Robust Federated Fuzzy C-Means Algorithm in Heterogeneous Scenarios
The federated fuzzy C-means (federated FCM) extends the traditional Fuzzy C-means (FCM) to the federated learning (FL) scenario, aiming to address the data privacy preservation issue of soft clustering in distributed environments. However, a significant challenge persists with existing federated FCM...
Saved in:
| Published in | IEEE transactions on fuzzy systems Vol. 33; no. 9; pp. 3168 - 3181 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
IEEE
01.09.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1063-6706 1941-0034 |
| DOI | 10.1109/TFUZZ.2025.3584697 |
Cover
| Abstract | The federated fuzzy C-means (federated FCM) extends the traditional Fuzzy C-means (FCM) to the federated learning (FL) scenario, aiming to address the data privacy preservation issue of soft clustering in distributed environments. However, a significant challenge persists with existing federated FCM algorithms, i.e., they struggle to converge effectively in complex heterogeneous scenarios, leading to unstable clustering outcomes. Here the complex heterogeneous scenarios stem from the combination of nonindependently and identically distributed (non-IID) data across different clients (statistical heterogeneity), coupled with the involvement of only some clients in each iteration (systematic heterogeneity). While prior research has attempted to address the impact of statistical heterogeneity in FL scenarios, it has overlooked the issue of system heterogeneity. In response, this article proposes a novel federated FCM algorithm (SC-FFCM) that remains robust even in such complex heterogeneous scenarios. First, the client-side clustering module of SC-FFCM adopts a gradient-based FCM algorithm, facilitating corrections to the direction of local optimization. Second, the algorithm introduces a control variates technique to rectify update bias during the iteration process, thereby mitigating the adverse effects of random client sampling and non-IID data distribution on the algorithm convergence. Finally, the proposed algorithm approximates the ideal federated FCM algorithm. Experimental studies verify the effectiveness of the proposed method. |
|---|---|
| AbstractList | The federated fuzzy C-means (federated FCM) extends the traditional Fuzzy C-means (FCM) to the federated learning (FL) scenario, aiming to address the data privacy preservation issue of soft clustering in distributed environments. However, a significant challenge persists with existing federated FCM algorithms, i.e., they struggle to converge effectively in complex heterogeneous scenarios, leading to unstable clustering outcomes. Here the complex heterogeneous scenarios stem from the combination of nonindependently and identically distributed (non-IID) data across different clients (statistical heterogeneity), coupled with the involvement of only some clients in each iteration (systematic heterogeneity). While prior research has attempted to address the impact of statistical heterogeneity in FL scenarios, it has overlooked the issue of system heterogeneity. In response, this article proposes a novel federated FCM algorithm (SC-FFCM) that remains robust even in such complex heterogeneous scenarios. First, the client-side clustering module of SC-FFCM adopts a gradient-based FCM algorithm, facilitating corrections to the direction of local optimization. Second, the algorithm introduces a control variates technique to rectify update bias during the iteration process, thereby mitigating the adverse effects of random client sampling and non-IID data distribution on the algorithm convergence. Finally, the proposed algorithm approximates the ideal federated FCM algorithm. Experimental studies verify the effectiveness of the proposed method. |
| Author | Wang, Guanjin Ge, Yuxi Choi, Kup-Sze Zhang, Wei Zhao, Zhuangzhuang Zhang, Qixian Hu, Shudong Deng, Zhaohong Xiao, Zhiyong |
| Author_xml | – sequence: 1 givenname: Qixian surname: Zhang fullname: Zhang, Qixian email: 769077063@qq.com organization: School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, China – sequence: 2 givenname: Zhaohong orcidid: 0000-0002-0790-6492 surname: Deng fullname: Deng, Zhaohong email: dengzhaohong@jiangnan.edu.cn organization: School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, China – sequence: 3 givenname: Wei orcidid: 0009-0003-5785-7363 surname: Zhang fullname: Zhang, Wei email: 7201607004@stu.jiangnan.edu.cn organization: School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, China – sequence: 4 givenname: Zhuangzhuang surname: Zhao fullname: Zhao, Zhuangzhuang email: zhaozhuangzhuang123@outlook.com organization: School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, China – sequence: 5 givenname: Zhiyong orcidid: 0000-0003-3187-1629 surname: Xiao fullname: Xiao, Zhiyong email: zhiyong.xiao@jiangnan.edu.cn organization: School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, China – sequence: 6 givenname: Kup-Sze orcidid: 0000-0003-0836-7088 surname: Choi fullname: Choi, Kup-Sze email: kschoi@ieee.org organization: HL7 Hong Kong Limited and the TechCosmos Limited, Hong Kong – sequence: 7 givenname: Guanjin orcidid: 0000-0002-5258-0532 surname: Wang fullname: Wang, Guanjin email: guanjin.wang@murdoch.edu.au organization: School of Information Technology, Murdoch University, Murdoch, WA, Australia – sequence: 8 givenname: Yuxi orcidid: 0000-0002-6705-2230 surname: Ge fullname: Ge, Yuxi email: gmy1986@126.com organization: Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi, China – sequence: 9 givenname: Shudong orcidid: 0000-0002-4454-3432 surname: Hu fullname: Hu, Shudong email: hsd2001054@163.com organization: Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi, China |
| BookMark | eNpF0M1OwkAUhuGJwURAb8C4mBsonjM__VmSxooJxkRhw6aZTs9gDbRmpizg6gEhcXXO5v0Wz4gN2q4lxh4RJoiQPS-K5Wo1ESD0ROpUxVlyw4aYKYwApBqcfohlFCcQ37FRCD8AqDSmQ5Z_dtUu9LygmrzpqebF7nDY8zx6J9MGPt2sO9_031vetHxGPfluTS11u8C_LLXGN124Z7fObAI9XO-YLYuXRT6L5h-vb_l0HlkhsI8yMNopJ-Okypy0aFWtU43KQQWK0DlHsTVWg5GJEVokSkkbW6QaUw1pJcdMXHat70Lw5Mpf32yN35cI5Zmh_GMozwzlleEUPV2ihoj-AwSdpZjIIwI5W8E |
| CODEN | IEFSEV |
| Cites_doi | 10.1002/9780470523551 10.1109/34.85677 10.1109/TPAMI.2022.3195956 10.1109/TIT.1982.1056489 10.1109/TFUZZ.2021.3118733 10.1109/TFUZZ.2021.3105193 10.1007/978-3-031-28996-5_4 10.1109/TSMC.2025.3547350 10.1109/ICPR.2014.272 10.1145/3460120.3484822 10.1371/journal.pone.0141287 10.1109/PerCom53586.2022.9762352 10.1109/TSG.2022.3146489 10.14569/IJACSA.2013.040406 10.1109/JIOT.2021.3113927 10.1007/BF01908075 10.1007/s11427-022-2224-4 10.2307/2346830 10.1109/TFUZZ.2004.836065 10.1109/CVPR52688.2022.00992 10.1109/CCEM50674.2020.00021 10.1007/978-3-031-27609-5_3 10.1016/j.neucom.2015.09.127 10.1109/CVPR.2018.00745 10.1109/CISS56502.2023.10089666 10.1016/j.compbiolchem.2021.107558 10.1109/ICNN.1994.374399 10.1109/TAI.2024.3426408 10.1007/978-1-4757-0450-1 10.1109/ACCESS.2020.2993295 10.1016/S0031-3203(98)00091-0 10.1109/TVT.2022.3205307 10.1109/ACCESS.2020.3036747 10.1109/tnnls.2022.3160699 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TFUZZ.2025.3584697 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1941-0034 |
| EndPage | 3181 |
| ExternalDocumentID | 10_1109_TFUZZ_2025_3584697 11059817 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Key R&D Program grantid: 2022YFE0112400; NSFC; 62176105 – fundername: Basic Research Funds for Central Universities grantid: JUSRP622016 – fundername: Leading Talents in Medical and Health Professions grantid: 4532001THMD |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TAE TN5 VH1 AAYXX CITATION |
| ID | FETCH-LOGICAL-c221t-90a5f4f367b9f3c1c4d58514f0b04e1fffe6cac50a37a2527443c6c1ed18508b3 |
| IEDL.DBID | RIE |
| ISSN | 1063-6706 |
| IngestDate | Wed Oct 01 05:26:44 EDT 2025 Wed Sep 10 07:40:43 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c221t-90a5f4f367b9f3c1c4d58514f0b04e1fffe6cac50a37a2527443c6c1ed18508b3 |
| ORCID | 0009-0003-5785-7363 0000-0002-0790-6492 0000-0003-0836-7088 0000-0002-6705-2230 0000-0002-4454-3432 0000-0002-5258-0532 0000-0003-3187-1629 |
| PageCount | 14 |
| ParticipantIDs | ieee_primary_11059817 crossref_primary_10_1109_TFUZZ_2025_3584697 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-01 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on fuzzy systems |
| PublicationTitleAbbrev | TFUZZ |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref12 Reddi (ref42) 2020 ref14 ref11 ref10 ref16 ref19 ref51 ref50 ref46 ref45 ref48 ref47 Arthur (ref40) ref44 ref43 ref49 ref8 ref7 ref9 ref4 Wang (ref17) 2020; 33 Richtrik (ref28) 2021; 34 ref3 ref6 Karimireddy (ref26) ref5 Cho (ref35) 2020 ref34 ref31 ref30 Balkus (ref15) ref33 ref2 ref39 ref38 Stallmann (ref20) 2022 Wang (ref41) 2019 Dennis (ref23) ref24 Fraboni (ref36) Liu (ref37) Li (ref18) 2020; 2 ref25 McMahan (ref1) Feng (ref29) ref22 ref21 Wang (ref27) 2013; 26 Chen (ref32) 2020 |
| References_xml | – ident: ref34 doi: 10.1002/9780470523551 – year: 2022 ident: ref20 article-title: Towards federated clustering: A federated fuzzy c-means algorithm (FFCM) – volume: 26 start-page: 181 year: 2013 ident: ref27 article-title: Variance reduction for stochastic gradient optimization publication-title: Adv. Neural Inf. Process. Syst. – ident: ref50 doi: 10.1109/34.85677 – ident: ref2 doi: 10.1109/TPAMI.2022.3195956 – ident: ref39 doi: 10.1109/TIT.1982.1056489 – ident: ref16 doi: 10.1109/TFUZZ.2021.3118733 – ident: ref14 doi: 10.1109/TFUZZ.2021.3105193 – start-page: 3407 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref36 article-title: Clustered sampling: Low-variance and improved representativity for clients selection in federated learning – ident: ref38 doi: 10.1007/978-3-031-28996-5_4 – year: 2020 ident: ref35 article-title: Client selection in federated learning: Convergence analysis and power-of-choice selection strategies – ident: ref22 doi: 10.1109/TSMC.2025.3547350 – year: 2020 ident: ref42 article-title: Adaptive federated optimization – start-page: 1273 volume-title: Proc. 25th Int. Conf. Artif. Intell. Statist. ident: ref1 article-title: Communication-efficient learning of deep networks from decentralized data – ident: ref47 doi: 10.1109/ICPR.2014.272 – ident: ref8 doi: 10.1145/3460120.3484822 – year: 2019 ident: ref41 article-title: SlowMo: Improving communication-efficient distributed SGD with slow momentum – ident: ref44 doi: 10.1371/journal.pone.0141287 – ident: ref5 doi: 10.1109/PerCom53586.2022.9762352 – start-page: 3274 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref29 article-title: KD3A: Unsupervised multi-source decentralized domain adaptation via knowledge distillation – ident: ref33 doi: 10.1109/TSG.2022.3146489 – ident: ref11 doi: 10.14569/IJACSA.2013.040406 – ident: ref12 doi: 10.1109/JIOT.2021.3113927 – ident: ref49 doi: 10.1007/BF01908075 – ident: ref3 doi: 10.1007/s11427-022-2224-4 – ident: ref7 doi: 10.2307/2346830 – start-page: 1027 volume-title: Proc. 18th Annu. ACM-SIAM Symp. Discrete Algorithms ident: ref40 article-title: K-means++ the advantages of careful seeding – ident: ref51 doi: 10.1109/TFUZZ.2004.836065 – ident: ref31 doi: 10.1109/CVPR52688.2022.00992 – ident: ref6 doi: 10.1109/CCEM50674.2020.00021 – ident: ref24 doi: 10.1007/978-3-031-27609-5_3 – ident: ref10 doi: 10.1016/j.neucom.2015.09.127 – ident: ref46 doi: 10.1109/CVPR.2018.00745 – volume: 2 start-page: 429 volume-title: Proc. Mach. Learn. Syst. year: 2020 ident: ref18 article-title: Federated optimization in heterogeneous networks – ident: ref19 doi: 10.1109/CISS56502.2023.10089666 – ident: ref45 doi: 10.1016/j.compbiolchem.2021.107558 – start-page: 2611 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref23 article-title: Heterogeneity for the win: One-shot federated clustering – ident: ref25 doi: 10.1109/ICNN.1994.374399 – start-page: 6804 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref37 article-title: Heterogeneous risk minimization – ident: ref21 doi: 10.1109/TAI.2024.3426408 – ident: ref13 doi: 10.1007/978-1-4757-0450-1 – start-page: 128 volume-title: Proc. IEEE/ACM Conf. Connected Health: Appl., Syst. Eng. Technol. ident: ref15 article-title: Federated fuzzy clustering for longitudinal health data – volume: 33 start-page: 7611 year: 2020 ident: ref17 article-title: Tackling the objective inconsistency problem in heterogeneous federated optimization publication-title: Adv. Neural Inf. Process. Syst. – start-page: 5132 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref26 article-title: Scaffold: Stochastic controlled averaging for federated learning – volume: 34 start-page: 4384 year: 2021 ident: ref28 article-title: EF21: A new, simpler, theoretically better, and practically faster error feedback publication-title: Adv. Neural Inf. Process. Syst. – year: 2020 ident: ref32 article-title: Optimal client sampling for federated learning – ident: ref43 doi: 10.1109/ACCESS.2020.2993295 – ident: ref48 doi: 10.1016/S0031-3203(98)00091-0 – ident: ref4 doi: 10.1109/TVT.2022.3205307 – ident: ref9 doi: 10.1109/ACCESS.2020.3036747 – ident: ref30 doi: 10.1109/tnnls.2022.3160699 |
| SSID | ssj0014518 |
| Score | 2.480016 |
| Snippet | The federated fuzzy C-means (federated FCM) extends the traditional Fuzzy C-means (FCM) to the federated learning (FL) scenario, aiming to address the data... |
| SourceID | crossref ieee |
| SourceType | Index Database Publisher |
| StartPage | 3168 |
| SubjectTerms | Approximation algorithms Clustering algorithms Clustering methods Computational modeling Convergence Distributed databases Electronic mail Federated clustering (FC) federated learning (FL) fuzzy clustering Fuzzy logic heterogeneity Optimization robustness Servers |
| Title | Robust Federated Fuzzy C-Means Algorithm in Heterogeneous Scenarios |
| URI | https://ieeexplore.ieee.org/document/11059817 |
| Volume | 33 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0034 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014518 issn: 1063-6706 databaseCode: RIE dateStart: 19930101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5sT3qwWivWF3vwJkmz2VdyLMVQhPYgLZRewmazq0VNpE0O9te7m6RaBMFbCNmwzEwyMzvzfQPAXYIFR0Rhk-QQ6dhCkWNpsxxh_n2csTSU1WHOZMrGc_K4oIsGrF5hYZRSVfOZcu1lVctPc1nao7IBssFAgHgLtHjAarDWd8mAUFTj3hh2GPfYDiHjhYNZNF8uTS7oUxdbh2sZnva80N5YlcqrRB0w3e2nbiZ5dcsiceX2F1Xjvzd8Ao6b-BIOa4M4BQcq64LObnYDbD7lLjjaIyI8A6OnPCk3BYwstYSJPlMYldvtJxw5E2V8GRy-PefrVfHyDlcZHNsOmtwYnsrLjXmjyky-nW96YB49zEZjpxmv4EjfR4UTeoJqojHjSaixRJKktkZItJd4RCGttWJSSOoJzIVPLZUglkwilRof7wUJPgftLM_UBYCSY0kJUzSkhFjKPi0CJIjmYRLYpLIP7nfijj9qFo24yj68MK6UE1vlxI1y-qBnRfnzZCPFyz_uX4FDu7zu_LoG7WJdqhsTKhTJbWUiX7fZuNE |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4oHtSDKGLE5x68mUKXfZQeCbFBBQ4GEsKlabe7StTWQHuQX-9uW5SYmHhrmmazmZntzOzM9w3ATUgCB1NJdJJDhWUKRZahzbIC_e9zOI9ckV_mDEe8P6EPUzYtweo5FkZKmTefyaZ5zGv5USIyc1XWwiYY6GBnG3YYpZQVcK3vogFluEC-cWJxx-ZrjIzttsbeZDbT2WCbNYlxuYbjacMPbQxWyf2KV4XRekdFO8lrM0vDplj9Imv895YP4aCMMFG3MIkj2JJxDarr6Q2oPMw12N-gIjyG3lMSZssUeYZcQsefEfKy1eoT9ayh1N4Mdd-ek8U8fXlH8xj1TQ9Nok1PJtlSryhjnXEnyzpMvLtxr2-VAxYs0W7j1HLtgCmqCHdCVxGBBY1MlZAqO7SpxEopyUUgmB0QJ2gzQyZIBBdYRtrL252QnEAlTmJ5Ckg4RDDKJXO1Zgxpnwo6OKDKccOOSSsbcLsWt_9R8Gj4ef5hu36uHN8oxy-V04C6EeXPl6UUz_54fw27_fFw4A_uR4_nsGeWKvrALqCSLjJ5qQOHNLzKzeULlcO8Hg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Federated+Fuzzy+C-Means+Algorithm+in+Heterogeneous+Scenarios&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Zhang%2C+Qixian&rft.au=Deng%2C+Zhaohong&rft.au=Zhang%2C+Wei&rft.au=Zhao%2C+Zhuangzhuang&rft.date=2025-09-01&rft.issn=1063-6706&rft.eissn=1941-0034&rft.volume=33&rft.issue=9&rft.spage=3168&rft.epage=3181&rft_id=info:doi/10.1109%2FTFUZZ.2025.3584697&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TFUZZ_2025_3584697 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon |