PMSM Stator Winding Fault Detection and Classification Based on Bispectrum Analysis and Convolutional Neural Network
The diagnosis of permanent magnet synchronous motor (PMSM) faults has been the subject of much research in recent years, due to the growing reliability and safety requirements for drive systems. This article concerns PMSM stator winding fault detection and classification. A novel intelligent diagnos...
Saved in:
| Published in | IEEE transactions on industrial electronics (1982) Vol. 70; no. 5; pp. 5192 - 5202 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.05.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0278-0046 1557-9948 |
| DOI | 10.1109/TIE.2022.3189076 |
Cover
| Abstract | The diagnosis of permanent magnet synchronous motor (PMSM) faults has been the subject of much research in recent years, due to the growing reliability and safety requirements for drive systems. This article concerns PMSM stator winding fault detection and classification. A novel intelligent diagnosis approach is proposed, based on the bispectrum analysis of a stator phase current and the convolutional neural network (CNN). Rather than using raw phase current signals, bispectrum is applied for symptom extraction and utilized as the input for a pretrained CNN model. The CNN model is used for automatic inference on the winding condition of the PMSM stator. Experimental results are presented to validate the proposed algorithm. The classification effectiveness of the developed CNN is as high as 99.4%. This article also presents the possibility of improving the accuracy of the CNN model and reducing the training time by properly tuning the training parameters. The CNN model learning time is only about one minute. The fault classifier model is developed in Python programming language, avoiding the cost of purchasing additional software. |
|---|---|
| AbstractList | The diagnosis of permanent magnet synchronous motor (PMSM) faults has been the subject of much research in recent years, due to the growing reliability and safety requirements for drive systems. This article concerns PMSM stator winding fault detection and classification. A novel intelligent diagnosis approach is proposed, based on the bispectrum analysis of a stator phase current and the convolutional neural network (CNN). Rather than using raw phase current signals, bispectrum is applied for symptom extraction and utilized as the input for a pretrained CNN model. The CNN model is used for automatic inference on the winding condition of the PMSM stator. Experimental results are presented to validate the proposed algorithm. The classification effectiveness of the developed CNN is as high as 99.4%. This article also presents the possibility of improving the accuracy of the CNN model and reducing the training time by properly tuning the training parameters. The CNN model learning time is only about one minute. The fault classifier model is developed in Python programming language, avoiding the cost of purchasing additional software. |
| Author | Pietrzak, Przemyslaw Orlowska-Kowalska, Teresa Wolkiewicz, Marcin |
| Author_xml | – sequence: 1 givenname: Przemyslaw orcidid: 0000-0002-4429-0009 surname: Pietrzak fullname: Pietrzak, Przemyslaw email: przemyslaw.pietrzak@pwr.edu.pl organization: Department of Electrical Machines, Drives and Measurements, Wrocław University of Science and Technology, Wrocław, Poland – sequence: 2 givenname: Marcin orcidid: 0000-0003-1197-8517 surname: Wolkiewicz fullname: Wolkiewicz, Marcin email: marcin.wolkiewicz@pwr.edu.pl organization: Department of Electrical Machines, Drives and Measurements, Wrocław University of Science and Technology, Wrocław, Poland – sequence: 3 givenname: Teresa orcidid: 0000-0002-4592-5336 surname: Orlowska-Kowalska fullname: Orlowska-Kowalska, Teresa email: teresa.orlowska-kowalska@pwr.edu.pl organization: Department of Electrical Machines, Drives and Measurements, Wrocław University of Science and Technology, Wrocław, Poland |
| BookMark | eNp9kM9PwyAUx4mZidv0buKFxHMn0FLgOOemS-aPZDMeG0qpYXZlAtXsv7fdFg8efJf3Ap_vg3wGoFfbWgNwidEIYyRuVvPpiCBCRjHmArH0BPQxpSwSIuE90EeE8QihJD0DA-_XCOGEYtoH4eVx-QiXQQbr4JupC1O_w5lsqgDvdNAqGFtDWRdwUknvTWmU3B_dSq8L2A3Gb1vMNRs4rmW188YfeFt_2arpYFnBJ924fQvf1n2cg9NSVl5fHPsQvM6mq8lDtHi-n0_Gi0gRgkNESopFHksphaa8QElZKM1kzuOSS1FwpSjjJctTlbf3CKu8LUFIUiiGFMHxEFwf9m6d_Wy0D9naNq79j88IS1FKieCspdCBUs5673SZbZ3ZSLfLMMo6t1nrNuvcZke3bST9E1Em7MUEJ031X_DqEDRa6993BCeCoCT-ARCNim0 |
| CODEN | ITIED6 |
| CitedBy_id | crossref_primary_10_1016_j_ssci_2024_106590 crossref_primary_10_3390_s24196349 crossref_primary_10_1016_j_ress_2024_110382 crossref_primary_10_1016_j_engappai_2024_107938 crossref_primary_10_1007_s40430_023_04420_6 crossref_primary_10_1109_TEC_2024_3376553 crossref_primary_10_3390_en18030534 crossref_primary_10_3390_electronics13152975 crossref_primary_10_1109_ACCESS_2023_3307499 crossref_primary_10_1016_j_kscej_2025_100217 crossref_primary_10_1007_s00202_024_02501_w crossref_primary_10_1109_TIM_2024_3415792 crossref_primary_10_1109_TPEL_2024_3487628 crossref_primary_10_3390_electronics12194184 crossref_primary_10_3390_electronics12051068 crossref_primary_10_3390_math12244032 crossref_primary_10_1016_j_epsr_2024_111181 crossref_primary_10_3390_app13127263 crossref_primary_10_3390_en16073198 crossref_primary_10_1109_TPEL_2024_3398775 crossref_primary_10_1007_s40435_023_01314_2 crossref_primary_10_3390_machines11070713 crossref_primary_10_3390_electronics12071543 crossref_primary_10_3390_info16020142 crossref_primary_10_1049_elp2_12525 crossref_primary_10_1109_ACCESS_2022_3211087 crossref_primary_10_1109_ACCESS_2024_3402224 crossref_primary_10_1109_TIM_2024_3502781 crossref_primary_10_3390_s22249668 crossref_primary_10_1007_s10845_024_02536_7 crossref_primary_10_1016_j_engappai_2024_109577 crossref_primary_10_1109_TIE_2024_3363775 crossref_primary_10_1109_TIM_2025_3545531 crossref_primary_10_2478_pead_2024_0007 crossref_primary_10_1016_j_ress_2023_109872 crossref_primary_10_3390_jmse13010070 crossref_primary_10_3390_electronics12051170 crossref_primary_10_3390_en17020368 crossref_primary_10_3390_en16155629 crossref_primary_10_3390_fi15020049 crossref_primary_10_1109_TII_2024_3413311 |
| Cites_doi | 10.1109/TPEL.2020.3013628 10.1109/TTE.2017.2743419 10.1109/41.873206 10.1109/TIE.2014.2375853 10.1109/TIA.2007.900446 10.1109/TPEL.2020.3030237 10.1109/28.952496 10.1109/MIE.2013.2287651 10.1109/TIA.2013.2253081 10.1109/DEMPED.2009.5292789 10.1109/PHM-Paris.2019.00061 10.3390/app9040616 10.3390/app9102116 10.1109/TIE.2008.2011580 10.1109/TIE.2016.2520902 10.1109/TII.2014.2307013 10.1109/TMAG.2006.879077 10.1109/TMECH.2020.3029058 10.1109/5.75086 10.3390/en14061630 10.3390/en13113009 10.3390/en13061475 10.1155/2017/5067651 10.1109/TIE.2010.2060463 10.1109/TEC.2012.2236557 10.1109/TIE.2007.899826 10.1109/TIM.2019.2933342 10.1109/ACCESS.2021.3092605 10.1049/elp2.12066 10.1109/TIM.2019.2925247 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TIE.2022.3189076 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1557-9948 |
| EndPage | 5202 |
| ExternalDocumentID | 10_1109_TIE_2022_3189076 9829204 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Science Centre Poland grantid: 2017/27/B/ST7/00816 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 TWZ VH1 VJK AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c221t-2f519b3aaa9e58d04fdce7ab83f8a9d8cc578f7b6cbe5801cbbbb9224dc70c213 |
| IEDL.DBID | RIE |
| ISSN | 0278-0046 |
| IngestDate | Mon Jun 30 10:08:09 EDT 2025 Thu Apr 24 23:09:51 EDT 2025 Wed Oct 01 00:27:20 EDT 2025 Wed Aug 27 02:55:19 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c221t-2f519b3aaa9e58d04fdce7ab83f8a9d8cc578f7b6cbe5801cbbbb9224dc70c213 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1197-8517 0000-0002-4429-0009 0000-0002-4592-5336 |
| PQID | 2760652987 |
| PQPubID | 85464 |
| PageCount | 11 |
| ParticipantIDs | ieee_primary_9829204 proquest_journals_2760652987 crossref_primary_10_1109_TIE_2022_3189076 crossref_citationtrail_10_1109_TIE_2022_3189076 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-05-01 |
| PublicationDateYYYYMMDD | 2023-05-01 |
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on industrial electronics (1982) |
| PublicationTitleAbbrev | TIE |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref31 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 Sutskever (ref30) 2013 ref6 ref5 |
| References_xml | – ident: ref1 doi: 10.1109/TPEL.2020.3013628 – ident: ref11 doi: 10.1109/TTE.2017.2743419 – ident: ref28 doi: 10.1109/41.873206 – ident: ref4 doi: 10.1109/TIE.2014.2375853 – ident: ref13 doi: 10.1109/TIA.2007.900446 – ident: ref2 doi: 10.1109/TPEL.2020.3030237 – ident: ref10 doi: 10.1109/28.952496 – ident: ref8 doi: 10.1109/MIE.2013.2287651 – ident: ref20 doi: 10.1109/TIA.2013.2253081 – ident: ref14 doi: 10.1109/DEMPED.2009.5292789 – ident: ref25 doi: 10.1109/PHM-Paris.2019.00061 – ident: ref21 doi: 10.3390/app9040616 – ident: ref7 doi: 10.3390/app9102116 – ident: ref15 doi: 10.1109/TIE.2008.2011580 – ident: ref3 doi: 10.1109/TIE.2016.2520902 – ident: ref5 doi: 10.1109/TII.2014.2307013 – ident: ref6 doi: 10.1109/TMAG.2006.879077 – ident: ref31 doi: 10.1109/TMECH.2020.3029058 – ident: ref29 doi: 10.1109/5.75086 – ident: ref12 doi: 10.3390/en14061630 – ident: ref19 doi: 10.3390/en13113009 – ident: ref22 doi: 10.3390/en13061475 – ident: ref26 doi: 10.1155/2017/5067651 – ident: ref9 doi: 10.1109/TIE.2010.2060463 – ident: ref18 doi: 10.1109/TEC.2012.2236557 – ident: ref17 doi: 10.1109/TIE.2007.899826 – ident: ref27 doi: 10.1109/TIM.2019.2933342 – start-page: 1139 volume-title: Proc. Int. Conf. Mach. Learn. year: 2013 ident: ref30 article-title: On the importance of initialization and momentum in deep learning – ident: ref16 doi: 10.1109/ACCESS.2021.3092605 – ident: ref23 doi: 10.1049/elp2.12066 – ident: ref24 doi: 10.1109/TIM.2019.2925247 |
| SSID | ssj0014515 |
| Score | 2.5915966 |
| Snippet | The diagnosis of permanent magnet synchronous motor (PMSM) faults has been the subject of much research in recent years, due to the growing reliability and... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5192 |
| SubjectTerms | Algorithms Artificial neural networks Bispectrum Classification convolutional neural network (CNN) Convolutional neural networks deep learning Fault detection Fault diagnosis Neural networks permanent magnet motors Permanent magnets Phase current Programming languages stator fault diagnosis Stator windings Stators Synchronous motors Training Winding Windings |
| Title | PMSM Stator Winding Fault Detection and Classification Based on Bispectrum Analysis and Convolutional Neural Network |
| URI | https://ieeexplore.ieee.org/document/9829204 https://www.proquest.com/docview/2760652987 |
| Volume | 70 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9948 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014515 issn: 0278-0046 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB51e2IPvLorCl3kAxck0iZO4sdxWVoVpCIkWtFb5FekakuKSsKBX79jJ6l4rBC5xFFsycpnx_PZM98AvFI5E8q6LEqVUlGmUhaFR25LtJ9lGevEBzivPrLlJvuwzbcDeHOKhXHOBeczN_XFcJZvD6bxW2UzKXxupewMzrhgbazW6cQgy9tsBdQrxiLp648kYzlbv58jEaQU-alALsh-W4JCTpW_fsRhdVk8glXfr9ap5Hba1Hpqfv4h2fi_HX8MDzszk1y34-IJDFz1FM5_ER8cQf1p9XlFvLF5OJIvuxDdQhaq2dfknauDh1ZFVGVJyJvpPYoCiOQtrnuW-MIuhGkem6-klzZp6x-qH92Axi549Y9wC-7mF7BZzNc3y6jLwRAZSpM6oiWaeNoDKV0ubJyV1jiutEhLoaQVxuCUL7lmRuP7ODEaL4l2gTU8NjRJL2FYHSr3DIhkojQJk0pIm_GUI_PLTMw0cnDDU-bGMOthKUwnUO7zZOyLQFRiWSCQhQey6IAcw-tTi2-tOMc_6o48Lqd6HSRjmPTIF93s_V5QjrQup1Lw5_e3egEPfNr51vFxAkP81O4KjZNavwyj8g4hSuJT |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5ROLQcKJRWXUrBBy6Vmt3Ecfw49sFqaQmq1EXlFvkVCZVmEc32wK9n7CSrvoTIJY5iS1Y-O57PnvkG4EgXXGrnWZJrrROmc57ER-FqtJ9VnZosBDiXZ3x2zj5dFBdr8HYVC-O9j85nfhyK8SzfLewybJVNlAy5ldgj2CgYY0UXrbU6M2BFl6-ABs1YpH3DoWSqJvOTY6SClCJDlcgG-R-LUMyq8s-vOK4v06dQDj3r3Eq-j5etGdvbv0QbH9r1bdjqDU3yrhsZO7Dmm2ew-Zv84C60X8qvJQnm5uKGfLuM8S1kqpdXLfno2-ij1RDdOBIzZwafoggjeY8rnyOhcBkDNW-WP8ggbtLVXzS_-iGNXQj6H_EWHc6fw_n0eP5hlvRZGBJLadYmtEYjzwQolS-kS1ntrBfayLyWWjlpLU76WhhuDb5PM2vwUmgZOCtSS7P8Baw3i8a_BKK4rG3GlZbKMZEL5H7MptwgC7ci534EkwGWyvYS5SFTxlUVqUqqKgSyCkBWPZAjeLNqcd3Jc9xTdzfgsqrXQzKC_QH5qp-_PysqkNgVVEmx9_9Wh_B4Ni9Pq9OTs8-v4ElIQt-5Qe7DOn52_xpNldYcxBF6ByEP5aA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PMSM+Stator+Winding+Fault+Detection+and+Classification+Based+on+Bispectrum+Analysis+and+Convolutional+Neural+Network&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Pietrzak%2C+Przemyslaw&rft.au=Wolkiewicz%2C+Marcin&rft.au=Orlowska-Kowalska%2C+Teresa&rft.date=2023-05-01&rft.pub=IEEE&rft.issn=0278-0046&rft.volume=70&rft.issue=5&rft.spage=5192&rft.epage=5202&rft_id=info:doi/10.1109%2FTIE.2022.3189076&rft.externalDocID=9829204 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon |