PMSM Stator Winding Fault Detection and Classification Based on Bispectrum Analysis and Convolutional Neural Network

The diagnosis of permanent magnet synchronous motor (PMSM) faults has been the subject of much research in recent years, due to the growing reliability and safety requirements for drive systems. This article concerns PMSM stator winding fault detection and classification. A novel intelligent diagnos...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial electronics (1982) Vol. 70; no. 5; pp. 5192 - 5202
Main Authors Pietrzak, Przemyslaw, Wolkiewicz, Marcin, Orlowska-Kowalska, Teresa
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0046
1557-9948
DOI10.1109/TIE.2022.3189076

Cover

Abstract The diagnosis of permanent magnet synchronous motor (PMSM) faults has been the subject of much research in recent years, due to the growing reliability and safety requirements for drive systems. This article concerns PMSM stator winding fault detection and classification. A novel intelligent diagnosis approach is proposed, based on the bispectrum analysis of a stator phase current and the convolutional neural network (CNN). Rather than using raw phase current signals, bispectrum is applied for symptom extraction and utilized as the input for a pretrained CNN model. The CNN model is used for automatic inference on the winding condition of the PMSM stator. Experimental results are presented to validate the proposed algorithm. The classification effectiveness of the developed CNN is as high as 99.4%. This article also presents the possibility of improving the accuracy of the CNN model and reducing the training time by properly tuning the training parameters. The CNN model learning time is only about one minute. The fault classifier model is developed in Python programming language, avoiding the cost of purchasing additional software.
AbstractList The diagnosis of permanent magnet synchronous motor (PMSM) faults has been the subject of much research in recent years, due to the growing reliability and safety requirements for drive systems. This article concerns PMSM stator winding fault detection and classification. A novel intelligent diagnosis approach is proposed, based on the bispectrum analysis of a stator phase current and the convolutional neural network (CNN). Rather than using raw phase current signals, bispectrum is applied for symptom extraction and utilized as the input for a pretrained CNN model. The CNN model is used for automatic inference on the winding condition of the PMSM stator. Experimental results are presented to validate the proposed algorithm. The classification effectiveness of the developed CNN is as high as 99.4%. This article also presents the possibility of improving the accuracy of the CNN model and reducing the training time by properly tuning the training parameters. The CNN model learning time is only about one minute. The fault classifier model is developed in Python programming language, avoiding the cost of purchasing additional software.
Author Pietrzak, Przemyslaw
Orlowska-Kowalska, Teresa
Wolkiewicz, Marcin
Author_xml – sequence: 1
  givenname: Przemyslaw
  orcidid: 0000-0002-4429-0009
  surname: Pietrzak
  fullname: Pietrzak, Przemyslaw
  email: przemyslaw.pietrzak@pwr.edu.pl
  organization: Department of Electrical Machines, Drives and Measurements, Wrocław University of Science and Technology, Wrocław, Poland
– sequence: 2
  givenname: Marcin
  orcidid: 0000-0003-1197-8517
  surname: Wolkiewicz
  fullname: Wolkiewicz, Marcin
  email: marcin.wolkiewicz@pwr.edu.pl
  organization: Department of Electrical Machines, Drives and Measurements, Wrocław University of Science and Technology, Wrocław, Poland
– sequence: 3
  givenname: Teresa
  orcidid: 0000-0002-4592-5336
  surname: Orlowska-Kowalska
  fullname: Orlowska-Kowalska, Teresa
  email: teresa.orlowska-kowalska@pwr.edu.pl
  organization: Department of Electrical Machines, Drives and Measurements, Wrocław University of Science and Technology, Wrocław, Poland
BookMark eNp9kM9PwyAUx4mZidv0buKFxHMn0FLgOOemS-aPZDMeG0qpYXZlAtXsv7fdFg8efJf3Ap_vg3wGoFfbWgNwidEIYyRuVvPpiCBCRjHmArH0BPQxpSwSIuE90EeE8QihJD0DA-_XCOGEYtoH4eVx-QiXQQbr4JupC1O_w5lsqgDvdNAqGFtDWRdwUknvTWmU3B_dSq8L2A3Gb1vMNRs4rmW188YfeFt_2arpYFnBJ924fQvf1n2cg9NSVl5fHPsQvM6mq8lDtHi-n0_Gi0gRgkNESopFHksphaa8QElZKM1kzuOSS1FwpSjjJctTlbf3CKu8LUFIUiiGFMHxEFwf9m6d_Wy0D9naNq79j88IS1FKieCspdCBUs5673SZbZ3ZSLfLMMo6t1nrNuvcZke3bST9E1Em7MUEJ031X_DqEDRa6993BCeCoCT-ARCNim0
CODEN ITIED6
CitedBy_id crossref_primary_10_1016_j_ssci_2024_106590
crossref_primary_10_3390_s24196349
crossref_primary_10_1016_j_ress_2024_110382
crossref_primary_10_1016_j_engappai_2024_107938
crossref_primary_10_1007_s40430_023_04420_6
crossref_primary_10_1109_TEC_2024_3376553
crossref_primary_10_3390_en18030534
crossref_primary_10_3390_electronics13152975
crossref_primary_10_1109_ACCESS_2023_3307499
crossref_primary_10_1016_j_kscej_2025_100217
crossref_primary_10_1007_s00202_024_02501_w
crossref_primary_10_1109_TIM_2024_3415792
crossref_primary_10_1109_TPEL_2024_3487628
crossref_primary_10_3390_electronics12194184
crossref_primary_10_3390_electronics12051068
crossref_primary_10_3390_math12244032
crossref_primary_10_1016_j_epsr_2024_111181
crossref_primary_10_3390_app13127263
crossref_primary_10_3390_en16073198
crossref_primary_10_1109_TPEL_2024_3398775
crossref_primary_10_1007_s40435_023_01314_2
crossref_primary_10_3390_machines11070713
crossref_primary_10_3390_electronics12071543
crossref_primary_10_3390_info16020142
crossref_primary_10_1049_elp2_12525
crossref_primary_10_1109_ACCESS_2022_3211087
crossref_primary_10_1109_ACCESS_2024_3402224
crossref_primary_10_1109_TIM_2024_3502781
crossref_primary_10_3390_s22249668
crossref_primary_10_1007_s10845_024_02536_7
crossref_primary_10_1016_j_engappai_2024_109577
crossref_primary_10_1109_TIE_2024_3363775
crossref_primary_10_1109_TIM_2025_3545531
crossref_primary_10_2478_pead_2024_0007
crossref_primary_10_1016_j_ress_2023_109872
crossref_primary_10_3390_jmse13010070
crossref_primary_10_3390_electronics12051170
crossref_primary_10_3390_en17020368
crossref_primary_10_3390_en16155629
crossref_primary_10_3390_fi15020049
crossref_primary_10_1109_TII_2024_3413311
Cites_doi 10.1109/TPEL.2020.3013628
10.1109/TTE.2017.2743419
10.1109/41.873206
10.1109/TIE.2014.2375853
10.1109/TIA.2007.900446
10.1109/TPEL.2020.3030237
10.1109/28.952496
10.1109/MIE.2013.2287651
10.1109/TIA.2013.2253081
10.1109/DEMPED.2009.5292789
10.1109/PHM-Paris.2019.00061
10.3390/app9040616
10.3390/app9102116
10.1109/TIE.2008.2011580
10.1109/TIE.2016.2520902
10.1109/TII.2014.2307013
10.1109/TMAG.2006.879077
10.1109/TMECH.2020.3029058
10.1109/5.75086
10.3390/en14061630
10.3390/en13113009
10.3390/en13061475
10.1155/2017/5067651
10.1109/TIE.2010.2060463
10.1109/TEC.2012.2236557
10.1109/TIE.2007.899826
10.1109/TIM.2019.2933342
10.1109/ACCESS.2021.3092605
10.1049/elp2.12066
10.1109/TIM.2019.2925247
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TIE.2022.3189076
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9948
EndPage 5202
ExternalDocumentID 10_1109_TIE_2022_3189076
9829204
Genre orig-research
GrantInformation_xml – fundername: National Science Centre Poland
  grantid: 2017/27/B/ST7/00816
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c221t-2f519b3aaa9e58d04fdce7ab83f8a9d8cc578f7b6cbe5801cbbbb9224dc70c213
IEDL.DBID RIE
ISSN 0278-0046
IngestDate Mon Jun 30 10:08:09 EDT 2025
Thu Apr 24 23:09:51 EDT 2025
Wed Oct 01 00:27:20 EDT 2025
Wed Aug 27 02:55:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c221t-2f519b3aaa9e58d04fdce7ab83f8a9d8cc578f7b6cbe5801cbbbb9224dc70c213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1197-8517
0000-0002-4429-0009
0000-0002-4592-5336
PQID 2760652987
PQPubID 85464
PageCount 11
ParticipantIDs ieee_primary_9829204
proquest_journals_2760652987
crossref_primary_10_1109_TIE_2022_3189076
crossref_citationtrail_10_1109_TIE_2022_3189076
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on industrial electronics (1982)
PublicationTitleAbbrev TIE
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
Sutskever (ref30) 2013
ref6
ref5
References_xml – ident: ref1
  doi: 10.1109/TPEL.2020.3013628
– ident: ref11
  doi: 10.1109/TTE.2017.2743419
– ident: ref28
  doi: 10.1109/41.873206
– ident: ref4
  doi: 10.1109/TIE.2014.2375853
– ident: ref13
  doi: 10.1109/TIA.2007.900446
– ident: ref2
  doi: 10.1109/TPEL.2020.3030237
– ident: ref10
  doi: 10.1109/28.952496
– ident: ref8
  doi: 10.1109/MIE.2013.2287651
– ident: ref20
  doi: 10.1109/TIA.2013.2253081
– ident: ref14
  doi: 10.1109/DEMPED.2009.5292789
– ident: ref25
  doi: 10.1109/PHM-Paris.2019.00061
– ident: ref21
  doi: 10.3390/app9040616
– ident: ref7
  doi: 10.3390/app9102116
– ident: ref15
  doi: 10.1109/TIE.2008.2011580
– ident: ref3
  doi: 10.1109/TIE.2016.2520902
– ident: ref5
  doi: 10.1109/TII.2014.2307013
– ident: ref6
  doi: 10.1109/TMAG.2006.879077
– ident: ref31
  doi: 10.1109/TMECH.2020.3029058
– ident: ref29
  doi: 10.1109/5.75086
– ident: ref12
  doi: 10.3390/en14061630
– ident: ref19
  doi: 10.3390/en13113009
– ident: ref22
  doi: 10.3390/en13061475
– ident: ref26
  doi: 10.1155/2017/5067651
– ident: ref9
  doi: 10.1109/TIE.2010.2060463
– ident: ref18
  doi: 10.1109/TEC.2012.2236557
– ident: ref17
  doi: 10.1109/TIE.2007.899826
– ident: ref27
  doi: 10.1109/TIM.2019.2933342
– start-page: 1139
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2013
  ident: ref30
  article-title: On the importance of initialization and momentum in deep learning
– ident: ref16
  doi: 10.1109/ACCESS.2021.3092605
– ident: ref23
  doi: 10.1049/elp2.12066
– ident: ref24
  doi: 10.1109/TIM.2019.2925247
SSID ssj0014515
Score 2.5915966
Snippet The diagnosis of permanent magnet synchronous motor (PMSM) faults has been the subject of much research in recent years, due to the growing reliability and...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5192
SubjectTerms Algorithms
Artificial neural networks
Bispectrum
Classification
convolutional neural network (CNN)
Convolutional neural networks
deep learning
Fault detection
Fault diagnosis
Neural networks
permanent magnet motors
Permanent magnets
Phase current
Programming languages
stator fault diagnosis
Stator windings
Stators
Synchronous motors
Training
Winding
Windings
Title PMSM Stator Winding Fault Detection and Classification Based on Bispectrum Analysis and Convolutional Neural Network
URI https://ieeexplore.ieee.org/document/9829204
https://www.proquest.com/docview/2760652987
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9948
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014515
  issn: 0278-0046
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB51e2IPvLorCl3kAxck0iZO4sdxWVoVpCIkWtFb5FekakuKSsKBX79jJ6l4rBC5xFFsycpnx_PZM98AvFI5E8q6LEqVUlGmUhaFR25LtJ9lGevEBzivPrLlJvuwzbcDeHOKhXHOBeczN_XFcJZvD6bxW2UzKXxupewMzrhgbazW6cQgy9tsBdQrxiLp648kYzlbv58jEaQU-alALsh-W4JCTpW_fsRhdVk8glXfr9ap5Hba1Hpqfv4h2fi_HX8MDzszk1y34-IJDFz1FM5_ER8cQf1p9XlFvLF5OJIvuxDdQhaq2dfknauDh1ZFVGVJyJvpPYoCiOQtrnuW-MIuhGkem6-klzZp6x-qH92Axi549Y9wC-7mF7BZzNc3y6jLwRAZSpM6oiWaeNoDKV0ubJyV1jiutEhLoaQVxuCUL7lmRuP7ODEaL4l2gTU8NjRJL2FYHSr3DIhkojQJk0pIm_GUI_PLTMw0cnDDU-bGMOthKUwnUO7zZOyLQFRiWSCQhQey6IAcw-tTi2-tOMc_6o48Lqd6HSRjmPTIF93s_V5QjrQup1Lw5_e3egEPfNr51vFxAkP81O4KjZNavwyj8g4hSuJT
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5ROLQcKJRWXUrBBy6Vmt3Ecfw49sFqaQmq1EXlFvkVCZVmEc32wK9n7CSrvoTIJY5iS1Y-O57PnvkG4EgXXGrnWZJrrROmc57ER-FqtJ9VnZosBDiXZ3x2zj5dFBdr8HYVC-O9j85nfhyK8SzfLewybJVNlAy5ldgj2CgYY0UXrbU6M2BFl6-ABs1YpH3DoWSqJvOTY6SClCJDlcgG-R-LUMyq8s-vOK4v06dQDj3r3Eq-j5etGdvbv0QbH9r1bdjqDU3yrhsZO7Dmm2ew-Zv84C60X8qvJQnm5uKGfLuM8S1kqpdXLfno2-ij1RDdOBIzZwafoggjeY8rnyOhcBkDNW-WP8ggbtLVXzS_-iGNXQj6H_EWHc6fw_n0eP5hlvRZGBJLadYmtEYjzwQolS-kS1ntrBfayLyWWjlpLU76WhhuDb5PM2vwUmgZOCtSS7P8Baw3i8a_BKK4rG3GlZbKMZEL5H7MptwgC7ci534EkwGWyvYS5SFTxlUVqUqqKgSyCkBWPZAjeLNqcd3Jc9xTdzfgsqrXQzKC_QH5qp-_PysqkNgVVEmx9_9Wh_B4Ni9Pq9OTs8-v4ElIQt-5Qe7DOn52_xpNldYcxBF6ByEP5aA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PMSM+Stator+Winding+Fault+Detection+and+Classification+Based+on+Bispectrum+Analysis+and+Convolutional+Neural+Network&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Pietrzak%2C+Przemyslaw&rft.au=Wolkiewicz%2C+Marcin&rft.au=Orlowska-Kowalska%2C+Teresa&rft.date=2023-05-01&rft.pub=IEEE&rft.issn=0278-0046&rft.volume=70&rft.issue=5&rft.spage=5192&rft.epage=5202&rft_id=info:doi/10.1109%2FTIE.2022.3189076&rft.externalDocID=9829204
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon