Storage Capacity as an Information-Theoretic Vertex Cover and the Index Coding Rate

Motivated by applications in distributed storage, the storage capacity of a graph was recently defined to be the maximum amount of information that can be stored across the vertices of a graph such that the information at any vertex can be recovered from the information stored at the neighboring ver...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information theory Vol. 65; no. 9; pp. 5580 - 5591
Main Authors Mazumdar, Arya, Mcgregor, Andrew, Vorotnikova, Sofya
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9448
1557-9654
DOI10.1109/TIT.2019.2910026

Cover

Abstract Motivated by applications in distributed storage, the storage capacity of a graph was recently defined to be the maximum amount of information that can be stored across the vertices of a graph such that the information at any vertex can be recovered from the information stored at the neighboring vertices. Computing the storage capacity is a fundamental problem in network coding and is related, or equivalent, to some well-studied problems such as index coding with side information and generalized guessing games. In this paper, we consider storage capacity as a natural information-theoretic analogue of the minimum vertex cover of a graph. Indeed, while it was known that storage capacity is upper bounded by minimum vertex cover, we show that by treating it as such we can get a 3/2 approximation for planar graphs, and a 4/3 approximation for triangle-free planar graphs. Since the storage capacity is intimately related to the index coding rate, we get a 2 approximation of index coding rate for planar graphs and 3/2 approximation for triangle-free planar graphs. Previously, only a trivial 4 approximation of the index coding rate was known for planar graphs. We also show a polynomial time approximation scheme for the index coding rate when the alphabet size is constant. We then develop a general method of "gadget covering" to upper bound the storage capacity in terms of the average of a set of vertex covers. This method is intuitive and leads to the exact characterization of storage capacity for various families of graphs. As an illustrative example, we use this approach to derive the exact storage capacity of cycles-with-chords, a family of graphs related to outerplanar graphs. Finally, we generalize the storage capacity notion to include recovery from partial node failures in distributed storage. We show tight upper and lower bounds on this partial recovery capacity that scales nicely with the fraction of failures in a vertex.
AbstractList Motivated by applications in distributed storage, the storage capacity of a graph was recently defined to be the maximum amount of information that can be stored across the vertices of a graph such that the information at any vertex can be recovered from the information stored at the neighboring vertices. Computing the storage capacity is a fundamental problem in network coding and is related, or equivalent, to some well-studied problems such as index coding with side information and generalized guessing games. In this paper, we consider storage capacity as a natural information-theoretic analogue of the minimum vertex cover of a graph. Indeed, while it was known that storage capacity is upper bounded by minimum vertex cover, we show that by treating it as such we can get a 3/2 approximation for planar graphs, and a 4/3 approximation for triangle-free planar graphs. Since the storage capacity is intimately related to the index coding rate, we get a 2 approximation of index coding rate for planar graphs and 3/2 approximation for triangle-free planar graphs. Previously, only a trivial 4 approximation of the index coding rate was known for planar graphs. We also show a polynomial time approximation scheme for the index coding rate when the alphabet size is constant. We then develop a general method of "gadget covering" to upper bound the storage capacity in terms of the average of a set of vertex covers. This method is intuitive and leads to the exact characterization of storage capacity for various families of graphs. As an illustrative example, we use this approach to derive the exact storage capacity of cycles-with-chords, a family of graphs related to outerplanar graphs. Finally, we generalize the storage capacity notion to include recovery from partial node failures in distributed storage. We show tight upper and lower bounds on this partial recovery capacity that scales nicely with the fraction of failures in a vertex.
Author Mazumdar, Arya
Mcgregor, Andrew
Vorotnikova, Sofya
Author_xml – sequence: 1
  givenname: Arya
  orcidid: 0000-0003-4605-7996
  surname: Mazumdar
  fullname: Mazumdar, Arya
  email: arya@cs.umass.edu
  organization: College of Information and Computer Sciences, University of Massachusetts at Amherst, Amherst, MA, USA
– sequence: 2
  givenname: Andrew
  orcidid: 0000-0002-2124-160X
  surname: Mcgregor
  fullname: Mcgregor, Andrew
  email: mcgregor@cs.umass.edu
  organization: College of Information and Computer Sciences, University of Massachusetts at Amherst, Amherst, MA, USA
– sequence: 3
  givenname: Sofya
  orcidid: 0000-0002-3035-1122
  surname: Vorotnikova
  fullname: Vorotnikova, Sofya
  email: svorotni@cs.umass.edu
  organization: College of Information and Computer Sciences, University of Massachusetts at Amherst, Amherst, MA, USA
BookMark eNp9kE1LAzEQhoNUsK3eBS8Bz1uTbLLZHKX4USgIdvUaYjLbbmk3NZuK_femH3jw4GmYmfeZgWeAeq1vAaFrSkaUEnVXTaoRI1SNmKKEsOIM9akQMlOF4D3UJ4SWmeK8vECDrlumlgvK-mg2iz6YOeCx2RjbxB02HTYtnrS1D2sTG99m1QJ8gNhY_A4hwjce-y8IKeVwXECKusPMNe0cv5oIl-i8NqsOrk51iN4eH6rxczZ9eZqM76eZZYzGTCknaU1rWQDnQnLDqTVQlk5YI5llTqQ9ca6WtWPMWZNDAVQKx21uhfvIh-j2eHcT_OcWuqiXfhva9FIzJkXBZClUSpFjygbfdQFqvQnN2oSdpkTv1emkTu_V6ZO6hBR_kGTm4CIG06z-A2-OYAMAv3_Kokyuaf4DVB59Wg
CODEN IETTAW
CitedBy_id crossref_primary_10_1109_JSAIT_2023_3300901
crossref_primary_10_1109_TCNS_2024_3395725
crossref_primary_10_1109_TIT_2022_3191309
crossref_primary_10_1007_s10623_023_01278_6
crossref_primary_10_1007_s10623_024_01481_z
crossref_primary_10_1109_TIT_2022_3145824
crossref_primary_10_1007_s00493_024_00114_2
crossref_primary_10_1109_TASE_2024_3367722
crossref_primary_10_1109_TIT_2022_3153330
Cites_doi 10.1109/TIT.2015.2477406
10.1109/ISIT.2014.6874842
10.1186/s13634-015-0292-0
10.1109/18.532875
10.1145/800070.802205
10.1016/j.jcss.2007.06.019
10.1007/978-3-642-45030-3_31
10.1109/ISIT.2016.7541680
10.1109/FOCS.2011.39
10.1137/140988358
10.1109/TIT.2012.2208937
10.1137/070683933
10.1145/174644.174650
10.1137/0211045
10.1109/TIT.1956.1056798
10.1109/ISIT.2011.6034247
10.1017/CBO9780511808968
10.1109/TIT.2015.2414926
10.1109/TIT.2015.2472521
10.1109/TIT.2014.2325570
10.1109/TIT.2010.2094910
10.1137/0209046
10.1215/ijm/1256049011
10.1109/FOCS.2008.41
10.1215/ijm/1256049012
10.1109/TIT.2010.2103753
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TIT.2019.2910026
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore (NTUSG)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9654
EndPage 5591
ExternalDocumentID 10_1109_TIT_2019_2910026
8685121
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: CCF-0953754; IIS-1251110; CCF-1320719; CCF-1637536; CCF-1642658; CCF-BSF-1618512
  funderid: 10.13039/100000001
– fundername: Google
  funderid: 10.13039/100006785
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
RIG
ID FETCH-LOGICAL-c221t-99d71f1f76e44574a41cae88d5ca72c2d5d710ddf7fd22dca3e6e175d4c3c5db3
IEDL.DBID RIE
ISSN 0018-9448
IngestDate Mon Jun 30 05:33:48 EDT 2025
Wed Oct 01 02:55:17 EDT 2025
Thu Apr 24 22:57:29 EDT 2025
Wed Aug 27 02:41:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c221t-99d71f1f76e44574a41cae88d5ca72c2d5d710ddf7fd22dca3e6e175d4c3c5db3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2124-160X
0000-0003-4605-7996
0000-0002-3035-1122
PQID 2275627859
PQPubID 36024
PageCount 12
ParticipantIDs ieee_primary_8685121
proquest_journals_2275627859
crossref_citationtrail_10_1109_TIT_2019_2910026
crossref_primary_10_1109_TIT_2019_2910026
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References bowden (ref11) 2011
ref13
ref12
ref15
ref14
grötzsch (ref24) 1959; 8
ref10
ref2
ref1
ref17
ref16
ref19
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
blasiak (ref18) 2010
kenneth (ref27) 1977; 21
References_xml – ident: ref6
  doi: 10.1109/TIT.2015.2477406
– ident: ref7
  doi: 10.1109/ISIT.2014.6874842
– ident: ref29
  doi: 10.1186/s13634-015-0292-0
– ident: ref2
  doi: 10.1109/18.532875
– ident: ref9
  doi: 10.1145/800070.802205
– ident: ref8
  doi: 10.1016/j.jcss.2007.06.019
– ident: ref23
  doi: 10.1007/978-3-642-45030-3_31
– ident: ref17
  doi: 10.1109/ISIT.2016.7541680
– ident: ref19
  doi: 10.1109/FOCS.2011.39
– ident: ref14
  doi: 10.1137/140988358
– ident: ref4
  doi: 10.1109/TIT.2012.2208937
– ident: ref22
  doi: 10.1137/070683933
– ident: ref10
  doi: 10.1145/174644.174650
– ident: ref25
  doi: 10.1137/0211045
– start-page: 254
  year: 2011
  ident: ref11
  article-title: Planarity of data networks
  publication-title: Proc 23rd Int Teletraffic Congr (ITC 2011)
– ident: ref1
  doi: 10.1109/TIT.1956.1056798
– year: 2010
  ident: ref18
  publication-title: Index Coding Via Linear Programming
– ident: ref13
  doi: 10.1109/ISIT.2011.6034247
– ident: ref28
  doi: 10.1017/CBO9780511808968
– ident: ref16
  doi: 10.1109/TIT.2015.2414926
– ident: ref3
  doi: 10.1109/TIT.2015.2472521
– ident: ref5
  doi: 10.1109/TIT.2014.2325570
– ident: ref15
  doi: 10.1109/TIT.2010.2094910
– ident: ref20
  doi: 10.1137/0209046
– volume: 21
  start-page: 429
  year: 1977
  ident: ref27
  article-title: Every planar map is four colorable part I. Discharging
  publication-title: Illinois J Math
  doi: 10.1215/ijm/1256049011
– ident: ref21
  doi: 10.1109/FOCS.2008.41
– ident: ref26
  doi: 10.1215/ijm/1256049012
– volume: 8
  start-page: 109
  year: 1959
  ident: ref24
  article-title: Zur theorie der diskreten Gebilde. VII. Ein dreifarbensatz für dreikreisfreie netze auf der kugel
– ident: ref12
  doi: 10.1109/TIT.2010.2103753
SSID ssj0014512
Score 2.3841195
Snippet Motivated by applications in distributed storage, the storage capacity of a graph was recently defined to be the maximum amount of information that can be...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5580
SubjectTerms Apexes
Approximation
approximation algorithms
Chords (geometry)
Coding
Distributed storage
Graph theory
Graphs
index coding
Information theory
Lower bounds
Mathematical analysis
planar graphs
Polynomials
Recovery
Storage capacity
Upper bounds
vertex cover
Title Storage Capacity as an Information-Theoretic Vertex Cover and the Index Coding Rate
URI https://ieeexplore.ieee.org/document/8685121
https://www.proquest.com/docview/2275627859
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore (NTUSG)
  customDbUrl:
  eissn: 1557-9654
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014512
  issn: 0018-9448
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB50T3rwLa4vcvAi2N02mzTNURZFhfWgq3graR4XZVe0C-Kvd6aPxRfiraSTEviSzDedF8CRCoacazrKBiKOhFBpVEhv0VSxNKJD7MmjO7pOL-7E1YN8WICTeS6M974KPvM9eqx8-W5qZ_SrrJ-lyA8oa3xRZWmdqzX3GAiZ1JXBEzzAaHO0LslY98eXY4rh0j2uqeBo-kUFVT1VflzElXY5X4VRu646qOSxNyuLnn3_VrLxvwtfg5WGZrLTel-sw4KfbMBq28KBNSd6A5Y_1SPchNtbtMDxgmFDVKEW-Tkzr8xMWJOzRBhG4zbzkd37l9K_sSEFgaKUY8glUdRVY6QS2Q0S2S24Oz8bDy-iputCZDlPykhrp5KQBJV6IaQSRiTW-Cxz0hrFLXcS38fOBRUc586agU89khAn7MBKVwy2oTOZTvwOMLwcEiscFyoE8qAaLozmwUstRSgS3YV-C0Rum5Lk1BnjKa9Mk1jnCF1O0OUNdF04ns94rstx_CG7SUjM5RoQurDfYp035_U151QFn6tM6t3fZ-3BEn27ji7bh075MvMHSEfK4rDahx8gHtpr
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4hOBQOQKGILdD6wAWJ7CZeO46PaAVaWpYDhIpb5PhxAe0iyEqIX9-ZPFblIdRb5IyVKJ_t-SbzAjhUwZBzTUfZUMSRECqNSuktmiqWRnSIPXl0J5fp-Eb8upW3S3C8yIXx3tfBZ75Pl7Uv383snH6VDbIU-QFlja9IIYRssrUWPgMhk6Y2eIJbGK2OzikZ60F-nlMUl-5zTSVH01dKqO6q8u4orvXL2QZMujdrwkru-vOq7NuXN0Ub__fVN2G9JZrspFkZX2HJT7dgo2viwNo9vQVr_1Qk3Ibra7TB8YhhI1SiFhk6M0_MTFmbtUQoRnmX-8j--MfKP7MRhYGilGPIJlHU1WOkFNkVUtlvcHN2mo_GUdt3IbKcJ1WktVNJSIJKPX5lJYxIrPFZ5qQ1ilvuJN6PnQsqOM6dNUOfeqQhTtihla4c7sDydDb1u8DweEiscFyoEMiHargwmgcvtRShTHQPBh0QhW2LklNvjPuiNk5iXSB0BUFXtND14Ggx46EpyPGJ7DYhsZBrQejBfod10e7Yp4JTHXyuMqm_fzzrJ3wZ55OL4uL88vcerNJzmlizfViuHuf-AMlJVf6o1-RfuDbduA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Storage+Capacity+as+an+Information-Theoretic+Vertex+Cover+and+the+Index+Coding+Rate&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Mazumdar%2C+Arya&rft.au=Mcgregor%2C+Andrew&rft.au=Vorotnikova%2C+Sofya&rft.date=2019-09-01&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=65&rft.issue=9&rft.spage=5580&rft.epage=5591&rft_id=info:doi/10.1109%2FTIT.2019.2910026&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIT_2019_2910026
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon