Robust Federated Fuzzy C-Means Algorithm in Heterogeneous Scenarios

The federated fuzzy C-means (federated FCM) extends the traditional Fuzzy C-means (FCM) to the federated learning (FL) scenario, aiming to address the data privacy preservation issue of soft clustering in distributed environments. However, a significant challenge persists with existing federated FCM...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on fuzzy systems Vol. 33; no. 9; pp. 3168 - 3181
Main Authors Zhang, Qixian, Deng, Zhaohong, Zhang, Wei, Zhao, Zhuangzhuang, Xiao, Zhiyong, Choi, Kup-Sze, Wang, Guanjin, Ge, Yuxi, Hu, Shudong
Format Journal Article
LanguageEnglish
Published IEEE 01.09.2025
Subjects
Online AccessGet full text
ISSN1063-6706
1941-0034
DOI10.1109/TFUZZ.2025.3584697

Cover

Abstract The federated fuzzy C-means (federated FCM) extends the traditional Fuzzy C-means (FCM) to the federated learning (FL) scenario, aiming to address the data privacy preservation issue of soft clustering in distributed environments. However, a significant challenge persists with existing federated FCM algorithms, i.e., they struggle to converge effectively in complex heterogeneous scenarios, leading to unstable clustering outcomes. Here the complex heterogeneous scenarios stem from the combination of nonindependently and identically distributed (non-IID) data across different clients (statistical heterogeneity), coupled with the involvement of only some clients in each iteration (systematic heterogeneity). While prior research has attempted to address the impact of statistical heterogeneity in FL scenarios, it has overlooked the issue of system heterogeneity. In response, this article proposes a novel federated FCM algorithm (SC-FFCM) that remains robust even in such complex heterogeneous scenarios. First, the client-side clustering module of SC-FFCM adopts a gradient-based FCM algorithm, facilitating corrections to the direction of local optimization. Second, the algorithm introduces a control variates technique to rectify update bias during the iteration process, thereby mitigating the adverse effects of random client sampling and non-IID data distribution on the algorithm convergence. Finally, the proposed algorithm approximates the ideal federated FCM algorithm. Experimental studies verify the effectiveness of the proposed method.
AbstractList The federated fuzzy C-means (federated FCM) extends the traditional Fuzzy C-means (FCM) to the federated learning (FL) scenario, aiming to address the data privacy preservation issue of soft clustering in distributed environments. However, a significant challenge persists with existing federated FCM algorithms, i.e., they struggle to converge effectively in complex heterogeneous scenarios, leading to unstable clustering outcomes. Here the complex heterogeneous scenarios stem from the combination of nonindependently and identically distributed (non-IID) data across different clients (statistical heterogeneity), coupled with the involvement of only some clients in each iteration (systematic heterogeneity). While prior research has attempted to address the impact of statistical heterogeneity in FL scenarios, it has overlooked the issue of system heterogeneity. In response, this article proposes a novel federated FCM algorithm (SC-FFCM) that remains robust even in such complex heterogeneous scenarios. First, the client-side clustering module of SC-FFCM adopts a gradient-based FCM algorithm, facilitating corrections to the direction of local optimization. Second, the algorithm introduces a control variates technique to rectify update bias during the iteration process, thereby mitigating the adverse effects of random client sampling and non-IID data distribution on the algorithm convergence. Finally, the proposed algorithm approximates the ideal federated FCM algorithm. Experimental studies verify the effectiveness of the proposed method.
Author Wang, Guanjin
Ge, Yuxi
Choi, Kup-Sze
Zhang, Wei
Zhao, Zhuangzhuang
Zhang, Qixian
Hu, Shudong
Deng, Zhaohong
Xiao, Zhiyong
Author_xml – sequence: 1
  givenname: Qixian
  surname: Zhang
  fullname: Zhang, Qixian
  email: 769077063@qq.com
  organization: School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, China
– sequence: 2
  givenname: Zhaohong
  orcidid: 0000-0002-0790-6492
  surname: Deng
  fullname: Deng, Zhaohong
  email: dengzhaohong@jiangnan.edu.cn
  organization: School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, China
– sequence: 3
  givenname: Wei
  orcidid: 0009-0003-5785-7363
  surname: Zhang
  fullname: Zhang, Wei
  email: 7201607004@stu.jiangnan.edu.cn
  organization: School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, China
– sequence: 4
  givenname: Zhuangzhuang
  surname: Zhao
  fullname: Zhao, Zhuangzhuang
  email: zhaozhuangzhuang123@outlook.com
  organization: School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, China
– sequence: 5
  givenname: Zhiyong
  orcidid: 0000-0003-3187-1629
  surname: Xiao
  fullname: Xiao, Zhiyong
  email: zhiyong.xiao@jiangnan.edu.cn
  organization: School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, China
– sequence: 6
  givenname: Kup-Sze
  orcidid: 0000-0003-0836-7088
  surname: Choi
  fullname: Choi, Kup-Sze
  email: kschoi@ieee.org
  organization: HL7 Hong Kong Limited and the TechCosmos Limited, Hong Kong
– sequence: 7
  givenname: Guanjin
  orcidid: 0000-0002-5258-0532
  surname: Wang
  fullname: Wang, Guanjin
  email: guanjin.wang@murdoch.edu.au
  organization: School of Information Technology, Murdoch University, Murdoch, WA, Australia
– sequence: 8
  givenname: Yuxi
  orcidid: 0000-0002-6705-2230
  surname: Ge
  fullname: Ge, Yuxi
  email: gmy1986@126.com
  organization: Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi, China
– sequence: 9
  givenname: Shudong
  orcidid: 0000-0002-4454-3432
  surname: Hu
  fullname: Hu, Shudong
  email: hsd2001054@163.com
  organization: Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi, China
BookMark eNpF0M1OwkAUhuGJwURAb8C4mBsonjM__VmSxooJxkRhw6aZTs9gDbRmpizg6gEhcXXO5v0Wz4gN2q4lxh4RJoiQPS-K5Wo1ESD0ROpUxVlyw4aYKYwApBqcfohlFCcQ37FRCD8AqDSmQ5Z_dtUu9LygmrzpqebF7nDY8zx6J9MGPt2sO9_031vetHxGPfluTS11u8C_LLXGN124Z7fObAI9XO-YLYuXRT6L5h-vb_l0HlkhsI8yMNopJ-Okypy0aFWtU43KQQWK0DlHsTVWg5GJEVokSkkbW6QaUw1pJcdMXHat70Lw5Mpf32yN35cI5Zmh_GMozwzlleEUPV2ihoj-AwSdpZjIIwI5W8E
CODEN IEFSEV
Cites_doi 10.1002/9780470523551
10.1109/34.85677
10.1109/TPAMI.2022.3195956
10.1109/TIT.1982.1056489
10.1109/TFUZZ.2021.3118733
10.1109/TFUZZ.2021.3105193
10.1007/978-3-031-28996-5_4
10.1109/TSMC.2025.3547350
10.1109/ICPR.2014.272
10.1145/3460120.3484822
10.1371/journal.pone.0141287
10.1109/PerCom53586.2022.9762352
10.1109/TSG.2022.3146489
10.14569/IJACSA.2013.040406
10.1109/JIOT.2021.3113927
10.1007/BF01908075
10.1007/s11427-022-2224-4
10.2307/2346830
10.1109/TFUZZ.2004.836065
10.1109/CVPR52688.2022.00992
10.1109/CCEM50674.2020.00021
10.1007/978-3-031-27609-5_3
10.1016/j.neucom.2015.09.127
10.1109/CVPR.2018.00745
10.1109/CISS56502.2023.10089666
10.1016/j.compbiolchem.2021.107558
10.1109/ICNN.1994.374399
10.1109/TAI.2024.3426408
10.1007/978-1-4757-0450-1
10.1109/ACCESS.2020.2993295
10.1016/S0031-3203(98)00091-0
10.1109/TVT.2022.3205307
10.1109/ACCESS.2020.3036747
10.1109/tnnls.2022.3160699
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TFUZZ.2025.3584697
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0034
EndPage 3181
ExternalDocumentID 10_1109_TFUZZ_2025_3584697
11059817
Genre orig-research
GrantInformation_xml – fundername: National Key R&D Program
  grantid: 2022YFE0112400; NSFC; 62176105
– fundername: Basic Research Funds for Central Universities
  grantid: JUSRP622016
– fundername: Leading Talents in Medical and Health Professions
  grantid: 4532001THMD
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
ID FETCH-LOGICAL-c221t-90a5f4f367b9f3c1c4d58514f0b04e1fffe6cac50a37a2527443c6c1ed18508b3
IEDL.DBID RIE
ISSN 1063-6706
IngestDate Wed Oct 01 05:26:44 EDT 2025
Wed Sep 10 07:40:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c221t-90a5f4f367b9f3c1c4d58514f0b04e1fffe6cac50a37a2527443c6c1ed18508b3
ORCID 0009-0003-5785-7363
0000-0002-0790-6492
0000-0003-0836-7088
0000-0002-6705-2230
0000-0002-4454-3432
0000-0002-5258-0532
0000-0003-3187-1629
PageCount 14
ParticipantIDs ieee_primary_11059817
crossref_primary_10_1109_TFUZZ_2025_3584697
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE transactions on fuzzy systems
PublicationTitleAbbrev TFUZZ
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
Reddi (ref42) 2020
ref14
ref11
ref10
ref16
ref19
ref51
ref50
ref46
ref45
ref48
ref47
Arthur (ref40)
ref44
ref43
ref49
ref8
ref7
ref9
ref4
Wang (ref17) 2020; 33
Richtrik (ref28) 2021; 34
ref3
ref6
Karimireddy (ref26)
ref5
Cho (ref35) 2020
ref34
ref31
ref30
Balkus (ref15)
ref33
ref2
ref39
ref38
Stallmann (ref20) 2022
Wang (ref41) 2019
Dennis (ref23)
ref24
Fraboni (ref36)
Liu (ref37)
Li (ref18) 2020; 2
ref25
McMahan (ref1)
Feng (ref29)
ref22
ref21
Wang (ref27) 2013; 26
Chen (ref32) 2020
References_xml – ident: ref34
  doi: 10.1002/9780470523551
– year: 2022
  ident: ref20
  article-title: Towards federated clustering: A federated fuzzy c-means algorithm (FFCM)
– volume: 26
  start-page: 181
  year: 2013
  ident: ref27
  article-title: Variance reduction for stochastic gradient optimization
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref50
  doi: 10.1109/34.85677
– ident: ref2
  doi: 10.1109/TPAMI.2022.3195956
– ident: ref39
  doi: 10.1109/TIT.1982.1056489
– ident: ref16
  doi: 10.1109/TFUZZ.2021.3118733
– ident: ref14
  doi: 10.1109/TFUZZ.2021.3105193
– start-page: 3407
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref36
  article-title: Clustered sampling: Low-variance and improved representativity for clients selection in federated learning
– ident: ref38
  doi: 10.1007/978-3-031-28996-5_4
– year: 2020
  ident: ref35
  article-title: Client selection in federated learning: Convergence analysis and power-of-choice selection strategies
– ident: ref22
  doi: 10.1109/TSMC.2025.3547350
– year: 2020
  ident: ref42
  article-title: Adaptive federated optimization
– start-page: 1273
  volume-title: Proc. 25th Int. Conf. Artif. Intell. Statist.
  ident: ref1
  article-title: Communication-efficient learning of deep networks from decentralized data
– ident: ref47
  doi: 10.1109/ICPR.2014.272
– ident: ref8
  doi: 10.1145/3460120.3484822
– year: 2019
  ident: ref41
  article-title: SlowMo: Improving communication-efficient distributed SGD with slow momentum
– ident: ref44
  doi: 10.1371/journal.pone.0141287
– ident: ref5
  doi: 10.1109/PerCom53586.2022.9762352
– start-page: 3274
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref29
  article-title: KD3A: Unsupervised multi-source decentralized domain adaptation via knowledge distillation
– ident: ref33
  doi: 10.1109/TSG.2022.3146489
– ident: ref11
  doi: 10.14569/IJACSA.2013.040406
– ident: ref12
  doi: 10.1109/JIOT.2021.3113927
– ident: ref49
  doi: 10.1007/BF01908075
– ident: ref3
  doi: 10.1007/s11427-022-2224-4
– ident: ref7
  doi: 10.2307/2346830
– start-page: 1027
  volume-title: Proc. 18th Annu. ACM-SIAM Symp. Discrete Algorithms
  ident: ref40
  article-title: K-means++ the advantages of careful seeding
– ident: ref51
  doi: 10.1109/TFUZZ.2004.836065
– ident: ref31
  doi: 10.1109/CVPR52688.2022.00992
– ident: ref6
  doi: 10.1109/CCEM50674.2020.00021
– ident: ref24
  doi: 10.1007/978-3-031-27609-5_3
– ident: ref10
  doi: 10.1016/j.neucom.2015.09.127
– ident: ref46
  doi: 10.1109/CVPR.2018.00745
– volume: 2
  start-page: 429
  volume-title: Proc. Mach. Learn. Syst.
  year: 2020
  ident: ref18
  article-title: Federated optimization in heterogeneous networks
– ident: ref19
  doi: 10.1109/CISS56502.2023.10089666
– ident: ref45
  doi: 10.1016/j.compbiolchem.2021.107558
– start-page: 2611
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref23
  article-title: Heterogeneity for the win: One-shot federated clustering
– ident: ref25
  doi: 10.1109/ICNN.1994.374399
– start-page: 6804
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref37
  article-title: Heterogeneous risk minimization
– ident: ref21
  doi: 10.1109/TAI.2024.3426408
– ident: ref13
  doi: 10.1007/978-1-4757-0450-1
– start-page: 128
  volume-title: Proc. IEEE/ACM Conf. Connected Health: Appl., Syst. Eng. Technol.
  ident: ref15
  article-title: Federated fuzzy clustering for longitudinal health data
– volume: 33
  start-page: 7611
  year: 2020
  ident: ref17
  article-title: Tackling the objective inconsistency problem in heterogeneous federated optimization
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 5132
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref26
  article-title: Scaffold: Stochastic controlled averaging for federated learning
– volume: 34
  start-page: 4384
  year: 2021
  ident: ref28
  article-title: EF21: A new, simpler, theoretically better, and practically faster error feedback
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2020
  ident: ref32
  article-title: Optimal client sampling for federated learning
– ident: ref43
  doi: 10.1109/ACCESS.2020.2993295
– ident: ref48
  doi: 10.1016/S0031-3203(98)00091-0
– ident: ref4
  doi: 10.1109/TVT.2022.3205307
– ident: ref9
  doi: 10.1109/ACCESS.2020.3036747
– ident: ref30
  doi: 10.1109/tnnls.2022.3160699
SSID ssj0014518
Score 2.480016
Snippet The federated fuzzy C-means (federated FCM) extends the traditional Fuzzy C-means (FCM) to the federated learning (FL) scenario, aiming to address the data...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 3168
SubjectTerms Approximation algorithms
Clustering algorithms
Clustering methods
Computational modeling
Convergence
Distributed databases
Electronic mail
Federated clustering (FC)
federated learning (FL)
fuzzy clustering
Fuzzy logic
heterogeneity
Optimization
robustness
Servers
Title Robust Federated Fuzzy C-Means Algorithm in Heterogeneous Scenarios
URI https://ieeexplore.ieee.org/document/11059817
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0034
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014518
  issn: 1063-6706
  databaseCode: RIE
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5sT3qwWivWF3vwJkmz2VdyLMVQhPYgLZRewmazq0VNpE0O9te7m6RaBMFbCNmwzEwyMzvzfQPAXYIFR0Rhk-QQ6dhCkWNpsxxh_n2csTSU1WHOZMrGc_K4oIsGrF5hYZRSVfOZcu1lVctPc1nao7IBssFAgHgLtHjAarDWd8mAUFTj3hh2GPfYDiHjhYNZNF8uTS7oUxdbh2sZnva80N5YlcqrRB0w3e2nbiZ5dcsiceX2F1Xjvzd8Ao6b-BIOa4M4BQcq64LObnYDbD7lLjjaIyI8A6OnPCk3BYwstYSJPlMYldvtJxw5E2V8GRy-PefrVfHyDlcZHNsOmtwYnsrLjXmjyky-nW96YB49zEZjpxmv4EjfR4UTeoJqojHjSaixRJKktkZItJd4RCGttWJSSOoJzIVPLZUglkwilRof7wUJPgftLM_UBYCSY0kJUzSkhFjKPi0CJIjmYRLYpLIP7nfijj9qFo24yj68MK6UE1vlxI1y-qBnRfnzZCPFyz_uX4FDu7zu_LoG7WJdqhsTKhTJbWUiX7fZuNE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4oHtSDKGLE5x68mUKXfZQeCbFBBQ4GEsKlabe7StTWQHuQX-9uW5SYmHhrmmazmZntzOzM9w3ATUgCB1NJdJJDhWUKRZahzbIC_e9zOI9ckV_mDEe8P6EPUzYtweo5FkZKmTefyaZ5zGv5USIyc1XWwiYY6GBnG3YYpZQVcK3vogFluEC-cWJxx-ZrjIzttsbeZDbT2WCbNYlxuYbjacMPbQxWyf2KV4XRekdFO8lrM0vDplj9Imv895YP4aCMMFG3MIkj2JJxDarr6Q2oPMw12N-gIjyG3lMSZssUeYZcQsefEfKy1eoT9ayh1N4Mdd-ek8U8fXlH8xj1TQ9Nok1PJtlSryhjnXEnyzpMvLtxr2-VAxYs0W7j1HLtgCmqCHdCVxGBBY1MlZAqO7SpxEopyUUgmB0QJ2gzQyZIBBdYRtrL252QnEAlTmJ5Ckg4RDDKJXO1Zgxpnwo6OKDKccOOSSsbcLsWt_9R8Gj4ef5hu36uHN8oxy-V04C6EeXPl6UUz_54fw27_fFw4A_uR4_nsGeWKvrALqCSLjJ5qQOHNLzKzeULlcO8Hg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Federated+Fuzzy+C-Means+Algorithm+in+Heterogeneous+Scenarios&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Zhang%2C+Qixian&rft.au=Deng%2C+Zhaohong&rft.au=Zhang%2C+Wei&rft.au=Zhao%2C+Zhuangzhuang&rft.date=2025-09-01&rft.issn=1063-6706&rft.eissn=1941-0034&rft.volume=33&rft.issue=9&rft.spage=3168&rft.epage=3181&rft_id=info:doi/10.1109%2FTFUZZ.2025.3584697&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TFUZZ_2025_3584697
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon