Multi-Scale and Multi-Contrast Magnetic Resonance Image Super-Resolution Reconstruction

Magnetic resonance imaging (MRI) can clearly show the structures of normal and pathological tissues, which helps doctors to make accurate diagnoses. However, due to the limited hardware, special imaging principles, and involuntary movements of patients, only low-resolution (LR) MRI images can be acq...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on emerging topics in computational intelligence pp. 1 - 13
Main Authors Wang, Xuejin, Zhong, Zhenhui, Huang, Leilei, Hu, Jinbin
Format Journal Article
LanguageEnglish
Published IEEE 2025
Subjects
Online AccessGet full text
ISSN2471-285X
2471-285X
DOI10.1109/TETCI.2025.3607396

Cover

Abstract Magnetic resonance imaging (MRI) can clearly show the structures of normal and pathological tissues, which helps doctors to make accurate diagnoses. However, due to the limited hardware, special imaging principles, and involuntary movements of patients, only low-resolution (LR) MRI images can be acquired within a limited time, which increase the probability of misdiagnosis. To address the issue, in view of the fact that MRI images with the same anatomical structures but different contrasts and resolutions are practically available, this paper proposes a multi-scale and multi-contrast MRI super-resolution (SR) reconstruction method, which utilizes the complementary information of auxiliary images to assist in the SR reconstruction of target LR images. Concretely, a dual-branch structure is adopted to extract multi-scale features from the target LR MRI image and the associated auxiliary image, and a Multi-scale and Multi-receptive-field Attention Fusion Block (MMAFB) is designed to fully utilize the texture and edge information of the auxiliary image. Furthermore, a Progressive Up-sampling based Multi-stage Feature Learning Module (PUMFLM) is used to produce a high-quality and high-resolution target image. Experimental results on the IXI and BraTS19 datasets in terms of PSNR surpass the second-best method by approximately 0.55 dB and 1.17 dB, respectively, which demonstrates that the proposed method outperforms existing single-contrast and multi-contrast SR reconstruction methods.
AbstractList Magnetic resonance imaging (MRI) can clearly show the structures of normal and pathological tissues, which helps doctors to make accurate diagnoses. However, due to the limited hardware, special imaging principles, and involuntary movements of patients, only low-resolution (LR) MRI images can be acquired within a limited time, which increase the probability of misdiagnosis. To address the issue, in view of the fact that MRI images with the same anatomical structures but different contrasts and resolutions are practically available, this paper proposes a multi-scale and multi-contrast MRI super-resolution (SR) reconstruction method, which utilizes the complementary information of auxiliary images to assist in the SR reconstruction of target LR images. Concretely, a dual-branch structure is adopted to extract multi-scale features from the target LR MRI image and the associated auxiliary image, and a Multi-scale and Multi-receptive-field Attention Fusion Block (MMAFB) is designed to fully utilize the texture and edge information of the auxiliary image. Furthermore, a Progressive Up-sampling based Multi-stage Feature Learning Module (PUMFLM) is used to produce a high-quality and high-resolution target image. Experimental results on the IXI and BraTS19 datasets in terms of PSNR surpass the second-best method by approximately 0.55 dB and 1.17 dB, respectively, which demonstrates that the proposed method outperforms existing single-contrast and multi-contrast SR reconstruction methods.
Author Zhong, Zhenhui
Hu, Jinbin
Wang, Xuejin
Huang, Leilei
Author_xml – sequence: 1
  givenname: Xuejin
  orcidid: 0000-0001-5772-2774
  surname: Wang
  fullname: Wang, Xuejin
  email: wxj_2024@126.com
  organization: Fujian Provincial Key Laboratory of Big Data Mining and Applications, Fujian University of Technology, Fuzhou, China
– sequence: 2
  givenname: Zhenhui
  orcidid: 0009-0007-7592-9067
  surname: Zhong
  fullname: Zhong, Zhenhui
  email: 985761665@qq.com
  organization: Fujian Provincial Key Laboratory of Big Data Mining and Applications, Fujian University of Technology, Fuzhou, China
– sequence: 3
  givenname: Leilei
  orcidid: 0009-0009-7342-5230
  surname: Huang
  fullname: Huang, Leilei
  email: 3512068622@qq.com
  organization: Fujian Provincial Key Laboratory of Big Data Mining and Applications, Fujian University of Technology, Fuzhou, China
– sequence: 4
  givenname: Jinbin
  orcidid: 0000-0003-1610-8537
  surname: Hu
  fullname: Hu, Jinbin
  email: hujinbin@mail.nankai.edu.cn
  organization: College of Artificial Intelligence, Nankai University, Tianjin, China
BookMark eNpNkNtKw0AQhhepYK19AfEiL5C6s4c0uZTiodAi2IrehdnNpETSTdndXPj2NragVzP_MN8wfNds5DpHjN0CnwHw4n77uF0sZ4ILPZMZn8siu2BjoeaQilx_jv71V2wawhfnXBQapFZj9rHu29ikG4stJeiq5JQXnYseQ0zWuHMUG5u8UegcOkvJco87Sjb9gXw6TNs-Np07LtjOheh7O8QbdlljG2h6rhP2_nR88yVdvT4vFw-r1AoBMTU1zxCUqfLMFqiMMlKDyUkSVHIua26qWkgwSlS20LnJpDVoUdQ5r3K0JCdMnO5a34XgqS4Pvtmj_y6Bl4Od8tdOOdgpz3aO0N0JaojoDwDItOZK_gCEWGUw
CODEN ITETCU
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TETCI.2025.3607396
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2471-285X
EndPage 13
ExternalDocumentID 10_1109_TETCI_2025_3607396
11165504
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Fujian Province
  grantid: 2022J01954
– fundername: National Natural Science Foundation of China
  grantid: 62441105
GroupedDBID 0R~
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
EJD
ID FETCH-LOGICAL-c221t-bf06a14bd86c9a4b4b351b8e3e1d373f0bdf231b42dc958b63cbaca2f80d8ace3
IEDL.DBID RIE
ISSN 2471-285X
IngestDate Wed Oct 01 05:18:48 EDT 2025
Wed Oct 01 07:05:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c221t-bf06a14bd86c9a4b4b351b8e3e1d373f0bdf231b42dc958b63cbaca2f80d8ace3
ORCID 0009-0009-7342-5230
0000-0001-5772-2774
0009-0007-7592-9067
0000-0003-1610-8537
PageCount 13
ParticipantIDs crossref_primary_10_1109_TETCI_2025_3607396
ieee_primary_11165504
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationTitle IEEE transactions on emerging topics in computational intelligence
PublicationTitleAbbrev TETCI
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002951354
Score 2.2808723
Snippet Magnetic resonance imaging (MRI) can clearly show the structures of normal and pathological tissues, which helps doctors to make accurate diagnoses. However,...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 1
SubjectTerms Anatomical structure
Data mining
dual-branch structure
Feature extraction
Image edge detection
Image reconstruction
Magnetic resonance imaging
magnetic resonance imaging (MRI)
multi-contrast
Reconstruction algorithms
Representation learning
Super-resolution (SR)
Superresolution
Transformers
Title Multi-Scale and Multi-Contrast Magnetic Resonance Image Super-Resolution Reconstruction
URI https://ieeexplore.ieee.org/document/11165504
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 2471-285X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002951354
  issn: 2471-285X
  databaseCode: RIE
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagEwsPUUR5yQMbchvHdh4jQlQtEl3aim6RHxcGRFpBuvDr8TkpBSQktsR5yL67xHfn-z4Tcg3-gp84Y8YRISO5TJnhQjGjLKQu1tqWodpikozm8mGhFi1YPWBhACAUn0EfD8NavlvaNabKBhy5YhSyf-6mWdKAtb4SKrH3FYSSG2BMlA9m97O7sQ8BY9UXCa5IJT8mn2-7qYTJZHhAJptuNDUkL_11bfr24xdD47_7eUj2W7eS3jZ2cER2oDomTwFdy6ZeDUB15WhzjoRUb_q9po_6uUIMI8UcPhJvAB2_-v8Lna5X8MawtbFLikHqlmq2S-ZDP-gRazdSYDaOec1MGSWaS-OyxOZaGmmE4iYDAdyJVJSRcaX384yMnc1VZhJhjbY6LrPIZdqCOCGdalnBKaFIb2NKEAYZRP33r_PUWc2VFdqBf1WP3GwkXKwavowixBlRXgR9FKiPotVHj3RRets7W8Gd_dF-Tvbw8SYFckE6ftxw6Z2C2lwFY_gEsIe27Q
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZQGWDhIYooTw9sKG0c23mMCFG10HZpK7pFflwYEGlV2oVfj89JeUlIbIkTWfbdyXc-3_eZkGtwH5zjjAKGCBnBRBJoxmWgpYHERkqZwldbjOLeVDzM5KwGq3ssDAD44jNo46M_y7dzs8ZUWYchV4xE9s9tKYSQFVzrM6USuWiBS7GBxoRZZ3I_ueu7TWAk2zzGM6n4h_v5dp-KdyfdfTLaDKSqInlpr1e6bd5_cTT-e6QHZK8OLOltZQmHZAvKI_Lk8bXB2CkCqCotrd6Rkmqp3lZ0qJ5LRDFSzOIj9QbQ_qtbYeh4vYBlgK2VZVLcpn6RzTbJtOsm3QvqqxQCE0VsFegijBUT2qaxyZTQQnPJdAocmOUJL0JtCxfpaRFZk8lUx9xoZVRUpKFNlQF-TBrlvIQTQpHgRhfANXKIuhVAZYk1iknDlQXXVYvcbCScLyrGjNzvNMIs9_rIUR95rY8WaaL0vv6sBXf6R_sV2elNhoN80B89npFd7KpKiJyThpMBXLgQYaUvvWF8AHGNujo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Scale+and+Multi-Contrast+Magnetic+Resonance+Image+Super-Resolution+Reconstruction&rft.jtitle=IEEE+transactions+on+emerging+topics+in+computational+intelligence&rft.au=Wang%2C+Xuejin&rft.au=Zhong%2C+Zhenhui&rft.au=Huang%2C+Leilei&rft.au=Hu%2C+Jinbin&rft.date=2025&rft.pub=IEEE&rft.eissn=2471-285X&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FTETCI.2025.3607396&rft.externalDocID=11165504
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2471-285X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2471-285X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2471-285X&client=summon