSA are stated, the proposed ACSA method provides a proper modification for resolving of these shortcomings. The forecasting model has been then performed to a historical data from South Korea to indicate the algorithm efficiency and the results are compared with some other methods, including SVR‐CGA, SVR‐CAS, ANN, and simple Regression to show the suggested method performance. Final results show that MAPD, MSE, and RMSE values of the test data with lower values for South, North, Center, and East, provided better results based on the proposed SVR‐ACSA based on different values of center and kernel of the SVR. Experimental results on the case study shows that the minimum MAPD has been added which is happened in Northern regional is 1.1062, 1.1336, 1.1065, 1.02, 2.23, 1.96, and 1.49 for SVR‐ACSA, SVR‐CGA, SVR‐CAS, ANN, Regression, LSTM‐RNN, and ELM which indicates the method's higher efficiency.
Summary In this paper, a new technique is suggested for best electric load forecasting of South Korea. The proposed study is based on an improved metaheuristic methodology. This paper proposes a new improved version of Support Vector Machine for Regression (SVR) base on the proposed algorithm. The algorithm is based on a modified version of Crow Search Algorithm (ACSA), where, by combining by the SVR, generates an efficient classifier. Although, different drawbacks of using original CSA are stated, the proposed ACSA method provides a proper modification for resolving of these shortcomings. The forecasting model has been then performed to a historical data from South Korea to indicate the algorithm efficiency and the results are compared with some other methods, including SVR‐CGA, SVR‐CAS, ANN, and simple Regression to show the suggested method performance. Final results show that MAPD, MSE, and RMSE values of the test data with lower values for South, North, Center, and East, provided better results based on the proposed SVR‐ACSA based on different values of center and kernel of the SVR. Experimental results on the case study shows that the minimum MAPD has been added which is happened in Northern regional is 1.1062, 1.1336, 1.1065, 1.02, 2.23, 1.96, and 1.49 for SVR‐ACSA, SVR‐CGA, SVR‐CAS, ANN, Regression, LSTM‐RNN, and ELM which indicates the method's higher efficiency.
Author Sun, Hongbin
Teimourian, Milad
Li, Bo
Author_xml – sequence: 1
  givenname: Bo
  surname: Li
  fullname: Li, Bo
  email: libobb22@163.com
  organization: Changchun Institute of Technology
– sequence: 2
  givenname: Hongbin
  surname: Sun
  fullname: Sun, Hongbin
  organization: Changchun Institute of Technology
– sequence: 3
  givenname: Milad
  orcidid: 0000-0001-9636-077X
  surname: Teimourian
  fullname: Teimourian, Milad
  email: teimourianmilad@gmail.com
  organization: Islamic Azad University
BookMark eNp1kEtLw0AUhQepYFsFf8KAGzep80gyqbsS6gMKFdR1nExu2ilpJs5MLfn3Tq24EF1c7l1851zOGaFBa1pA6JKSCSWE3agOJoIycoKGNOEsIimPBz83S8_QyLkNIZQSTofobdl5vZUNhgaUt1rhxsgK18aCks7rdnW4seudh63DZY9li2Ulg-oDcG7NHj-DtGqNZ83KWO3X21s8w0EL2Pld1Z-j01o2Di6-9xi93s1f8odosbx_zGeLSDHGSRQLJVhNkjhOQoqSs4pmU8krILGicckEhUzUMmUZyyBJk7SaZmUmuCh5Vgmu-BhdHX07a9534HyxMTvbhpcFEyHqlIYJ1PWRUtY4Z6EuOhvi276gpDj0V4T-ikN_AZ38QpX20mvTeit185cgOgr2uoH-X-Mif5p_8Z-IO4EU
CitedBy_id crossref_primary_10_59782_sidr_v1i1_28
Cites_doi 10.1016/j.neucom.2018.05.068
10.1080/15567036.2020.1716111
10.1002/er.6891
10.1016/j.epsr.2019.105952
10.1016/j.energy.2017.07.150
10.1007/s12530-019-09271-y
10.1109/CEC.2014.6900380
10.1007/s10614-017-9716-2
10.1016/j.applthermaleng.2018.04.008
10.1016/j.asoc.2018.06.040
10.1016/j.rser.2021.111295
10.1002/cplx.21537
10.1109/JSYST.2016.2633512
10.1007/978-3-540-73190-0_7
10.1016/j.applthermaleng.2018.11.122
10.1007/s12652-017-0600-7
10.1109/CEC.2007.4424748
10.1155/2021/5595180
10.1016/j.est.2019.101057
10.1016/j.advengsoft.2017.05.014
10.1002/cplx.21560
10.1007/s40009-014-0260-5
10.1109/NILES50944.2020.9257924
10.3390/en13020391
10.1007/s00500-016-2474-6
10.1016/j.renene.2019.05.008
10.1007/978-3-030-58930-1_7
10.1016/j.enconman.2008.08.031
10.1007/s40010-017-0475-1
10.1007/s42452-018-0049-0
10.1109/ACCESS.2020.3002902
10.1016/j.egyr.2017.10.002
10.1007/s00521-015-1870-7
10.1007/978-3-030-16339-6_5
10.3233/IFS-151807
10.1016/j.swevo.2018.10.006
10.1016/j.est.2019.101054
10.1016/j.engappai.2019.103300
10.1016/j.compeleceng.2018.04.014
10.3390/su132212771
10.1515/med-2020-0131
10.1007/s40313-019-00531-5
10.1016/j.jclepro.2019.01.085
10.1049/iet-gtd.2019.1625
10.1002/cplx.21544
10.1016/j.segan.2019.100274
10.1016/j.engappai.2019.103294
10.1016/j.ijepes.2018.07.014
10.1049/iet-rpg.2019.0485
10.1016/j.enpol.2010.05.033
ContentType Journal Article
Copyright 2022 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2022 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cpe.7120
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1532-0634
EndPage n/a
ExternalDocumentID 10_1002_cpe_7120
CPE7120
Genre article
GeographicLocations South Korea
GeographicLocations_xml – name: South Korea
GrantInformation_xml – fundername: Youth Fund Project of Changchun Institute of Engineering
  funderid: 320190015
– fundername: The Nature Science Foundation of Jilin China
  funderid: 2018010107JC
– fundername: Jilin Science and Technology development technology research project
  funderid: 20190302110gx
GroupedDBID .3N
.DC
.GA
05W
0R~
10A
1L6
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACCFJ
ACCZN
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
HGLYW
HHY
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2230-47c72f05445002b32d189a3de04c14b271e87fa62828e5656d98b8737b38d73c3
IEDL.DBID DR2
ISSN 1532-0626
IngestDate Fri Jul 25 02:59:39 EDT 2025
Thu Apr 24 23:01:47 EDT 2025
Wed Oct 01 00:59:52 EDT 2025
Wed Jan 22 16:24:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2230-47c72f05445002b32d189a3de04c14b271e87fa62828e5656d98b8737b38d73c3
Notes Funding information
Jilin Science and Technology development technology research project, Grant/Award Number: 20190302110gx; The Nature Science Foundation of Jilin China, Grant/Award Number: 2018010107JC; Youth Fund Project of Changchun Institute of Engineering, Grant/Award Number: 320190015
ObjectType-Case Study-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-4
ObjectType-Report-1
ObjectType-Article-3
ORCID 0000-0001-9636-077X
PQID 2703191319
PQPubID 2045170
PageCount 15
ParticipantIDs proquest_journals_2703191319
crossref_primary_10_1002_cpe_7120
crossref_citationtrail_10_1002_cpe_7120
wiley_primary_10_1002_cpe_7120_CPE7120
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 25 September 2022
PublicationDateYYYYMMDD 2022-09-25
PublicationDate_xml – month: 09
  year: 2022
  text: 25 September 2022
  day: 25
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Hoboken
PublicationTitle Concurrency and computation
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2010; 38
2021; 45
2019; 50
2019; 53
2021; 148
2019; 10
2019; 1
2019; 13
2019; 148
2019; 104
2008
2020; 15
2016; 30
2007
2020; 14
2005
2020; 13
2020; 11
2018; 22
2017; 114
2017; 139
2019; 143
2018; 68
2020; 8
2021; 13
2018; 4
2020; 31
2019; 20
2021
2009; 50
2020
2019; 89
2018; 137
2015; 21
2018; 312
2020; 27
2014; 37
2019; 215
2014
2018; 71
2020; 87
2018; 12
2016; 27
2021; 2021
2019; 176
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
Cai X (e_1_2_8_5_1) 2021; 2021
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
Ye H (e_1_2_8_3_1) 2020
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – start-page: 139
  year: 2020
  end-page: 159
– volume: 45
  start-page: 16436
  issue: 11
  year: 2021
  end-page: 16455
  article-title: Numerical investigation of a new combined energy system includes parabolic dish solar collector, Stirling engine and thermoelectric device
  publication-title: Int J Energy Res
– volume: 21
  start-page: 78
  issue: 1
  year: 2015
  end-page: 93
  article-title: A new hybrid algorithm based on optimal fuzzy controller in multimachine power system
  publication-title: Complexity
– volume: 215
  start-page: 878
  year: 2019
  end-page: 889
  article-title: Optimal offering and bidding strategies of renewable energy based large consumer using a novel hybrid robust‐stochastic approach
  publication-title: J Clean Prod
– year: 2005
– volume: 50
  start-page: 105
  issue: 1
  year: 2009
  end-page: 117
  article-title: Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model
  publication-title: Energ Conver Manage
– volume: 87
  year: 2020
  article-title: Manta ray foraging optimization: an effective bio‐inspired optimizer for engineering applications
  publication-title: Eng Appl Artif Intel
– volume: 8
  start-page: 131975
  year: 2020
  end-page: 131987
  article-title: High voltage gain DC/DC converter using coupled inductor and VM techniques
  publication-title: IEEE Access
– volume: 71
  start-page: 51
  year: 2018
  end-page: 65
  article-title: A modified crow search algorithm (MCSA) for solving economic load dispatch problem
  publication-title: Appl Soft Comput
– volume: 143
  start-page: 1
  year: 2019
  end-page: 8
  article-title: Optimal bidding and offering strategies of compressed air energy storage: a hybrid robust‐stochastic approach
  publication-title: Renew Energy
– volume: 13
  issue: 22
  year: 2021
  article-title: Optimization of PEMFC model parameters using meta‐heuristics
  publication-title: Sustainability
– year: 2014
– volume: 104
  start-page: 423
  year: 2019
  end-page: 435
  article-title: Different states of multi‐block based forecast engine for price and load prediction
  publication-title: Int J Electric Power Energy Syst
– volume: 114
  start-page: 48
  year: 2017
  end-page: 70
  article-title: Spotted hyena optimizer: a novel bio‐inspired based metaheuristic technique for engineering applications
  publication-title: Adv Eng Software
– volume: 11
  start-page: 559
  issue: 4
  year: 2020
  end-page: 573
  article-title: Application of hybrid forecast engine based intelligent algorithm and feature selection for wind signal prediction
  publication-title: Evol Syst
– volume: 50
  year: 2019
  article-title: Novel mutation strategy for enhancing SHADE and LSHADE algorithms for global numerical optimization
  publication-title: Swarm Evol Comput
– volume: 22
  start-page: 387
  issue: 2
  year: 2018
  end-page: 408
  article-title: Particle swarm optimization algorithm: an overview
  publication-title: Soft Comput
– volume: 21
  start-page: 242
  issue: 1
  year: 2015
  end-page: 258
  article-title: Optimal location and optimized parameters for robust power system stabilizer using honeybee mating optimization
  publication-title: Complexity
– volume: 148
  start-page: 1081
  year: 2019
  end-page: 1091
  article-title: Robust optimization based optimal chiller loading under cooling demand uncertainty
  publication-title: Appl Therm Eng
– start-page: 165
  year: 2008
  end-page: 209
– volume: 20
  year: 2019
  article-title: Optimal operation of CCHP and renewable generation‐based energy hub considering environmental perspective: an epsilon constraint and fuzzy methods
  publication-title: Sustain Energy Grids Networks
– volume: 31
  start-page: 257
  issue: 1
  year: 2020
  end-page: 270
  article-title: A single‐phase transformer‐less grid‐tied inverter based on switched capacitor for PV application
  publication-title: J Control Autom Electric Syst
– volume: 68
  start-page: 412
  year: 2018
  end-page: 424
  article-title: Improved diagnosis of Parkinson's disease using optimized crow search algorithm
  publication-title: Comput Electric Eng
– volume: 148
  year: 2021
  article-title: Robust multi‐objective optimal design of islanded hybrid system with renewable and diesel sources/stationary and mobile energy storage systems
  publication-title: Renew Sustain Energy Rev
– volume: 27
  start-page: 495
  issue: 2
  year: 2016
  end-page: 513
  article-title: Multi‐verse optimizer: a nature‐inspired algorithm for global optimization
  publication-title: Neural Comput Appl
– volume: 38
  start-page: 5830
  issue: 10
  year: 2010
  end-page: 5839
  article-title: Application of chaotic ant swarm optimization in electric load forecasting
  publication-title: Energy Policy
– volume: 27
  year: 2020
  article-title: An IGDT‐based risk‐involved optimal bidding strategy for hydrogen storage‐based intelligent parking lot of electric vehicles
  publication-title: J Energy Storage
– start-page: 103
  year: 2021
  end-page: 121
– volume: 139
  start-page: 18
  year: 2017
  end-page: 30
  article-title: Electricity load forecasting by an improved forecast engine for building level consumers
  publication-title: Energy
– volume: 37
  start-page: 447
  issue: 5
  year: 2014
  end-page: 450
  article-title: MDE with considered different load scenarios for solving optimal location and sizing of shunt capacitors
  publication-title: Natl Acad Sci Lett
– volume: 10
  start-page: 77
  issue: 1
  year: 2019
  end-page: 87
  article-title: A new prediction model of battery and wind‐solar output in hybrid power system
  publication-title: J Ambient Intellig Hum Comput Secur
– volume: 312
  start-page: 90
  year: 2018
  end-page: 106
  article-title: Mixed kernel based extreme learning machine for electric load forecasting
  publication-title: Neurocomputing
– volume: 13
  start-page: 2587
  issue: 14
  year: 2019
  end-page: 2593
  article-title: Reliability constraint stochastic UC by considering the correlation of random variables with copula theory
  publication-title: IET Renew Power Gen
– start-page: 1
  year: 2020
  end-page: 20
  article-title: High step‐up interleaved DC/DC converter with high efficiency
  publication-title: Energy Sour, Part A: Recov Utiliz Environ Effects
– year: 2007
– volume: 12
  start-page: 2782
  issue: 3
  year: 2018
  end-page: 2790
  article-title: Planning in microgrids with conservation of voltage reduction
  publication-title: IEEE Syst J
– volume: 4
  start-page: 218
  year: 2018
  end-page: 225
  article-title: Multi‐objective energy management in a micro‐grid
  publication-title: Energy Rep
– volume: 21
  start-page: 10
  issue: 1
  year: 2015
  end-page: 20
  article-title: An adaptive neuro‐fuzzy inference system for islanding detection in wind turbine as distributed generation
  publication-title: Complexity
– volume: 53
  start-page: 1
  issue: 1
  year: 2019
  end-page: 26
  article-title: Extracting appropriate nodal marginal prices for all types of committed reserve
  publication-title: Comput Econ
– volume: 14
  start-page: 3478
  issue: 17
  year: 2020
  end-page: 3487
  article-title: Probabilistic decomposition‐based security constrained transmission expansion planning incorporating distributed series reactor
  publication-title: IET Gen Transm Distrib
– volume: 15
  start-page: 860
  issue: 1
  year: 2020
  end-page: 871
  article-title: Computer‐aided diagnosis of skin cancer based on soft computing techniques
  publication-title: Open Med
– volume: 137
  start-page: 395
  year: 2018
  end-page: 405
  article-title: Fuzzy‐based heat and power hub models for cost‐emission operation of an industrial consumer using compromise programming
  publication-title: Appl Therm Eng
– volume: 13
  start-page: 391
  issue: 2
  year: 2020
  article-title: Multi‐sequence LSTM‐RNN deep learning and metaheuristics for electric load forecasting
  publication-title: Energies
– volume: 27
  year: 2020
  article-title: Energy management of wind‐PV‐storage‐grid based large electricity consumer using robust optimization technique
  publication-title: J Energy Storage
– year: 2020
– volume: 89
  start-page: 311
  issue: 2
  year: 2019
  end-page: 321
  article-title: A new formulation to reduce the number of variables and constraints to expedite SCUC in bulky power systems
  publication-title: Proc Natl Acad Sci
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 13
  article-title: Breast cancer diagnosis by convolutional neural network and advanced thermal exchange optimization algorithm
  publication-title: Comput Math Methods Med
– volume: 1
  start-page: 1
  issue: 1
  year: 2019
  end-page: 9
  article-title: An analytical methodology for reliability assessment and failure analysis in distributed power system
  publication-title: SN Appl Sci
– volume: 176
  year: 2019
  article-title: Reliability based optimal allocation of distributed generations in transmission systems under demand response program
  publication-title: Electr Power Syst Res
– volume: 30
  start-page: 845
  issue: 2
  year: 2016
  end-page: 859
  article-title: Concordant controllers based on FACTS and FPSS for solving wide‐area in multi‐machine power system
  publication-title: J Intellig Fuzzy Syst
– volume: 87
  year: 2020
  article-title: A powerful variant of symbiotic organisms search algorithm for global optimization
  publication-title: Eng Appl Artif Intel
– ident: e_1_2_8_53_1
  doi: 10.1016/j.neucom.2018.05.068
– ident: e_1_2_8_37_1
– start-page: 1
  year: 2020
  ident: e_1_2_8_3_1
  article-title: High step‐up interleaved DC/DC converter with high efficiency
  publication-title: Energy Sour, Part A: Recov Utiliz Environ Effects
  doi: 10.1080/15567036.2020.1716111
– ident: e_1_2_8_7_1
  doi: 10.1002/er.6891
– ident: e_1_2_8_30_1
  doi: 10.1016/j.epsr.2019.105952
– ident: e_1_2_8_24_1
  doi: 10.1016/j.energy.2017.07.150
– ident: e_1_2_8_27_1
  doi: 10.1007/s12530-019-09271-y
– ident: e_1_2_8_48_1
  doi: 10.1109/CEC.2014.6900380
– ident: e_1_2_8_40_1
– ident: e_1_2_8_9_1
  doi: 10.1007/s10614-017-9716-2
– ident: e_1_2_8_22_1
  doi: 10.1016/j.applthermaleng.2018.04.008
– ident: e_1_2_8_35_1
  doi: 10.1016/j.asoc.2018.06.040
– ident: e_1_2_8_4_1
  doi: 10.1016/j.rser.2021.111295
– ident: e_1_2_8_14_1
  doi: 10.1002/cplx.21537
– ident: e_1_2_8_17_1
  doi: 10.1109/JSYST.2016.2633512
– ident: e_1_2_8_41_1
  doi: 10.1007/978-3-540-73190-0_7
– ident: e_1_2_8_25_1
  doi: 10.1016/j.applthermaleng.2018.11.122
– ident: e_1_2_8_6_1
  doi: 10.1007/s12652-017-0600-7
– ident: e_1_2_8_39_1
  doi: 10.1109/CEC.2007.4424748
– volume: 2021
  start-page: 1
  year: 2021
  ident: e_1_2_8_5_1
  article-title: Breast cancer diagnosis by convolutional neural network and advanced thermal exchange optimization algorithm
  publication-title: Comput Math Methods Med
  doi: 10.1155/2021/5595180
– ident: e_1_2_8_16_1
  doi: 10.1016/j.est.2019.101057
– ident: e_1_2_8_46_1
  doi: 10.1016/j.advengsoft.2017.05.014
– ident: e_1_2_8_18_1
  doi: 10.1002/cplx.21560
– ident: e_1_2_8_19_1
  doi: 10.1007/s40009-014-0260-5
– ident: e_1_2_8_47_1
  doi: 10.1109/NILES50944.2020.9257924
– ident: e_1_2_8_52_1
  doi: 10.3390/en13020391
– ident: e_1_2_8_42_1
  doi: 10.1007/s00500-016-2474-6
– ident: e_1_2_8_20_1
  doi: 10.1016/j.renene.2019.05.008
– ident: e_1_2_8_50_1
  doi: 10.1007/978-3-030-58930-1_7
– ident: e_1_2_8_51_1
  doi: 10.1016/j.enconman.2008.08.031
– ident: e_1_2_8_10_1
  doi: 10.1007/s40010-017-0475-1
– ident: e_1_2_8_33_1
  doi: 10.1007/s42452-018-0049-0
– ident: e_1_2_8_2_1
  doi: 10.1109/ACCESS.2020.3002902
– ident: e_1_2_8_23_1
  doi: 10.1016/j.egyr.2017.10.002
– ident: e_1_2_8_43_1
  doi: 10.1007/s00521-015-1870-7
– ident: e_1_2_8_45_1
  doi: 10.1007/978-3-030-16339-6_5
– ident: e_1_2_8_21_1
  doi: 10.3233/IFS-151807
– ident: e_1_2_8_49_1
  doi: 10.1016/j.swevo.2018.10.006
– ident: e_1_2_8_31_1
  doi: 10.1016/j.est.2019.101054
– ident: e_1_2_8_44_1
  doi: 10.1016/j.engappai.2019.103300
– ident: e_1_2_8_34_1
  doi: 10.1016/j.compeleceng.2018.04.014
– ident: e_1_2_8_8_1
  doi: 10.3390/su132212771
– ident: e_1_2_8_13_1
  doi: 10.1515/med-2020-0131
– ident: e_1_2_8_26_1
  doi: 10.1007/s40313-019-00531-5
– ident: e_1_2_8_29_1
  doi: 10.1016/j.jclepro.2019.01.085
– ident: e_1_2_8_12_1
  doi: 10.1049/iet-gtd.2019.1625
– ident: e_1_2_8_15_1
  doi: 10.1002/cplx.21544
– ident: e_1_2_8_32_1
  doi: 10.1016/j.segan.2019.100274
– ident: e_1_2_8_38_1
  doi: 10.1016/j.engappai.2019.103294
– ident: e_1_2_8_28_1
  doi: 10.1016/j.ijepes.2018.07.014
– ident: e_1_2_8_11_1
  doi: 10.1049/iet-rpg.2019.0485
– ident: e_1_2_8_36_1
  doi: 10.1016/j.enpol.2010.05.033
SSID ssj0011031
Score 2.309942
Snippet Summary In this paper, a new technique is suggested for best electric load forecasting of South Korea. The proposed study is based on an improved metaheuristic...
In this paper, a new technique is suggested for best electric load forecasting of South Korea. The proposed study is based on an improved metaheuristic...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Adaptive algorithms
Adaptive Crow Search Optimizer
Algorithms
Case studies
electric load
Electrical loads
Forecasting
Heuristic methods
Regression
Search algorithms
Support vector machines
Support Vector Regression
Title Optimal electric load forecasting for systems by an adaptive Crow Search Algorithm: A case study
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.7120
https://www.proquest.com/docview/2703191319
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1532-0634
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0011031
  issn: 1532-0626
  databaseCode: ADMLS
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1532-0626
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1532-0634
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011031
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF7EkxfrE6tVVhA9pU120-zGWyktRfCBWCh4iPuKFvuij4P-eneySauiIB5CcpiBze7O7DfJzDcInUVpFCvBtCcJlOTISHpcp9yTPlVEUSK0gXrn65uo0w2vevVenlUJtTCOH2L5wQ0sI_PXYOBCzmor0lA1MVUWEAjXAxpl0dT9kjkqgO4FjiqVeL4F7QXvrE9qheLXk2gFLz-D1OyUaZfQYzE-l1zyWl3MZVW9f6Nu_N8LbKHNHHzihtst22jNjHZQqWjsgHM730VPt9aRDK2ka5LTV3gwFhpbfGuUmEGiNDxjxwI9w_INixEWWkzAd-KmjeyxS2PGjcHzeNqfvwwvcQNbXYMzPts91G23HpodL2_F4CmLH3wvZIqR1AfmHjt4SYkOeCyoNn6oglASFhjOUhFBAGcAI-qYS84ok5RrRhXdR-uj8cgcIEy4qnMjYhsopqE2jAd2q9ggygI1Fps6LaOLYlkSlfOUQ7uMQeIYlkliJy6BiSuj06XkxHFz_CBTKVY2ya1zlhAg7Y8De5XRebZEv-onzbsW3A__KniENghUSMCPq3oFrc-nC3NscctcnmQ79AMgEuik
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED4h9rC9wBib1g2YJ6HxlJLYaezAU1WBCgOGJpB4mJT5V1i10la0PMBfz12clIE2aeIhSh7uJMe-s7-zfd8BbGZlllstXWQ4peSYzETKlSoysbDcCq6dp3zn45Osf54eXnQuFmC3yYUJ_BDzDTfyjGq-JgenDentB9ZQO_FtmXCM11-kGYYphIi-z7mjEqpfEMhSeRQjbG-YZ2O-3Wg-XoseAOafMLVaZ_aX4UfTwnC95Hf7Zmba9u4JeeMzf-E1LNX4k3WDwazAgh-9geWmtgOrXX0Vfn7DueQKJUOdnIFlw7F2DCGut3pKd6XpmwUi6Ckzt0yPmHZ6QtMn62Fwz8JNZtYdXo6vB7NfVzusy1DXs4rS9i2c7--d9fpRXY0hsggh4iiVVvIyJvIebLwR3CUq18L5OLVJarhMvJKlziiG8wQTXa6MkkIaoZwUVryDxdF45N8D48p2lNc5xopl6rxUCVoLxlGI1WTuO6IFW824FLamKqeKGcMikCzzAjuuoI5rwee55CTQc_xFZq0Z2qJ20GnBibc_T_BpwZdqjP6pX_RO9-j94X8FP8HL_tnxUXF0cPL1I7zilDBB51idNVicXd_4dYQxM7NRmes9vobsxQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hKiEu0PIQS6E1EoJTlsROYqc9rfYh3iBUJA5IqV8B1GV3xS6H8uvriZOlVFRCHKLkMCM5tmf8TTLzDcB2WqSZltwEimJJjkpVIEwhAhUyTTWj0lisdz45Tfcv48Or5GoGvte1MJ4fYvrBDS2j9Ndo4HZkir1n1lA9sk0eURevf4iTTGA-X-diyh0VYf8CT5ZKg9DB9pp5NqR7tebLs-gZYP4NU8tzprcI1_UIfXrJr-bjRDX10z_kje98hY-wUOFP0vIb5hPM2MESLNa9HUhl6svw88z5knsn6fvk3GnSH0pDHMS1Wo4xVxqfiSeCHhP1m8gBkUaO0H2Stgvuic9kJq3-zfDhbnJ7_420iNO1pKS0XYHLXvdHez-oujEE2kGIMIi55rQIkbzHDV4xaiKRSWZsGOsoVpRHVvBCphjDWYSJJhNKcMYVE4YzzVZhdjAc2DUgVOhEWJm5WLGIjeUicrvFxVEOq_HMJqwBu_W65LqiKseOGf3ckyzT3E1cjhPXgK2p5MjTc7wis1EvbV4Z6DinyNufRe5qwE65Rv_Vz9vnXbyvv1XwK8ydd3r58cHp0WeYp1gvgb-xkg2YnTw82k2HYibqS7lb_wCAcuxJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+electric+load+forecasting+for+systems+by+an+adaptive+Crow+Search+Algorithm%3A+A+case+study&rft.jtitle=Concurrency+and+computation&rft.au=Li%2C+Bo&rft.au=Sun%2C+Hongbin&rft.au=Teimourian%2C+Milad&rft.date=2022-09-25&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=34&rft.issue=21&rft_id=info:doi/10.1002%2Fcpe.7120&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon