LungDxNet: AI-Powered Low-Dose CT Analysis for Early Lung Cancer Detection

Early and accurate diagnosis, however, is still lacking for the most common form of lung cancer, and this remains one of the leading cancers leading to mortality. CT scans are widely used for lung cancer screening; however, their manual interpretation is time-consuming and prone to variability. This...

Full description

Saved in:
Bibliographic Details
Published inSakarya university journal of computer and information sciences Vol. 8; no. 2; pp. 184 - 197
Main Authors Sahu, Premananda, Kumar, Ashwani, Singh, Mahesh K., Jain, Rituraj, Upreti, Kamal, Parashar, Jyoti
Format Journal Article
LanguageEnglish
Published Sakarya University 30.06.2025
Subjects
Online AccessGet full text
ISSN2636-8129
2636-8129
DOI10.35377/saucis...1665478

Cover

Abstract Early and accurate diagnosis, however, is still lacking for the most common form of lung cancer, and this remains one of the leading cancers leading to mortality. CT scans are widely used for lung cancer screening; however, their manual interpretation is time-consuming and prone to variability. This study introduces LungDxNet, a deep learning-based framework that integrates transfer learning to enhance diagnostic accuracy and efficiency. Using a large dataset of Low Dose CT (LDCT) scans, the system is built with fine-tuned pre-trained Convolutional Neural Networks (CNNs) such that feature extraction is reliable though minimal reducing radiation exposure. Consequently, LungDxNet involves the integration of component segmentation techniques that have been used to isolate the lung regions and discriminate the cancerous nodules from the malignant and benign cases. Very rigorous evaluations were performed on the model against both conventional machine learning and state of the art deep learning architectures. Results show that there is a substantial reduction of false positive and false negative resulting in a superior accuracy (98.88), sensitivity, and specificity. This design is to be scaled, robust and clinically applicable, making it a potential real world lung cancer diagnosis tool. Deep learning and transfer learning has excellent power to transform lung cancer detection, and this research brings awareness of how far we can optimise and integrate into clinical workflow. The model is enhanced for future work and adapted for real time diagnostic applications.
AbstractList Early and accurate diagnosis, however, is still lacking for the most common form of lung cancer, and this remains one of the leading cancers leading to mortality. CT scans are widely used for lung cancer screening; however, their manual interpretation is time-consuming and prone to variability. This study introduces LungDxNet, a deep learning-based framework that integrates transfer learning to enhance diagnostic accuracy and efficiency. Using a large dataset of Low Dose CT (LDCT) scans, the system is built with fine-tuned pre-trained Convolutional Neural Networks (CNNs) such that feature extraction is reliable though minimal reducing radiation exposure. Consequently, LungDxNet involves the integration of component segmentation techniques that have been used to isolate the lung regions and discriminate the cancerous nodules from the malignant and benign cases. Very rigorous evaluations were performed on the model against both conventional machine learning and state of the art deep learning architectures. Results show that there is a substantial reduction of false positive and false negative resulting in a superior accuracy (98.88), sensitivity, and specificity. This design is to be scaled, robust and clinically applicable, making it a potential real world lung cancer diagnosis tool. Deep learning and transfer learning has excellent power to transform lung cancer detection, and this research brings awareness of how far we can optimise and integrate into clinical workflow. The model is enhanced for future work and adapted for real time diagnostic applications.
Author Parashar, Jyoti
Jain, Rituraj
Singh, Mahesh K.
Kumar, Ashwani
Sahu, Premananda
Upreti, Kamal
Author_xml – sequence: 1
  givenname: Premananda
  orcidid: 0000-0002-9360-8423
  surname: Sahu
  fullname: Sahu, Premananda
– sequence: 2
  givenname: Ashwani
  orcidid: 0000-0002-2100-900X
  surname: Kumar
  fullname: Kumar, Ashwani
– sequence: 3
  givenname: Mahesh K.
  orcidid: 0009-0006-5036-6037
  surname: Singh
  fullname: Singh, Mahesh K.
– sequence: 4
  givenname: Rituraj
  orcidid: 0000-0002-5532-1245
  surname: Jain
  fullname: Jain, Rituraj
– sequence: 5
  givenname: Kamal
  orcidid: 0000-0003-0665-530X
  surname: Upreti
  fullname: Upreti, Kamal
– sequence: 6
  givenname: Jyoti
  orcidid: 0000-0002-6573-4270
  surname: Parashar
  fullname: Parashar, Jyoti
BookMark eNpNkN1OwjAAhRuDiYg8gHd9gc3-rq13ZCBiFvUCr5u268jIXE07gry9CMR4dU5Ocr6L7xaM-tB7AO4xyimnQjwks3NtyvMcFwVnQl6BMSlokUlM1OhfvwHTlLYIIaIUFpiPwUu16zfz71c_PMLZKnsPex99Dauwz-YheViu4aw33SG1CTYhwoWJ3QH-nmBpeucjnPvBu6EN_R24bkyX_PSSE_DxtFiXz1n1tlyVsypzhGCZGUUEF4VonFCWcoaQlcedcmycazguiPV1LRjjDZXSOEpr4aUlnNTIWcnpBKzO3DqYrf6K7aeJBx1Mq09DiBtt4tC6zmuKj1eFa9lYziySRnpkmSoMwwQrh44sfGa5GFKKvvnjYaRPbvXZrdb64pb-ANgmbWg
Cites_doi 10.1200/JCO.22.01345
10.1007/s00500-023-08845-y
10.1002/acm2.14270
10.21203/rs.3.rs-2476241/v1
10.1016/j.matpr.2021.07.255
10.3991/ijoe.v16i06.13657
10.1109/ACCESS.2024.3435774
10.1016/j.snb.2024.135578
10.1186/s12880-024-01238-z
10.1002/ima.23067
10.1016/j.bspc.2023.105373
10.1007/978-981-16-8739-6_26
10.1007/s12559-025-10408-2
10.55730/1300-011X.3123
10.1109/TCBB.2020.3027744
10.3390/en13112975
10.21037/tlcr-2020-lcs-06
10.3390/app132212510
10.1109/ACCESS.2025.3539122
10.1109/ICRITO61523.2024.10522358
10.33564/IJEAST.2022.v07i01.048
10.31127/tuje.1434305
10.31127/tuje.472328
10.22541/au.168576934.49766817/v1
10.1148/ryct.230196
10.1007/978-3-031-75771-6_11
10.3238/arztebl.m2023.0099
10.31127/tuje.1434866
10.1016/j.asoc.2025.112696
10.31083/j.fbl2707212
10.31127/tuje.1180931
10.1016/j.compbiomed.2024.109613
10.20944/preprints202502.0736.v1
10.1088/1361-6560/acef8c
10.3390/cancers15174344
10.3390/cancers15184655
10.1148/ryai.2021210027
10.1007/s00521-023-09130-7
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.35377/saucis...1665478
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2636-8129
EndPage 197
ExternalDocumentID oai_doaj_org_article_317e891d8fb54b08a8e0b496a41219c0
10_35377_saucis___1665478
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
ID FETCH-LOGICAL-c2218-a9275767fc79b35400b8218351accf5162bedd7445f388ac33d7e8b252d0cb853
IEDL.DBID DOA
ISSN 2636-8129
IngestDate Wed Aug 27 01:12:08 EDT 2025
Thu Jul 10 08:00:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2218-a9275767fc79b35400b8218351accf5162bedd7445f388ac33d7e8b252d0cb853
ORCID 0000-0002-2100-900X
0000-0002-5532-1245
0000-0003-0665-530X
0009-0006-5036-6037
0000-0002-6573-4270
0000-0002-9360-8423
OpenAccessLink https://doaj.org/article/317e891d8fb54b08a8e0b496a41219c0
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_317e891d8fb54b08a8e0b496a41219c0
crossref_primary_10_35377_saucis___1665478
PublicationCentury 2000
PublicationDate 2025-06-30
PublicationDateYYYYMMDD 2025-06-30
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-30
  day: 30
PublicationDecade 2020
PublicationTitle Sakarya university journal of computer and information sciences
PublicationYear 2025
Publisher Sakarya University
Publisher_xml – name: Sakarya University
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref20
  doi: 10.1200/JCO.22.01345
– ident: ref34
  doi: 10.1007/s00500-023-08845-y
– ident: ref15
  doi: 10.1002/acm2.14270
– ident: ref11
  doi: 10.21203/rs.3.rs-2476241/v1
– ident: ref37
  doi: 10.1016/j.matpr.2021.07.255
– ident: ref22
  doi: 10.3991/ijoe.v16i06.13657
– ident: ref17
  doi: 10.1109/ACCESS.2024.3435774
– ident: ref32
  doi: 10.1016/j.snb.2024.135578
– ident: ref26
  doi: 10.1186/s12880-024-01238-z
– ident: ref42
  doi: 10.1002/ima.23067
– ident: ref35
  doi: 10.1016/j.bspc.2023.105373
– ident: ref38
  doi: 10.1007/978-981-16-8739-6_26
– ident: ref36
  doi: 10.1007/s12559-025-10408-2
– ident: ref9
  doi: 10.55730/1300-011X.3123
– ident: ref21
  doi: 10.1109/TCBB.2020.3027744
– ident: ref33
  doi: 10.3390/en13112975
– ident: ref4
  doi: 10.21037/tlcr-2020-lcs-06
– ident: ref19
– ident: ref30
  doi: 10.3390/app132212510
– ident: ref1
  doi: 10.1109/ACCESS.2025.3539122
– ident: ref39
  doi: 10.1109/ICRITO61523.2024.10522358
– ident: ref29
  doi: 10.33564/IJEAST.2022.v07i01.048
– ident: ref13
– ident: ref8
  doi: 10.31127/tuje.1434305
– ident: ref5
  doi: 10.31127/tuje.472328
– ident: ref27
  doi: 10.22541/au.168576934.49766817/v1
– ident: ref25
  doi: 10.1148/ryct.230196
– ident: ref31
  doi: 10.1007/978-3-031-75771-6_11
– ident: ref3
  doi: 10.3238/arztebl.m2023.0099
– ident: ref7
  doi: 10.31127/tuje.1434866
– ident: ref41
  doi: 10.1016/j.asoc.2025.112696
– ident: ref28
  doi: 10.31083/j.fbl2707212
– ident: ref6
  doi: 10.31127/tuje.1180931
– ident: ref40
  doi: 10.1016/j.compbiomed.2024.109613
– ident: ref2
  doi: 10.20944/preprints202502.0736.v1
– ident: ref16
  doi: 10.1088/1361-6560/acef8c
– ident: ref14
  doi: 10.3390/cancers15174344
– ident: ref10
– ident: ref23
  doi: 10.3390/cancers15184655
– ident: ref12
– ident: ref24
  doi: 10.1148/ryai.2021210027
– ident: ref18
  doi: 10.1007/s00521-023-09130-7
SSID ssj0002991715
Score 2.2994215
Snippet Early and accurate diagnosis, however, is still lacking for the most common form of lung cancer, and this remains one of the leading cancers leading to...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 184
SubjectTerms artificial intelligence
deep learning
low dose ct
lung cancer
machine learning
Title LungDxNet: AI-Powered Low-Dose CT Analysis for Early Lung Cancer Detection
URI https://doaj.org/article/317e891d8fb54b08a8e0b496a41219c0
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2636-8129
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002991715
  issn: 2636-8129
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2636-8129
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002991715
  issn: 2636-8129
  databaseCode: M~E
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxYEAkT5kgcmJLdx4q-wlZaqVKViaKVuVvwRiSVFNBX8fM5OisrEwholUfTO5_cuubxD6E547nLKSiJcJghjpYGc854AXQC7OG5o_FH4ZS4mSzZd8dXeqK_QE9bYAzfA9YHfvMqpU6XhzCSqUD4xLBcFo5BsNlbrQGN7xVTYg2GTpZLy5jNmxjMp-5tia982vV6PxoG76hcR7fn1R2IZH6OjVhHiQfMkJ-jAV6doOoMkHH3Nff2AB8_kNcwy8w7P1p9ktN54PFzgnZ0IBtmJo08xDhfhYYjjBx75OnZZVWdoOX5aDCekHXtALACkSJGnEqoAWVqZm_BaJjEqCBlOC2tLTkVqvHOSMV5mShU2yxxAZFKeusQaoN9z1KnWlb9AGGAAtnGusFIwkCo5S5TLpBHMpoI700X3Owz0e-NuoaEqiIDpBjCtdQtYFz0GlH5ODMbU8QCES7fh0n-F6_I_bnKFDtMwhje27V2jTv2x9TegDWpzG5fBN_bFs_A
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LungDxNet%3A+AI-Powered+Low-Dose+CT+Analysis+for+Early+Lung+Cancer+Detection&rft.jtitle=Sakarya+university+journal+of+computer+and+information+sciences&rft.au=Jyoti+Parashar&rft.au=Rituraj+Jain&rft.au=Mahesh+K.+Singh&rft.au=Ashwani+Kumar&rft.date=2025-06-30&rft.pub=Sakarya+University&rft.eissn=2636-8129&rft.volume=8&rft.issue=2&rft.spage=184&rft.epage=197&rft_id=info:doi/10.35377%2Fsaucis...1665478&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_317e891d8fb54b08a8e0b496a41219c0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2636-8129&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2636-8129&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2636-8129&client=summon