Early Cretaceous–Late Miocene Basin–Mountains Pattern in the Northeastern Margin of the Tibetan Plateau, NW China: Evidence From Detrital Zircon Chronology in the Lanzhou Basin

The basin‐mountain tectonic system along the northeastern margin of the Tibetan Plateau represents a structural signature formed through Cenozoic collision between the Indian and Eurasian plates and subsequent tectonic adjustments, though the mechanisms controlling its tectonic deformation and uplif...

Full description

Saved in:
Bibliographic Details
Published inGeological journal (Chichester, England)
Main Authors Liu, Hang, Gong, Hu–jun, Luo, Fen–hong, Zhang, Rui
Format Journal Article
LanguageEnglish
Published 11.05.2025
Online AccessGet full text
ISSN0072-1050
1099-1034
1099-1034
DOI10.1002/gj.5219

Cover

Abstract The basin‐mountain tectonic system along the northeastern margin of the Tibetan Plateau represents a structural signature formed through Cenozoic collision between the Indian and Eurasian plates and subsequent tectonic adjustments, though the mechanisms controlling its tectonic deformation and uplift remain subjects of ongoing scientific debate. The Cenozoic sedimentary sequences preserved in the Lanzhou Basin provide critical archives documenting both provenance variations and tectonic evolution of adjacent orogenic belts. In this study, we employed detrital zircon U–Pb geochronology combined with bulk sediment geochemical analysis (major and trace elements) to reconstruct source‐to‐sink relationships. Quantitative provenance discrimination was achieved through DZmix and DZstats modelling to determine relative contributions from potential source terrains. Analysis of the modelling results showed that During the Early Cretaceous and Late Palaeocene, the Indo‐Eurasian collision affected the West Qinling (50.3% contribution) and North Qilian (34.6%) orogen belts. A significant provenance shift occurred during the Eocene when large‐scale planation surfaces developed across the northeastern Tibetan Plateau margin, resulting in complete cessation of West Qinling‐derived sediments (3% contribution) to the Lanzhou Basin. Subsequent Early Oligocene stratigraphic records indicate resurgent West Qinling input (31%), marking its secondary uplift phase. Multiphase uplift‐denudation cycles characterised both Qilian and West Qinling domains throughout the Early Cretaceous to Late Miocene. Notably, spatiotemporal disparities emerged between North and South Qilian uplift histories, with differential exhumation timing and sediment routing generating distinct provenance signatures in basin fills.
AbstractList The basin‐mountain tectonic system along the northeastern margin of the Tibetan Plateau represents a structural signature formed through Cenozoic collision between the Indian and Eurasian plates and subsequent tectonic adjustments, though the mechanisms controlling its tectonic deformation and uplift remain subjects of ongoing scientific debate. The Cenozoic sedimentary sequences preserved in the Lanzhou Basin provide critical archives documenting both provenance variations and tectonic evolution of adjacent orogenic belts. In this study, we employed detrital zircon U–Pb geochronology combined with bulk sediment geochemical analysis (major and trace elements) to reconstruct source‐to‐sink relationships. Quantitative provenance discrimination was achieved through DZmix and DZstats modelling to determine relative contributions from potential source terrains. Analysis of the modelling results showed that During the Early Cretaceous and Late Palaeocene, the Indo‐Eurasian collision affected the West Qinling (50.3% contribution) and North Qilian (34.6%) orogen belts. A significant provenance shift occurred during the Eocene when large‐scale planation surfaces developed across the northeastern Tibetan Plateau margin, resulting in complete cessation of West Qinling‐derived sediments (3% contribution) to the Lanzhou Basin. Subsequent Early Oligocene stratigraphic records indicate resurgent West Qinling input (31%), marking its secondary uplift phase. Multiphase uplift‐denudation cycles characterised both Qilian and West Qinling domains throughout the Early Cretaceous to Late Miocene. Notably, spatiotemporal disparities emerged between North and South Qilian uplift histories, with differential exhumation timing and sediment routing generating distinct provenance signatures in basin fills.
Author Luo, Fen–hong
Liu, Hang
Zhang, Rui
Gong, Hu–jun
Author_xml – sequence: 1
  givenname: Hang
  surname: Liu
  fullname: Liu, Hang
  organization: State Key Laboratory of Continental Dynamics, Department of Geology Northwest University Xi'an China
– sequence: 2
  givenname: Hu–jun
  surname: Gong
  fullname: Gong, Hu–jun
  organization: State Key Laboratory of Continental Dynamics, Department of Geology Northwest University Xi'an China
– sequence: 3
  givenname: Fen–hong
  surname: Luo
  fullname: Luo, Fen–hong
  organization: State Key Laboratory of Continental Dynamics, Department of Geology Northwest University Xi'an China
– sequence: 4
  givenname: Rui
  surname: Zhang
  fullname: Zhang, Rui
  organization: College of Geography and Environmental Sciences Zhejiang Normal University Jinhua China
BookMark eNp1kM1OAjEUhRuDiYDGV-hOF4Jt5wfGnY6gJgOSSGLiZnLpdKBkaEnb0eDKd_BVfCKfxAK6dHVvzvly7s1poYbSSiB0SkmXEsIu58tuxGhygJqUJEmHkiBsoCYhPeb3iByhlrVLQiglIW2irwGYaoNTIxxwoWv7_fGZgRN4JDUXSuAbsFJ5caRr5UAqiyfgnDAKS4XdQuCxNn6A3WkjMHOv63JnTeXMxyo8qXwi1Bd4_IzThVRwhQevshCKCzw0eoVvhTPSQYVfpOFaechopSs93_xdyUC9L3S9f-cYHZZQWXHyO9voaTiYpved7PHuIb3OOpwx5jqMxaIIeBDTKEyCssegCMKiX5QkDHrhjLKyLPu8YN5nvrKIhrOA8jhOOKMxC9rofJ9aqzVs3qCq8rWRKzCbnJJ823U-X-bbrj16tke50dYaUf5L_gDBh4Pn
Cites_doi 10.1029/2018TC005258
10.1016/j.precamres.2015.05.001
10.1029/2002TC001466
10.1038/ncomms15887
10.1130/B26180.1
10.1016/j.chemgeo.2009.10.015
10.1029/2008TC002344
10.1130/GES00523.1
10.1130/0016-7606(2002)114<1257:THOTAT>2.0.CO;2
10.1016/j.palaeo.2010.11.019
10.1016/j.lithos.2018.10.010
10.1016/j.jseaes.2008.10.001
10.1016/j.geomorph.2024.109447
10.1111/bre.12703
10.1007/s12583-019-0897-6
10.1130/B25727.1
10.1146/annurev‐earth‐040809‐152456
10.1016/j.gr.2012.02.004
10.1016/j.chemgeo.2007.10.016
10.1130/0091‐7613(1998)026<0695:hlsrdb>2.3.co;2
10.1016/j.tecto.2010.10.001
10.1016/j.precamres.2013.06.016
10.1046/j.1365‐246X.1998.00567.x
10.1016/j.gr.2018.02.014
10.1016/j.oregeorev.2015.07.002
10.1038/nature10848
10.1111/1755‐6724.15060
10.1029/2019TC005705
10.1016/j.palaeo.2019.109254
10.1086/648226
10.1016/j.epsl.2020.116648
10.1016/j.palaeo.2020.109912
10.1130/G23057A.1
10.1130/B30524.1
10.1126/science.255.5052.1663
10.1016/j.jseaes.2022.105164
10.1130/G31356.1
10.1016/j.oregeorev.2016.01.013
10.1016/j.sedgeo.2010.06.020
10.1130/L449.1
10.1016/j.lithos.2015.02.020
10.1016/j.jseaes.2015.05.025
10.1016/j.gr.2018.08.001
10.1130/G25063A.1
10.1126/science.105978
10.6038/cjg20150721
10.1016/j.jseaes.2016.04.009
10.1002/2017gc006945
10.1016/j.gr.2015.11.009
10.1029/93rg02030
10.1002/2016GC006774
10.1016/0016‐7037(84)90345‐4
10.1130/SPE284-p21
10.1029/2019JB018086
10.1016/j.jseaes.2017.03.003
10.1016/j.sedgeo.2009.07.001
10.1016/s0016‐7037(99)00165‐9
10.1144/SP373.5
10.1016/j.jseaes.2022.105152
10.1016/j.geogeo.2022.100097
10.1515/9781501509322-009
10.1016/S0040-1951(01)00196-2
10.1016/S0040-1951(03)00053-2
10.1016/j.jseaes.2019.103909
10.1016/j.epsl.2010.04.051
10.1016/j.tecto.2012.09.013
10.1086/673259
10.1029/98tc02764
10.1111/j.1755-6724.2012.00665.x
10.1038/ngeo1538
10.1126/science.1155371
10.1016/j.palaeo.2023.111775
10.1016/j.tecto.2018.12.005
10.1002/cjg2.1025
10.1016/j.tecto.2006.03.027
10.1016/j.palaeo.2023.111404
10.1146/annurev.earth.28.1.211
10.1360/01yd0499
10.1016/0301‐9268(91)90046‐d
10.1016/s0040‐1951(02)00513‐9
10.1016/j.gr.2015.05.004
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1002/gj.5219
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1099-1034
ExternalDocumentID 10.1002/gj.5219
10_1002_gj_5219
GroupedDBID .3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CITATION
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
SUPJJ
TN5
UB1
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WUPDE
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
.Y3
31~
AANHP
AASGY
ABEML
ABJIA
ACBWZ
ACRPL
ACSCC
ACYXJ
ADNMO
ADTOC
ADXHL
AETEA
AFZJQ
AGQPQ
AI.
ASPBG
AVWKF
AZFZN
BDRZF
DDYGU
EJD
FEDTE
HF~
HVGLF
H~9
LW6
M62
PALCI
RIWAO
RJQFR
SAMSI
UNPAY
VH1
VJK
XJT
ZY4
ID FETCH-LOGICAL-c222t-226ed3c3615493f72ad34d8df04374b12fff8cd26152521514b31c669c21623
ISSN 0072-1050
1099-1034
IngestDate Tue Aug 19 23:46:06 EDT 2025
Wed Oct 01 06:26:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License cc-by-nc-nd
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c222t-226ed3c3615493f72ad34d8df04374b12fff8cd26152521514b31c669c21623
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/gj.5219
ParticipantIDs unpaywall_primary_10_1002_gj_5219
crossref_primary_10_1002_gj_5219
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-05-11
PublicationDateYYYYMMDD 2025-05-11
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-11
  day: 11
PublicationDecade 2020
PublicationTitle Geological journal (Chichester, England)
PublicationYear 2025
References Royden L. H. (e_1_2_12_55_1) 2008; 321
Yue L. P. (e_1_2_12_91_1) 2003; 21
Li J. J. (e_1_2_12_36_1) 1997; 102
Tapponnier P. (e_1_2_12_63_1) 2001; 294
e_1_2_12_17_1
e_1_2_12_66_1
Cheng Q. (e_1_2_12_9_1) 2018; 63
Yue L. P. (e_1_2_12_90_1) 2000; 45
e_1_2_12_43_1
e_1_2_12_24_1
Lease R. O. (e_1_2_12_34_1) 2012; 124
Ratschbacher L. (e_1_2_12_53_1) 2003; 366
e_1_2_12_89_1
Zhang K. X. (e_1_2_12_96_1) 2010; 35
Xiong F. (e_1_2_12_76_1) 2015; 111
Yang H. (e_1_2_12_83_1) 2015; 224
Pang J. (e_1_2_12_49_1) 2019; 38
Dai S. (e_1_2_12_14_1) 2006; 111
e_1_2_12_28_1
Qi Bangshen H. (e_1_2_12_52_1) 2016; 37
Zhou G. (e_1_2_12_99_1) 2019; 30
Jolivet M. (e_1_2_12_31_1) 2001; 343
Tang Y. (e_1_2_12_62_1) 2023; 35
e_1_2_12_58_1
e_1_2_12_12_1
e_1_2_12_73_1
Fang X. M. (e_1_2_12_20_1) 2005; 117
Nan H. (e_1_2_12_47_1) 2014
Dupont‐Nivet G. (e_1_2_12_18_1) 2008; 37
Wang E. (e_1_2_12_67_1) 2012; 5
Crichton J. G. (e_1_2_12_13_1) 1993; 101
Shanpin L. (e_1_2_12_56_1) 2015
Shuang D. (e_1_2_12_57_1) 2005; 50
Zheng Y. (e_1_2_12_98_1) 2017; 81
e_1_2_12_44_1
e_1_2_12_25_1
e_1_2_12_48_1
Davis D. W. (e_1_2_12_15_1) 2003
Li B. (e_1_2_12_35_1) 2019; 751
Yin A. (e_1_2_12_86_1) 2008; 120
Wang H. (e_1_2_12_68_1) 2022
Bovet P. M. (e_1_2_12_3_1) 2009; 2009
Song B. (e_1_2_12_59_1) 2019; 533
Xu Y. (e_1_2_12_78_1) 2010; 495
e_1_2_12_82_1
Hong W. (e_1_2_12_27_1) 2022
Dayem K. E. (e_1_2_12_16_1) 2009; 28
Clark M. K. (e_1_2_12_11_1) 2010; 296
Wang W. (e_1_2_12_72_1) 2017; 8
e_1_2_12_29_1
Xu G. (e_1_2_12_77_1) 2007; 50
Harrison T. M. (e_1_2_12_26_1) 1992; 255
e_1_2_12_32_1
e_1_2_12_74_1
Fang X. (e_1_2_12_19_1) 2013; 373
Xu Y. J. (e_1_2_12_79_1) 2010; 230
Lu H. J. (e_1_2_12_40_1) 2012; 580
e_1_2_12_38_1
Wang Z. (e_1_2_12_70_1) 2021; 554
Xiaomin F. (e_1_2_12_75_1) 2007; 14
e_1_2_12_22_1
e_1_2_12_45_1
e_1_2_12_60_1
Yin A. (e_1_2_12_87_1) 2002; 114
Tung K. A. (e_1_2_12_64_1) 2013; 235
Zhang Y. (e_1_2_12_92_1) 2012; 86
Zheng D. (e_1_2_12_97_1) 2010; 6
Wang H. (e_1_2_12_69_1) 2016; 72
Gong H. (e_1_2_12_23_1) 2017; 138
Zhang C. (e_1_2_12_93_1) 2020; 557
Yan Z. (e_1_2_12_81_1) 2015; 266
Cheng F. (e_1_2_12_8_1) 2019; 124
McLennan S. M. (e_1_2_12_41_1) 1993
e_1_2_12_37_1
e_1_2_12_71_1
Chen X. H. (e_1_2_12_6_1) 2012; 86
Bosboom R. E. (e_1_2_12_2_1) 2011; 299
Zhang J. X. (e_1_2_12_94_1) 2017; 41
e_1_2_12_39_1
Qi B. S. (e_1_2_12_50_1) 2016; 124
e_1_2_12_42_1
e_1_2_12_65_1
Qi B. (e_1_2_12_51_1) 2015; 36
e_1_2_12_46_1
e_1_2_12_80_1
Yin A. (e_1_2_12_88_1) 2000; 28
Yang X. (e_1_2_12_85_1) 2022; 229
e_1_2_12_61_1
e_1_2_12_84_1
Lease R. O. (e_1_2_12_33_1) 2011; 39
Clark M. K. (e_1_2_12_10_1) 2012; 483
Chen W. U. (e_1_2_12_7_1) 2023; 30
Bush M. A. (e_1_2_12_4_1) 2016; 8
Zhuang G. (e_1_2_12_100_1) 2018; 58
Feng H. (e_1_2_12_21_1) 2022; 1
Roger F. (e_1_2_12_54_1) 2003; 22
Chen W. U. (e_1_2_12_5_1) 2023; 30
Jinjing G. (e_1_2_12_30_1) 2014; 60
e_1_2_12_95_1
References_xml – volume: 38
  start-page: 1018
  issue: 3
  year: 2019
  ident: e_1_2_12_49_1
  article-title: Neogene Expansion of the Qilian Shan, North Tibet: Implications for the Dynamic Evolution of the Tibetan Plateau
  publication-title: Tectonics
  doi: 10.1029/2018TC005258
– volume: 266
  start-page: 65
  year: 2015
  ident: e_1_2_12_81_1
  article-title: Hualong Complex, South Qilian Terrane: U–Pb and Lu–Hf Constraints on Neoproterozoic Micro‐Continental Fragments Accreted to the Northern Proto‐Tethyan Margin
  publication-title: Precambrian Research
  doi: 10.1016/j.precamres.2015.05.001
– volume: 22
  start-page: 1037
  issue: 4
  year: 2003
  ident: e_1_2_12_54_1
  article-title: Geochronological and Geochemical Constraints on Mesozoic Suturing in East Central Tibet
  publication-title: Tectonics
  doi: 10.1029/2002TC001466
– volume: 8
  year: 2017
  ident: e_1_2_12_72_1
  article-title: Expansion of the Tibetan Plateau During the Neogene
  publication-title: Nature Communications
  doi: 10.1038/ncomms15887
– volume: 120
  start-page: 813
  issue: 7
  year: 2008
  ident: e_1_2_12_86_1
  article-title: Cenozoic Tectonic Evolution of Qaidam Basin and Its Surrounding Regions (Part 1): The Southern Qilian Shan‐Nan Shan Thrust Belt and Northern Qaidam Basin
  publication-title: Geological Society of America Bulletin
  doi: 10.1130/B26180.1
– ident: e_1_2_12_73_1
  doi: 10.1016/j.chemgeo.2009.10.015
– volume: 28
  issue: 6
  year: 2009
  ident: e_1_2_12_16_1
  article-title: Far‐Field Lithospheric Deformation in Tibet During Continental Collision
  publication-title: Tectonics
  doi: 10.1029/2008TC002344
– volume: 6
  start-page: 937
  year: 2010
  ident: e_1_2_12_97_1
  article-title: Erosion, Fault Initiation and Topographic Growth of the North Qilian Shan (Northern Tibetan Plateau)
  publication-title: Geosphere
  doi: 10.1130/GES00523.1
– volume: 114
  start-page: 1257
  issue: 10
  year: 2002
  ident: e_1_2_12_87_1
  article-title: Tectonic History of the Altyn Tagh Fault System in Northern Tibet Inferred From Cenozoic Sedimentation
  publication-title: Geological Society of America Bulletin
  doi: 10.1130/0016-7606(2002)114<1257:THOTAT>2.0.CO;2
– volume: 14
  start-page: 230
  issue: 1
  year: 2007
  ident: e_1_2_12_75_1
  article-title: Phased Deformation and Uplift of the Northeastern Tibetan Plateau: High‐Resolution Magnetostratigraphy and Basin Evolution Records from the Xining and Guide Basins
  publication-title: Earth Science Frontiers
– volume: 299
  start-page: 385
  issue: 3
  year: 2011
  ident: e_1_2_12_2_1
  article-title: Late Eocene Sea Retreat From the Tarim Basin (West China) and Concomitant Asian Paleoenvironmental Change
  publication-title: Palaeogeography Palaeoclimatology Palaeoecology
  doi: 10.1016/j.palaeo.2010.11.019
– ident: e_1_2_12_37_1
  doi: 10.1016/j.lithos.2018.10.010
– ident: e_1_2_12_74_1
  doi: 10.1016/j.jseaes.2008.10.001
– volume: 35
  start-page: 697
  issue: 5
  year: 2010
  ident: e_1_2_12_96_1
  article-title: Evolution of Tectonic Lithofacies Paleogeography of Cenozoic of Qinghai‐Tibet Plateau and Its Response to Uplift of the Plateau [In Chinese]
  publication-title: Earth Science
– volume-title: Thermochronological Study on Fission Track Thermochronology of the Exfoliation and Uplift Process of the Middle‐Cenozoic Mountains in the West Qinling
  year: 2022
  ident: e_1_2_12_68_1
– ident: e_1_2_12_38_1
  doi: 10.1016/j.geomorph.2024.109447
– volume: 35
  start-page: 28
  issue: 1
  year: 2023
  ident: e_1_2_12_62_1
  article-title: Tectonic Evolution of the Triassic Songpan‐Ganzi Basin as Constrained by a Synthesis of Multi‐Proxy Provenance Data
  publication-title: Basin Research
  doi: 10.1111/bre.12703
– volume: 30
  start-page: 585
  issue: 3
  year: 2019
  ident: e_1_2_12_99_1
  article-title: Metamorphic Evolution and Tectonic Implications of the Granulitized Eclogites From the Luliangshan Terrane in the North Qaidam Ultrahigh Pressure Metamorphic Belt, NW China: New Constraints From Phase Equilibrium Modeling
  publication-title: Journal of Earth Science
  doi: 10.1007/s12583-019-0897-6
– volume: 30
  start-page: 262
  issue: 3
  year: 2023
  ident: e_1_2_12_7_1
  article-title: Tectonic Evolution and Cenozoic Deformation History of the Qilian orogen
  publication-title: Earth Science Frontiers
– volume: 117
  start-page: 1208
  issue: 9
  year: 2005
  ident: e_1_2_12_20_1
  article-title: Late Cenozoic Deformation and Uplift of the NE Tibetan Plateau: Evidence From High‐Resolution Magneto Stratigraphy of the Guide Basin, Qinghai Province, China
  publication-title: Geological Society of America Bulletin
  doi: 10.1130/B25727.1
– ident: e_1_2_12_45_1
  doi: 10.1146/annurev‐earth‐040809‐152456
– ident: e_1_2_12_58_1
  doi: 10.1016/j.gr.2012.02.004
– ident: e_1_2_12_39_1
  doi: 10.1016/j.chemgeo.2007.10.016
– ident: e_1_2_12_65_1
  doi: 10.1130/0091‐7613(1998)026<0695:hlsrdb>2.3.co;2
– volume: 495
  start-page: 337
  issue: 495
  year: 2010
  ident: e_1_2_12_78_1
  article-title: Provenance Record of a Foreland Basin: Detrital Zircon U–Pb Ages From Devonian Strata in the North Qilian Orogenic Belt, China
  publication-title: Tectonophysics
  doi: 10.1016/j.tecto.2010.10.001
– volume: 235
  start-page: 163
  year: 2013
  ident: e_1_2_12_64_1
  article-title: The Neoproterozoic Granitoids From the Qilian Block, NW China: Evidence for a Link Between the Qilian and South China Blocks
  publication-title: Precambrian Research
  doi: 10.1016/j.precamres.2013.06.016
– ident: e_1_2_12_44_1
  doi: 10.1046/j.1365‐246X.1998.00567.x
– volume: 58
  start-page: 195
  year: 2018
  ident: e_1_2_12_100_1
  article-title: Understanding the Geologic Evolution of Northern Tibetan Plateau With Multiple Thermochronometers
  publication-title: Gondwana Research
  doi: 10.1016/j.gr.2018.02.014
– volume: 72
  start-page: 43
  issue: 1
  year: 2016
  ident: e_1_2_12_69_1
  article-title: Geology, Geochronology and Geochemistry of the Saishitang Cu Deposit, East Kunlun Mountains, NW China: Constraints on Ore Genesis and Tectonic Setting
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2015.07.002
– volume: 483
  start-page: 74
  year: 2012
  ident: e_1_2_12_10_1
  article-title: Continental Collision Slowing due to Viscous Mantle Lithosphere Rather Than Topography
  publication-title: Nature
  doi: 10.1038/nature10848
– ident: e_1_2_12_25_1
  doi: 10.1111/1755‐6724.15060
– volume: 111
  start-page: B11102
  year: 2006
  ident: e_1_2_12_14_1
  article-title: Magnetostratigraphy of Cenozoic Sediments From the Xining Basin: Tectonic Implications for the Northeastern Tibetan Plateau
  publication-title: Journal of Geophysical Research
– volume-title: Geological Characteristics, Provenance Analysis and Tectonic Evolution of the Ma’erzheng Formation in the Buqingshan Area, Southern Margin of East Kunlun Mountains [D]
  year: 2014
  ident: e_1_2_12_47_1
– ident: e_1_2_12_71_1
  doi: 10.1029/2019TC005705
– volume: 533
  year: 2019
  ident: e_1_2_12_59_1
  article-title: New Insights Into the Provenance of Cenozoic Strata in the Qaidam Basin, Northern Tibet: Constraints From Combined U–Pb Dating of Detrital Zircons in Recent and Ancient Fluvial Sediments
  publication-title: Palaeogeography, Palaeoclimatology, Palaeoecology
  doi: 10.1016/j.palaeo.2019.109254
– volume: 101
  start-page: 319
  issue: 3
  year: 1993
  ident: e_1_2_12_13_1
  article-title: Trace Elements as Source Indicators in Cratonic Sediments: A Case Study From the Early Proterozoic Libby Creek Group, Southeastern Wyoming
  publication-title: Journal of Geology
  doi: 10.1086/648226
– volume: 554
  year: 2021
  ident: e_1_2_12_70_1
  article-title: Astronomical Forcing of Lake Evolution in the Lanzhou Basin During Early Miocene Period
  publication-title: Earth and Planetary Science Letters
  doi: 10.1016/j.epsl.2020.116648
– volume-title: Spatiotemporal Evolution of Neogene Uplift on the Northeastern Edge of the Tibetan Plateau [D]
  year: 2015
  ident: e_1_2_12_56_1
– volume: 557
  year: 2020
  ident: e_1_2_12_93_1
  article-title: Early Cretaceous Foreland‐Like Northeastern Qaidam Basin, Tibetan Plateau and Its Tectonic Implications: Insights From Sedimentary Investigations, Detrital Zircon U–Pb Analyses and Seismic Profiling
  publication-title: Palaeogeography, Palaeoclimatology, Palaeoecology
  doi: 10.1016/j.palaeo.2020.109912
– ident: e_1_2_12_32_1
  doi: 10.1130/G23057A.1
– volume: 124
  start-page: 657
  year: 2012
  ident: e_1_2_12_34_1
  article-title: Pulsed Miocene Range Growth in Northeastern Tibet: Insights From Xunhua Basin Magnetostratigraphy and Provenance
  publication-title: Geological Society of America Bulletin
  doi: 10.1130/B30524.1
– volume: 21
  start-page: 683
  issue: 4
  year: 2003
  ident: e_1_2_12_91_1
  article-title: Sedimentary Environment of Tertiary Recorded in the Yongdeng Section of Lanzhou Basin
  publication-title: Acta Sedimentologica Sinica
– volume: 255
  start-page: 1663
  issue: 5052
  year: 1992
  ident: e_1_2_12_26_1
  article-title: Raising Tibet
  publication-title: Science
  doi: 10.1126/science.255.5052.1663
– ident: e_1_2_12_89_1
  doi: 10.1016/j.jseaes.2022.105164
– volume: 36
  start-page: 323
  issue: 3
  year: 2015
  ident: e_1_2_12_51_1
  article-title: Carbon and Oxygen Isotope Records of Cenozoic Paleoaltitude Variation in the Qilian Mountains
  publication-title: Acta Geoscientica Sinica
– volume: 39
  start-page: 359
  issue: 4
  year: 2011
  ident: e_1_2_12_33_1
  article-title: Middle Miocene reorganization of deforMationalong the northeastern Tibetan Plateau
  publication-title: Geology
  doi: 10.1130/G31356.1
– volume: 81
  start-page: 575
  issue: 2
  year: 2017
  ident: e_1_2_12_98_1
  article-title: Geology, Geochronology and Isotopic Geochemistry of the Xiaoliugou W–Mo Ore Field in the Qilian Orogen, NW China: Case Study of a Skarn System Formed During Continental Collision
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2016.01.013
– volume: 230
  start-page: 35
  year: 2010
  ident: e_1_2_12_79_1
  article-title: Detrital Zircon Record of Continental Collision: Assembly of the Qilian Orogen, China
  publication-title: Sedimentary Geology
  doi: 10.1016/j.sedgeo.2010.06.020
– volume: 8
  start-page: 58
  issue: 1
  year: 2016
  ident: e_1_2_12_4_1
  article-title: Growth of the Qaidam Basin During Cenozoic Exhumation in the Northern Tibetan Plateau: Inferences From Depositional Patterns and Multiproxy Detrital Provenance Signatures
  publication-title: Lithosphere
  doi: 10.1130/L449.1
– volume: 224
  start-page: 13
  year: 2015
  ident: e_1_2_12_83_1
  article-title: Early Paleozoic Intrusive Rocks From the Eastern Qilian Orogen, NE Tibetan Plateau: Petrogenesis and Tectonic Significance
  publication-title: Lithos
  doi: 10.1016/j.lithos.2015.02.020
– volume: 111
  start-page: 681
  year: 2015
  ident: e_1_2_12_76_1
  article-title: Geochemistry, Zircon U–Pb Ages and Sr–Nd–Hf Isotopes of an Ordovician Appinitic Pluton in the East Kunlun Orogen: New Evidence for Proto‐Tethyan Subduction
  publication-title: Journal of Asia Earth Sciences
  doi: 10.1016/j.jseaes.2015.05.025
– volume: 63
  start-page: 268
  year: 2018
  ident: e_1_2_12_9_1
  article-title: Extrapolations of Secular Trends in Magmatic Intensity and Mantle Cooling: Implications for Future Evolution of Plate Tectonics
  publication-title: Gondwana Research
  doi: 10.1016/j.gr.2018.08.001
– volume-title: Fission Track Thermochronology Study on the Meso‐Cenozoic Exhumation and Uplift Process of the Western Qinling Mountains [D]
  year: 2022
  ident: e_1_2_12_27_1
– volume: 37
  start-page: 987
  issue: 6
  year: 2008
  ident: e_1_2_12_18_1
  article-title: Tibetan Uplift Prior to the Eocene‐Oligocene Climate Transition: Evidence From Pollen Analysis of the Xining Basin
  publication-title: Geology
  doi: 10.1130/G25063A.1
– volume: 294
  start-page: 1671
  issue: 5547
  year: 2001
  ident: e_1_2_12_63_1
  article-title: Oblique Stepwise Rise and Growth of the Tibet Plateau
  publication-title: Science
  doi: 10.1126/science.105978
– volume: 50
  start-page: 673
  year: 2005
  ident: e_1_2_12_57_1
  article-title: Early Uplift of the Northern Tibetan Plateau
  publication-title: Chinese Science Bulletin
– ident: e_1_2_12_95_1
  doi: 10.6038/cjg20150721
– volume: 102
  start-page: 1012
  year: 1997
  ident: e_1_2_12_36_1
  article-title: Magnetostratigraphic Dating of River Terraces: Rapid and Intermittent Incision by the Yellow River of the Northeastern Margin of the Tibetan Plateau During the Quaternary
  publication-title: Journal of Geophysical Research (D)
– volume: 124
  start-page: 28
  year: 2016
  ident: e_1_2_12_50_1
  article-title: Apatite Fission Track Evidence for the Cretaceous‐Cenozoic Cooling History of the Qilian Shan (NW China) and for Stepwise Northeastward Growth of the Northeastern Tibetan Plateau Since Early Eocene
  publication-title: Journal of Asian Earth Sciences
  doi: 10.1016/j.jseaes.2016.04.009
– volume: 45
  start-page: 1998
  issue: 18
  year: 2000
  ident: e_1_2_12_90_1
  article-title: Magnetostratigraphy and Paleo‐environmental Record of Tertiary Deposits of Lanzhou Basin
  publication-title: Chinese Science Bulletin
– ident: e_1_2_12_82_1
  doi: 10.1002/2017gc006945
– volume: 41
  start-page: 267
  year: 2017
  ident: e_1_2_12_94_1
  article-title: Early Paleozoic Polyphase Metamorphism in Northern Tibet, China
  publication-title: Gondwana Research
  doi: 10.1016/j.gr.2015.11.009
– volume: 2009
  start-page: 309
  issue: 4
  year: 2009
  ident: e_1_2_12_3_1
  article-title: Evidence of Miocene Crustal Shortening in the North Qilian From Cenozoic Stratigraphy of the Western Hexi Corridor, Gansu Province, China
  publication-title: American Journal of Science
– ident: e_1_2_12_46_1
  doi: 10.1029/93rg02030
– ident: e_1_2_12_61_1
  doi: 10.1002/2016GC006774
– ident: e_1_2_12_42_1
  doi: 10.1016/0016‐7037(84)90345‐4
– volume: 60
  start-page: 1231
  issue: 6
  year: 2014
  ident: e_1_2_12_30_1
  article-title: Division of Tectonic Layers in the Meso‐Cenozoic Red Beds of the Western Qinling Mountains and Their Tectonic Significance
  publication-title: Geological Review
– start-page: 21
  volume-title: Processes Controlling the Composition of Clastic Sediments
  year: 1993
  ident: e_1_2_12_41_1
  doi: 10.1130/SPE284-p21
– volume: 124
  start-page: 12077
  issue: 11
  year: 2019
  ident: e_1_2_12_8_1
  article-title: Jurassic–Early Cenozoic Tectonic Inversion in the Qilian Shan and Qaidam Basin, North Tibet: Newinsight From Seismic Reflection, Isopach Mapping, and Drill Core Data
  publication-title: Journal of Geophysical Research: Solid Earth
  doi: 10.1029/2019JB018086
– volume: 30
  start-page: 262
  issue: 3
  year: 2023
  ident: e_1_2_12_5_1
  article-title: Tectonic Evolution and Cenozoic Deformation History of the Qilian orogen
  publication-title: Earth Science Frontiers
– volume: 138
  start-page: 647
  year: 2017
  ident: e_1_2_12_23_1
  article-title: Tectono‐Thermal Events of the North Qilian Orogenic Belt, NW China: Constraints From Detrital Zircon U–Pb Ages of Heihe River Sediments
  publication-title: Journal of Asian Earth Sciences
  doi: 10.1016/j.jseaes.2017.03.003
– ident: e_1_2_12_84_1
  doi: 10.1016/j.sedgeo.2009.07.001
– ident: e_1_2_12_29_1
  doi: 10.1016/s0016‐7037(99)00165‐9
– volume: 373
  start-page: 149
  issue: 1
  year: 2013
  ident: e_1_2_12_19_1
  article-title: Oligocene Slow and Miocene‐Quaternary Rapid Deformation and Uplift of the Yumu Shan and North Qilian Shan: Evidence From High‐Resolution Magnetostratigraphy and Tectonosedimentology
  publication-title: Geological Society, London, Special Publications
  doi: 10.1144/SP373.5
– volume: 229
  start-page: 105
  year: 2022
  ident: e_1_2_12_85_1
  article-title: Two Phases of Cenozoic Deformation in the Wudu Basin, West Qinling (Central China): Implications for Outward Expansion of the Tibetan Plateau
  publication-title: Journal of Asian Earth Sciences
  doi: 10.1016/j.jseaes.2022.105152
– volume: 1
  issue: 4
  year: 2022
  ident: e_1_2_12_21_1
  article-title: Jurassic Provenances and Their Transition Mechanism of the Delingha Sag in the Eastern Segment of Northern Margin of the Qaidam Basin, North Tibet
  publication-title: Geosystems and Geoenvironment
  doi: 10.1016/j.geogeo.2022.100097
– start-page: 145
  volume-title: Zircon: Reviews in Mineralogy and Geochemistry
  year: 2003
  ident: e_1_2_12_15_1
  doi: 10.1515/9781501509322-009
– volume: 343
  start-page: 111
  issue: 1
  year: 2001
  ident: e_1_2_12_31_1
  article-title: Mesozoic and Cenozoic Tectonics of the Northern Edge of the Tibetan Plateau: Fission‐Track Constraints
  publication-title: Tectonophysics
  doi: 10.1016/S0040-1951(01)00196-2
– volume: 366
  start-page: 1
  issue: 1
  year: 2003
  ident: e_1_2_12_53_1
  article-title: Tectonics of the Qinling (Central China): Tectonostratigraphy, Geochronology, and Deformation History
  publication-title: Tectonophysics
  doi: 10.1016/S0040-1951(03)00053-2
– ident: e_1_2_12_48_1
  doi: 10.1016/j.jseaes.2019.103909
– volume: 296
  start-page: 78
  issue: 1
  year: 2010
  ident: e_1_2_12_11_1
  article-title: Early Cenozoic Faulting of the Northern Tibetan Plateau Margin From Apatite (U–Th)/He Ages
  publication-title: Earth and Planetary Science Letters
  doi: 10.1016/j.epsl.2010.04.051
– volume: 580
  start-page: 150
  year: 2012
  ident: e_1_2_12_40_1
  article-title: Cenozoic Tectonic Evolution of the Elashan Range and Its Surroundings, Northern Tibetan Plateau as Constrained by Paleomagnetism and Apatite Fission Track Analyses
  publication-title: Tectonophysics
  doi: 10.1016/j.tecto.2012.09.013
– ident: e_1_2_12_22_1
  doi: 10.1086/673259
– ident: e_1_2_12_43_1
  doi: 10.1029/98tc02764
– volume: 86
  start-page: 350
  year: 2012
  ident: e_1_2_12_6_1
  article-title: Paleozoic and Mesozoic Basement MagMatisms of Eastern Qaidam Basin, Northern Qinghai‐Tibet Plateau: LA‐ICP‐MS Zircon U‐Pb Geochronology and Its Geological Significance
  publication-title: Acta Geologica Sinica—English Edition
  doi: 10.1111/j.1755-6724.2012.00665.x
– volume: 86
  start-page: 503
  issue: 3
  year: 2012
  ident: e_1_2_12_92_1
  article-title: The Oldest Eolian Deposit of Cenozoic in Lanzhou Area
  publication-title: Acta Geologica Sinica
– volume: 37
  start-page: 46
  issue: 1
  year: 2016
  ident: e_1_2_12_52_1
  article-title: Apatite Fission Track Evidence for the Phased Tectonic Uplift Process of the Central Qilian Mountains Since the Cretaceous
  publication-title: Acta Geoscientica Sinica
– volume: 5
  start-page: 640
  issue: 9
  year: 2012
  ident: e_1_2_12_67_1
  article-title: Two‐Phase Growth of High Topography in Eastern Tibet During the Cenozoic
  publication-title: Nature Geoscience
  doi: 10.1038/ngeo1538
– volume: 321
  start-page: 1054
  issue: 5892
  year: 2008
  ident: e_1_2_12_55_1
  article-title: The Geological Evolution of the Tibetan Plateau
  publication-title: Science
  doi: 10.1126/science.1155371
– ident: e_1_2_12_66_1
  doi: 10.1016/j.palaeo.2023.111775
– volume: 751
  start-page: 109
  year: 2019
  ident: e_1_2_12_35_1
  article-title: Cenozoic Cooling History of the North Qilian Shan, Northern Tibetan Plateau, and the Initiation of the Haiyuan Fault: Constraints From Apatite‐ and Zircon‐Fission Track Thermochronology
  publication-title: Tectonophysics
  doi: 10.1016/j.tecto.2018.12.005
– volume: 50
  start-page: 192
  issue: 1
  year: 2007
  ident: e_1_2_12_77_1
  article-title: Shear Wave Velocity Structure of the Crust and Upper Mantle in Western China and Its Adjacent Area
  publication-title: Chinese Journal of Geophysics
  doi: 10.1002/cjg2.1025
– ident: e_1_2_12_28_1
  doi: 10.1016/j.tecto.2006.03.027
– ident: e_1_2_12_60_1
  doi: 10.1016/j.palaeo.2023.111404
– volume: 28
  start-page: 211
  issue: 1
  year: 2000
  ident: e_1_2_12_88_1
  article-title: Geologic Evolution of the Himalayan‐Tibetan Orogen
  publication-title: Annual Review of Earth and Planetary Sciences
  doi: 10.1146/annurev.earth.28.1.211
– ident: e_1_2_12_80_1
  doi: 10.1360/01yd0499
– ident: e_1_2_12_12_1
  doi: 10.1016/0301‐9268(91)90046‐d
– ident: e_1_2_12_24_1
  doi: 10.1016/s0040‐1951(02)00513‐9
– ident: e_1_2_12_17_1
  doi: 10.1016/j.gr.2015.05.004
SSID ssj0011041
Score 2.3833594
SecondaryResourceType online_first
Snippet The basin‐mountain tectonic system along the northeastern margin of the Tibetan Plateau represents a structural signature formed through Cenozoic collision...
SourceID unpaywall
crossref
SourceType Open Access Repository
Index Database
Title Early Cretaceous–Late Miocene Basin–Mountains Pattern in the Northeastern Margin of the Tibetan Plateau, NW China: Evidence From Detrital Zircon Chronology in the Lanzhou Basin
URI https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/gj.5219
UnpaywallVersion publishedVersion
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1099-1034
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1099-1034
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011041
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKEIIXxFUbNx0k3kZKkzhpytu4Vqid0CjaxEvlOPGaaiTTaITG0_7D_sp-Eb-Ec3xJsgHi8hJVdmO7PV-Oj53j72PsicqCJB8kygulrzwulMBnLgm9bKSUoidT6FNp0-14_JG_24v2er0uQ3C9Svvy2y_PlfyPVbEM7UqnZP_Bsk2jWICf0b54RQvj9a9sbNmJKWVQ5riEd5kL4QQjyM1pgXMTxpAvxBdc_buqKYlDCEqMea-pNdtMR3qDQ0o-VEb6t0XpEghmRYpdlKRwhJioNYJ2jfQ27Sg4ZVKMgqvP6MGI3x8t_6k4wsX2pqbfNUxPtqcJxqOLqjYD60bHb_PGFTtGC3rJvCisqpd23EZ1pLODMSn0iMbCTsKa7d-4sHHd_O5l3SYf1Xp_GE3Z1C6q9uZmD32nLrqbIkFE7_Ot07aOfhjgDGM4bfu58e1ERuoPzN7pTzOHYaLdX_Yj58PPcXNfmDObTEbD-hzM95dzuvESuxwM45ikNF7tNDxmGGJxI91oR2VOb9ONz2yP58Kiq3V5KI6_ioODTqwzu8Gu20UKbBnE3WS9vLzFrhjrHN9mZxp30OLu-8kpIQ4s4kAbFgsbrIHFGhQlIAKgizUwWINK6SqLNbBYewrbu6CR9hwczoBwBg5nYHAGLc5cLxZnZjh32Ic3r2cvx55V__AkxqwrD9cFeRbKMCYSwVANA5GFPEsyRWxcPPUDdCaJzIKYFLwocOVp6Ms4HsnAx5j-LlsrqzJfZ8BJMmKILVBLoRiMEskVj0bRQKYq9-UGA_fXzw8Nxcv8glk32OPGJL_7zr0_N3OfXWvB-oCtrY7q_CHGtKv0kcbLD0qmowM
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Early+Cretaceous%E2%80%93Late+Miocene+Basin%E2%80%93Mountains+Pattern+in+the+Northeastern+Margin+of+the+Tibetan+Plateau%2C+NW+China%3A+Evidence+From+Detrital+Zircon+Chronology+in+the+Lanzhou+Basin&rft.jtitle=Geological+journal+%28Chichester%2C+England%29&rft.au=Liu%2C+Hang&rft.au=Gong%2C+Hu%E2%80%93jun&rft.au=Luo%2C+Fen%E2%80%93hong&rft.au=Zhang%2C+Rui&rft.date=2025-05-11&rft.issn=0072-1050&rft.eissn=1099-1034&rft_id=info:doi/10.1002%2Fgj.5219&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_gj_5219
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0072-1050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0072-1050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0072-1050&client=summon