LungDxNet: AI-Powered Low-Dose CT Analysis for Early Lung Cancer Detection
Early and accurate diagnosis, however, is still lacking for the most common form of lung cancer, and this remains one of the leading cancers leading to mortality. CT scans are widely used for lung cancer screening; however, their manual interpretation is time-consuming and prone to variability. This...
Saved in:
Published in | Sakarya university journal of computer and information sciences Vol. 8; no. 2; pp. 184 - 197 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Sakarya University
30.06.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2636-8129 2636-8129 |
DOI | 10.35377/saucis...1665478 |
Cover
Abstract | Early and accurate diagnosis, however, is still lacking for the most common form of lung cancer, and this remains one of the leading cancers leading to mortality. CT scans are widely used for lung cancer screening; however, their manual interpretation is time-consuming and prone to variability. This study introduces LungDxNet, a deep learning-based framework that integrates transfer learning to enhance diagnostic accuracy and efficiency. Using a large dataset of Low Dose CT (LDCT) scans, the system is built with fine-tuned pre-trained Convolutional Neural Networks (CNNs) such that feature extraction is reliable though minimal reducing radiation exposure. Consequently, LungDxNet involves the integration of component segmentation techniques that have been used to isolate the lung regions and discriminate the cancerous nodules from the malignant and benign cases. Very rigorous evaluations were performed on the model against both conventional machine learning and state of the art deep learning architectures. Results show that there is a substantial reduction of false positive and false negative resulting in a superior accuracy (98.88), sensitivity, and specificity. This design is to be scaled, robust and clinically applicable, making it a potential real world lung cancer diagnosis tool. Deep learning and transfer learning has excellent power to transform lung cancer detection, and this research brings awareness of how far we can optimise and integrate into clinical workflow. The model is enhanced for future work and adapted for real time diagnostic applications. |
---|---|
AbstractList | Early and accurate diagnosis, however, is still lacking for the most common form of lung cancer, and this remains one of the leading cancers leading to mortality. CT scans are widely used for lung cancer screening; however, their manual interpretation is time-consuming and prone to variability. This study introduces LungDxNet, a deep learning-based framework that integrates transfer learning to enhance diagnostic accuracy and efficiency. Using a large dataset of Low Dose CT (LDCT) scans, the system is built with fine-tuned pre-trained Convolutional Neural Networks (CNNs) such that feature extraction is reliable though minimal reducing radiation exposure. Consequently, LungDxNet involves the integration of component segmentation techniques that have been used to isolate the lung regions and discriminate the cancerous nodules from the malignant and benign cases. Very rigorous evaluations were performed on the model against both conventional machine learning and state of the art deep learning architectures. Results show that there is a substantial reduction of false positive and false negative resulting in a superior accuracy (98.88), sensitivity, and specificity. This design is to be scaled, robust and clinically applicable, making it a potential real world lung cancer diagnosis tool. Deep learning and transfer learning has excellent power to transform lung cancer detection, and this research brings awareness of how far we can optimise and integrate into clinical workflow. The model is enhanced for future work and adapted for real time diagnostic applications. |
Author | Parashar, Jyoti Jain, Rituraj Singh, Mahesh K. Kumar, Ashwani Sahu, Premananda Upreti, Kamal |
Author_xml | – sequence: 1 givenname: Premananda orcidid: 0000-0002-9360-8423 surname: Sahu fullname: Sahu, Premananda – sequence: 2 givenname: Ashwani orcidid: 0000-0002-2100-900X surname: Kumar fullname: Kumar, Ashwani – sequence: 3 givenname: Mahesh K. orcidid: 0009-0006-5036-6037 surname: Singh fullname: Singh, Mahesh K. – sequence: 4 givenname: Rituraj orcidid: 0000-0002-5532-1245 surname: Jain fullname: Jain, Rituraj – sequence: 5 givenname: Kamal orcidid: 0000-0003-0665-530X surname: Upreti fullname: Upreti, Kamal – sequence: 6 givenname: Jyoti orcidid: 0000-0002-6573-4270 surname: Parashar fullname: Parashar, Jyoti |
BookMark | eNpNkN1OwjAAhRuDiYg8gHd9gc3-rq13ZCBiFvUCr5u268jIXE07gry9CMR4dU5Ocr6L7xaM-tB7AO4xyimnQjwks3NtyvMcFwVnQl6BMSlokUlM1OhfvwHTlLYIIaIUFpiPwUu16zfz71c_PMLZKnsPex99Dauwz-YheViu4aw33SG1CTYhwoWJ3QH-nmBpeucjnPvBu6EN_R24bkyX_PSSE_DxtFiXz1n1tlyVsypzhGCZGUUEF4VonFCWcoaQlcedcmycazguiPV1LRjjDZXSOEpr4aUlnNTIWcnpBKzO3DqYrf6K7aeJBx1Mq09DiBtt4tC6zmuKj1eFa9lYziySRnpkmSoMwwQrh44sfGa5GFKKvvnjYaRPbvXZrdb64pb-ANgmbWg |
Cites_doi | 10.1200/JCO.22.01345 10.1007/s00500-023-08845-y 10.1002/acm2.14270 10.21203/rs.3.rs-2476241/v1 10.1016/j.matpr.2021.07.255 10.3991/ijoe.v16i06.13657 10.1109/ACCESS.2024.3435774 10.1016/j.snb.2024.135578 10.1186/s12880-024-01238-z 10.1002/ima.23067 10.1016/j.bspc.2023.105373 10.1007/978-981-16-8739-6_26 10.1007/s12559-025-10408-2 10.55730/1300-011X.3123 10.1109/TCBB.2020.3027744 10.3390/en13112975 10.21037/tlcr-2020-lcs-06 10.3390/app132212510 10.1109/ACCESS.2025.3539122 10.1109/ICRITO61523.2024.10522358 10.33564/IJEAST.2022.v07i01.048 10.31127/tuje.1434305 10.31127/tuje.472328 10.22541/au.168576934.49766817/v1 10.1148/ryct.230196 10.1007/978-3-031-75771-6_11 10.3238/arztebl.m2023.0099 10.31127/tuje.1434866 10.1016/j.asoc.2025.112696 10.31083/j.fbl2707212 10.31127/tuje.1180931 10.1016/j.compbiomed.2024.109613 10.20944/preprints202502.0736.v1 10.1088/1361-6560/acef8c 10.3390/cancers15174344 10.3390/cancers15184655 10.1148/ryai.2021210027 10.1007/s00521-023-09130-7 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.35377/saucis...1665478 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2636-8129 |
EndPage | 197 |
ExternalDocumentID | oai_doaj_org_article_317e891d8fb54b08a8e0b496a41219c0 10_35377_saucis___1665478 |
GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E |
ID | FETCH-LOGICAL-c2218-a9275767fc79b35400b8218351accf5162bedd7445f388ac33d7e8b252d0cb853 |
IEDL.DBID | DOA |
ISSN | 2636-8129 |
IngestDate | Wed Aug 27 01:12:08 EDT 2025 Thu Jul 10 08:00:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2218-a9275767fc79b35400b8218351accf5162bedd7445f388ac33d7e8b252d0cb853 |
ORCID | 0000-0002-2100-900X 0000-0002-5532-1245 0000-0003-0665-530X 0009-0006-5036-6037 0000-0002-6573-4270 0000-0002-9360-8423 |
OpenAccessLink | https://doaj.org/article/317e891d8fb54b08a8e0b496a41219c0 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_317e891d8fb54b08a8e0b496a41219c0 crossref_primary_10_35377_saucis___1665478 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-30 |
PublicationDateYYYYMMDD | 2025-06-30 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-30 day: 30 |
PublicationDecade | 2020 |
PublicationTitle | Sakarya university journal of computer and information sciences |
PublicationYear | 2025 |
Publisher | Sakarya University |
Publisher_xml | – name: Sakarya University |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref42 ref41 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref20 doi: 10.1200/JCO.22.01345 – ident: ref34 doi: 10.1007/s00500-023-08845-y – ident: ref15 doi: 10.1002/acm2.14270 – ident: ref11 doi: 10.21203/rs.3.rs-2476241/v1 – ident: ref37 doi: 10.1016/j.matpr.2021.07.255 – ident: ref22 doi: 10.3991/ijoe.v16i06.13657 – ident: ref17 doi: 10.1109/ACCESS.2024.3435774 – ident: ref32 doi: 10.1016/j.snb.2024.135578 – ident: ref26 doi: 10.1186/s12880-024-01238-z – ident: ref42 doi: 10.1002/ima.23067 – ident: ref35 doi: 10.1016/j.bspc.2023.105373 – ident: ref38 doi: 10.1007/978-981-16-8739-6_26 – ident: ref36 doi: 10.1007/s12559-025-10408-2 – ident: ref9 doi: 10.55730/1300-011X.3123 – ident: ref21 doi: 10.1109/TCBB.2020.3027744 – ident: ref33 doi: 10.3390/en13112975 – ident: ref4 doi: 10.21037/tlcr-2020-lcs-06 – ident: ref19 – ident: ref30 doi: 10.3390/app132212510 – ident: ref1 doi: 10.1109/ACCESS.2025.3539122 – ident: ref39 doi: 10.1109/ICRITO61523.2024.10522358 – ident: ref29 doi: 10.33564/IJEAST.2022.v07i01.048 – ident: ref13 – ident: ref8 doi: 10.31127/tuje.1434305 – ident: ref5 doi: 10.31127/tuje.472328 – ident: ref27 doi: 10.22541/au.168576934.49766817/v1 – ident: ref25 doi: 10.1148/ryct.230196 – ident: ref31 doi: 10.1007/978-3-031-75771-6_11 – ident: ref3 doi: 10.3238/arztebl.m2023.0099 – ident: ref7 doi: 10.31127/tuje.1434866 – ident: ref41 doi: 10.1016/j.asoc.2025.112696 – ident: ref28 doi: 10.31083/j.fbl2707212 – ident: ref6 doi: 10.31127/tuje.1180931 – ident: ref40 doi: 10.1016/j.compbiomed.2024.109613 – ident: ref2 doi: 10.20944/preprints202502.0736.v1 – ident: ref16 doi: 10.1088/1361-6560/acef8c – ident: ref14 doi: 10.3390/cancers15174344 – ident: ref10 – ident: ref23 doi: 10.3390/cancers15184655 – ident: ref12 – ident: ref24 doi: 10.1148/ryai.2021210027 – ident: ref18 doi: 10.1007/s00521-023-09130-7 |
SSID | ssj0002991715 |
Score | 2.2994215 |
Snippet | Early and accurate diagnosis, however, is still lacking for the most common form of lung cancer, and this remains one of the leading cancers leading to... |
SourceID | doaj crossref |
SourceType | Open Website Index Database |
StartPage | 184 |
SubjectTerms | artificial intelligence deep learning low dose ct lung cancer machine learning |
Title | LungDxNet: AI-Powered Low-Dose CT Analysis for Early Lung Cancer Detection |
URI | https://doaj.org/article/317e891d8fb54b08a8e0b496a41219c0 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2636-8129 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002991715 issn: 2636-8129 databaseCode: DOA dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2636-8129 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002991715 issn: 2636-8129 databaseCode: M~E dateStart: 20180101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxYEAkT5kgcmJLdx4q-wlZaqVKViaKVuVvwRiSVFNBX8fM5OisrEwholUfTO5_cuubxD6E547nLKSiJcJghjpYGc854AXQC7OG5o_FH4ZS4mSzZd8dXeqK_QE9bYAzfA9YHfvMqpU6XhzCSqUD4xLBcFo5BsNlbrQGN7xVTYg2GTpZLy5jNmxjMp-5tia982vV6PxoG76hcR7fn1R2IZH6OjVhHiQfMkJ-jAV6doOoMkHH3Nff2AB8_kNcwy8w7P1p9ktN54PFzgnZ0IBtmJo08xDhfhYYjjBx75OnZZVWdoOX5aDCekHXtALACkSJGnEqoAWVqZm_BaJjEqCBlOC2tLTkVqvHOSMV5mShU2yxxAZFKeusQaoN9z1KnWlb9AGGAAtnGusFIwkCo5S5TLpBHMpoI700X3Owz0e-NuoaEqiIDpBjCtdQtYFz0GlH5ODMbU8QCES7fh0n-F6_I_bnKFDtMwhje27V2jTv2x9TegDWpzG5fBN_bFs_A |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LungDxNet%3A+AI-Powered+Low-Dose+CT+Analysis+for+Early+Lung+Cancer+Detection&rft.jtitle=Sakarya+university+journal+of+computer+and+information+sciences&rft.au=Jyoti+Parashar&rft.au=Rituraj+Jain&rft.au=Mahesh+K.+Singh&rft.au=Ashwani+Kumar&rft.date=2025-06-30&rft.pub=Sakarya+University&rft.eissn=2636-8129&rft.volume=8&rft.issue=2&rft.spage=184&rft.epage=197&rft_id=info:doi/10.35377%2Fsaucis...1665478&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_317e891d8fb54b08a8e0b496a41219c0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2636-8129&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2636-8129&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2636-8129&client=summon |