Multi-Scale and Multi-Contrast Magnetic Resonance Image Super-Resolution Reconstruction
Magnetic resonance imaging (MRI) can clearly show the structures of normal and pathological tissues, which helps doctors to make accurate diagnoses. However, due to the limited hardware, special imaging principles, and involuntary movements of patients, only low-resolution (LR) MRI images can be acq...
Saved in:
| Published in | IEEE transactions on emerging topics in computational intelligence pp. 1 - 13 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
IEEE
2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2471-285X 2471-285X |
| DOI | 10.1109/TETCI.2025.3607396 |
Cover
| Abstract | Magnetic resonance imaging (MRI) can clearly show the structures of normal and pathological tissues, which helps doctors to make accurate diagnoses. However, due to the limited hardware, special imaging principles, and involuntary movements of patients, only low-resolution (LR) MRI images can be acquired within a limited time, which increase the probability of misdiagnosis. To address the issue, in view of the fact that MRI images with the same anatomical structures but different contrasts and resolutions are practically available, this paper proposes a multi-scale and multi-contrast MRI super-resolution (SR) reconstruction method, which utilizes the complementary information of auxiliary images to assist in the SR reconstruction of target LR images. Concretely, a dual-branch structure is adopted to extract multi-scale features from the target LR MRI image and the associated auxiliary image, and a Multi-scale and Multi-receptive-field Attention Fusion Block (MMAFB) is designed to fully utilize the texture and edge information of the auxiliary image. Furthermore, a Progressive Up-sampling based Multi-stage Feature Learning Module (PUMFLM) is used to produce a high-quality and high-resolution target image. Experimental results on the IXI and BraTS19 datasets in terms of PSNR surpass the second-best method by approximately 0.55 dB and 1.17 dB, respectively, which demonstrates that the proposed method outperforms existing single-contrast and multi-contrast SR reconstruction methods. |
|---|---|
| AbstractList | Magnetic resonance imaging (MRI) can clearly show the structures of normal and pathological tissues, which helps doctors to make accurate diagnoses. However, due to the limited hardware, special imaging principles, and involuntary movements of patients, only low-resolution (LR) MRI images can be acquired within a limited time, which increase the probability of misdiagnosis. To address the issue, in view of the fact that MRI images with the same anatomical structures but different contrasts and resolutions are practically available, this paper proposes a multi-scale and multi-contrast MRI super-resolution (SR) reconstruction method, which utilizes the complementary information of auxiliary images to assist in the SR reconstruction of target LR images. Concretely, a dual-branch structure is adopted to extract multi-scale features from the target LR MRI image and the associated auxiliary image, and a Multi-scale and Multi-receptive-field Attention Fusion Block (MMAFB) is designed to fully utilize the texture and edge information of the auxiliary image. Furthermore, a Progressive Up-sampling based Multi-stage Feature Learning Module (PUMFLM) is used to produce a high-quality and high-resolution target image. Experimental results on the IXI and BraTS19 datasets in terms of PSNR surpass the second-best method by approximately 0.55 dB and 1.17 dB, respectively, which demonstrates that the proposed method outperforms existing single-contrast and multi-contrast SR reconstruction methods. |
| Author | Zhong, Zhenhui Hu, Jinbin Wang, Xuejin Huang, Leilei |
| Author_xml | – sequence: 1 givenname: Xuejin orcidid: 0000-0001-5772-2774 surname: Wang fullname: Wang, Xuejin email: wxj_2024@126.com organization: Fujian Provincial Key Laboratory of Big Data Mining and Applications, Fujian University of Technology, Fuzhou, China – sequence: 2 givenname: Zhenhui orcidid: 0009-0007-7592-9067 surname: Zhong fullname: Zhong, Zhenhui email: 985761665@qq.com organization: Fujian Provincial Key Laboratory of Big Data Mining and Applications, Fujian University of Technology, Fuzhou, China – sequence: 3 givenname: Leilei orcidid: 0009-0009-7342-5230 surname: Huang fullname: Huang, Leilei email: 3512068622@qq.com organization: Fujian Provincial Key Laboratory of Big Data Mining and Applications, Fujian University of Technology, Fuzhou, China – sequence: 4 givenname: Jinbin orcidid: 0000-0003-1610-8537 surname: Hu fullname: Hu, Jinbin email: hujinbin@mail.nankai.edu.cn organization: College of Artificial Intelligence, Nankai University, Tianjin, China |
| BookMark | eNpNkNtKw0AQhhepYK19AfEiL5C6s4c0uZTiodAi2IrehdnNpETSTdndXPj2NragVzP_MN8wfNds5DpHjN0CnwHw4n77uF0sZ4ILPZMZn8siu2BjoeaQilx_jv71V2wawhfnXBQapFZj9rHu29ikG4stJeiq5JQXnYseQ0zWuHMUG5u8UegcOkvJco87Sjb9gXw6TNs-Np07LtjOheh7O8QbdlljG2h6rhP2_nR88yVdvT4vFw-r1AoBMTU1zxCUqfLMFqiMMlKDyUkSVHIua26qWkgwSlS20LnJpDVoUdQ5r3K0JCdMnO5a34XgqS4Pvtmj_y6Bl4Od8tdOOdgpz3aO0N0JaojoDwDItOZK_gCEWGUw |
| CODEN | ITETCU |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TETCI.2025.3607396 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2471-285X |
| EndPage | 13 |
| ExternalDocumentID | 10_1109_TETCI_2025_3607396 11165504 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Natural Science Foundation of Fujian Province grantid: 2022J01954 – fundername: National Natural Science Foundation of China grantid: 62441105 |
| GroupedDBID | 0R~ 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE JAVBF OCL RIA RIE AAYXX CITATION EJD |
| ID | FETCH-LOGICAL-c221t-bf06a14bd86c9a4b4b351b8e3e1d373f0bdf231b42dc958b63cbaca2f80d8ace3 |
| IEDL.DBID | RIE |
| ISSN | 2471-285X |
| IngestDate | Wed Oct 01 05:18:48 EDT 2025 Wed Oct 01 07:05:17 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c221t-bf06a14bd86c9a4b4b351b8e3e1d373f0bdf231b42dc958b63cbaca2f80d8ace3 |
| ORCID | 0009-0009-7342-5230 0000-0001-5772-2774 0009-0007-7592-9067 0000-0003-1610-8537 |
| PageCount | 13 |
| ParticipantIDs | crossref_primary_10_1109_TETCI_2025_3607396 ieee_primary_11165504 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-00-00 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 2025-00-00 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on emerging topics in computational intelligence |
| PublicationTitleAbbrev | TETCI |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0002951354 |
| Score | 2.2808723 |
| Snippet | Magnetic resonance imaging (MRI) can clearly show the structures of normal and pathological tissues, which helps doctors to make accurate diagnoses. However,... |
| SourceID | crossref ieee |
| SourceType | Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Anatomical structure Data mining dual-branch structure Feature extraction Image edge detection Image reconstruction Magnetic resonance imaging magnetic resonance imaging (MRI) multi-contrast Reconstruction algorithms Representation learning Super-resolution (SR) Superresolution Transformers |
| Title | Multi-Scale and Multi-Contrast Magnetic Resonance Image Super-Resolution Reconstruction |
| URI | https://ieeexplore.ieee.org/document/11165504 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 2471-285X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002951354 issn: 2471-285X databaseCode: RIE dateStart: 20170101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagEwsPUUR5yQMbchvHdh4jQlQtEl3aim6RHxcGRFpBuvDr8TkpBSQktsR5yL67xHfn-z4Tcg3-gp84Y8YRISO5TJnhQjGjLKQu1tqWodpikozm8mGhFi1YPWBhACAUn0EfD8NavlvaNabKBhy5YhSyf-6mWdKAtb4SKrH3FYSSG2BMlA9m97O7sQ8BY9UXCa5IJT8mn2-7qYTJZHhAJptuNDUkL_11bfr24xdD47_7eUj2W7eS3jZ2cER2oDomTwFdy6ZeDUB15WhzjoRUb_q9po_6uUIMI8UcPhJvAB2_-v8Lna5X8MawtbFLikHqlmq2S-ZDP-gRazdSYDaOec1MGSWaS-OyxOZaGmmE4iYDAdyJVJSRcaX384yMnc1VZhJhjbY6LrPIZdqCOCGdalnBKaFIb2NKEAYZRP33r_PUWc2VFdqBf1WP3GwkXKwavowixBlRXgR9FKiPotVHj3RRets7W8Gd_dF-Tvbw8SYFckE6ftxw6Z2C2lwFY_gEsIe27Q |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZQGWDhIYooTw9sKG0c23mMCFG10HZpK7pFflwYEGlV2oVfj89JeUlIbIkTWfbdyXc-3_eZkGtwH5zjjAKGCBnBRBJoxmWgpYHERkqZwldbjOLeVDzM5KwGq3ssDAD44jNo46M_y7dzs8ZUWYchV4xE9s9tKYSQFVzrM6USuWiBS7GBxoRZZ3I_ueu7TWAk2zzGM6n4h_v5dp-KdyfdfTLaDKSqInlpr1e6bd5_cTT-e6QHZK8OLOltZQmHZAvKI_Lk8bXB2CkCqCotrd6Rkmqp3lZ0qJ5LRDFSzOIj9QbQ_qtbYeh4vYBlgK2VZVLcpn6RzTbJtOsm3QvqqxQCE0VsFegijBUT2qaxyZTQQnPJdAocmOUJL0JtCxfpaRFZk8lUx9xoZVRUpKFNlQF-TBrlvIQTQpHgRhfANXKIuhVAZYk1iknDlQXXVYvcbCScLyrGjNzvNMIs9_rIUR95rY8WaaL0vv6sBXf6R_sV2elNhoN80B89npFd7KpKiJyThpMBXLgQYaUvvWF8AHGNujo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Scale+and+Multi-Contrast+Magnetic+Resonance+Image+Super-Resolution+Reconstruction&rft.jtitle=IEEE+transactions+on+emerging+topics+in+computational+intelligence&rft.au=Wang%2C+Xuejin&rft.au=Zhong%2C+Zhenhui&rft.au=Huang%2C+Leilei&rft.au=Hu%2C+Jinbin&rft.date=2025&rft.pub=IEEE&rft.eissn=2471-285X&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FTETCI.2025.3607396&rft.externalDocID=11165504 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2471-285X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2471-285X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2471-285X&client=summon |