Fault Detection and Prediction for a Wood Chip Screw Conveyor

Equipment maintenance is a key aspect to maximize its availability. The present work focuses on data analysis of a screw conveyor of a biomass industry. The screw velocity and load were monitored and analysed, in order to detect and predict possible faults. A machine learning approach was used to de...

Full description

Saved in:
Bibliographic Details
Published inEksploatacja i niezawodność Vol. 26; no. 3
Main Authors Henriques, Lucas, Farinha, Torres, Mendes, Mateus
Format Journal Article
LanguageEnglish
Published 01.01.2024
Online AccessGet full text
ISSN1507-2711
2956-3860
DOI10.17531/ein/189323

Cover

Abstract Equipment maintenance is a key aspect to maximize its availability. The present work focuses on data analysis of a screw conveyor of a biomass industry. The screw velocity and load were monitored and analysed, in order to detect and predict possible faults. A machine learning approach was used to detect anomalies, where different algorithms were tested with the data available, in order to train an anomaly classifier. The anomaly classifier was able to accurately identify most anomalies, based on historical data, temporal patterns and information of the maintenance interventions performed. The research carried out allowed to conclude that the Extra Trees Classifier algorithm achieved the best performance, among all algorithms tested, with 0.7974 F-score in the test set. The anomaly classifier has been shown to achieve remarkable accuracy in identifying anomalies. This research not only improves understanding of the performance of screw conveyors in biomass industries, but also highlights the practical utility of employing machine learning for proactive fault detection.
AbstractList Equipment maintenance is a key aspect to maximize its availability. The present work focuses on data analysis of a screw conveyor of a biomass industry. The screw velocity and load were monitored and analysed, in order to detect and predict possible faults. A machine learning approach was used to detect anomalies, where different algorithms were tested with the data available, in order to train an anomaly classifier. The anomaly classifier was able to accurately identify most anomalies, based on historical data, temporal patterns and information of the maintenance interventions performed. The research carried out allowed to conclude that the Extra Trees Classifier algorithm achieved the best performance, among all algorithms tested, with 0.7974 F-score in the test set. The anomaly classifier has been shown to achieve remarkable accuracy in identifying anomalies. This research not only improves understanding of the performance of screw conveyors in biomass industries, but also highlights the practical utility of employing machine learning for proactive fault detection.
Author Mendes, Mateus
Farinha, Torres
Henriques, Lucas
Author_xml – sequence: 1
  givenname: Lucas
  surname: Henriques
  fullname: Henriques, Lucas
– sequence: 2
  givenname: Torres
  orcidid: 0000-0002-9694-8079
  surname: Farinha
  fullname: Farinha, Torres
– sequence: 3
  givenname: Mateus
  orcidid: 0000-0003-4313-7966
  surname: Mendes
  fullname: Mendes, Mateus
BookMark eNptkEFLxDAUhIOs4LruyT-Qu9TNS5qkPXiQ6qqwoKDisaSvrxiozZJWZf_9dq0n8TQMzAzDd8pmXeiIsXMQl2C1ghX5bgVZrqQ6YnOZa5OozIgZm4MWNpEW4IQt-95XQkgDaQ4wZ1dr99kO_IYGwsGHjruu5k-Raj_ZJkTu-FsINS_e_ZY_Y6RvXoTui3YhnrHjxrU9LX91wV7Xty_FfbJ5vHsorjcJSgkicVWd5tpio53SdHBSIDoDdY62Sp0TRo2PTJOjSC1WKZpMCWNSjRUJIrVgMO1iDH0fqSnRD-5wcIjOtyWI8gdBOSIoJwRj5-JPZxv9h4u7f9N7osNeng
CitedBy_id crossref_primary_10_3390_app14167191
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.17531/ein/189323
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2956-3860
ExternalDocumentID 10_17531_ein_189323
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
ID FETCH-LOGICAL-c2210-abd4957cf5a35eabd420cca61d9c7b4aa0632616f9c047cb4c68306645cbe0ee3
ISSN 1507-2711
IngestDate Tue Jul 01 00:47:08 EDT 2025
Thu Apr 24 23:12:17 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2210-abd4957cf5a35eabd420cca61d9c7b4aa0632616f9c047cb4c68306645cbe0ee3
ORCID 0000-0003-4313-7966
0000-0002-9694-8079
OpenAccessLink https://doi.org/10.17531/ein/189323
ParticipantIDs crossref_citationtrail_10_17531_ein_189323
crossref_primary_10_17531_ein_189323
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Eksploatacja i niezawodność
PublicationYear 2024
SSID ssib002614911
ssib055055523
ssib002614910
ssib017424316
ssj0002902076
ssib002609232
ssib036247523
ssib002805487
ssib002610536
ssib051634453
ssib017424317
Score 2.2903578
Snippet Equipment maintenance is a key aspect to maximize its availability. The present work focuses on data analysis of a screw conveyor of a biomass industry. The...
SourceID crossref
SourceType Enrichment Source
Index Database
Title Fault Detection and Prediction for a Wood Chip Screw Conveyor
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2956-3860
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002902076
  issn: 1507-2711
  databaseCode: DOA
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2956-3860
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib051634453
  issn: 1507-2711
  databaseCode: M~E
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVKe-GCqABRCpUP7YVVaNaxneRIV11VCLh0q_a2sh1HKqySqqRU9NczYztOttpDQVpFa-dDceZp8p7jmSHksLYqxV-iDWy4lBr8YMYTW-WFNjVneorRyN--y7ML_uVKXPUl7kN0Sac_mYeNcSX_Y1XoA7tilOw_WDZeFDrgP9gXtmBh2D7JxnN1t-rAZXQ2FPx2K__x00tcQagml5i3eIZrss6BId5jjN9v-6e9XZuT__nrZtWqTpkfanI9aa7tg7pvq6Y9momj8sQxzmGlLdwOZn11CPiKRdMiCEB4N_4L0sJV_YjmxIl2P68N3HZ9roHx0VxDcI9pnrA8uEfr-hhmMswKXxWg96k-Cj5gJ9voqkEnoa92JT3nU6BNPu54PSX2o1dVXECI0gUvsITTl_7kZ2SH5VKykaz2EjMt2ThFG_BFkY1TqoFGHFMg1x7H9qYo6vo2CDiG2QMeteN-4AM8FwPlEsB3OR8oEQpC0e9HtsBKIOyuBmJ8uCGMFMd3DOM79uMbEacRA1q8JC-CdKGfPQ53yZZtXhGPQRoxSAGDdMAgBQxSRRGDFDFIHQZpj8HX5GJ-upidJaEkR2IYgze20hUo6tzUQmXCYoul4APktCpNrrlSwHjhCcq6NCnPjeZGFiBKJRdG29Ta7A3ZbtrGviW0sFaVogIFnRW8rnnJ4VkWsuCFKg1Lsz3ysR_v0oR89Vg2ZbXcYPw9chgPvvFpWjYd9u5ph-2T5wP635Pt7vbOfgDu2ekDB66_PSxwpA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+Detection+and+Prediction+for+a+Wood+Chip+Screw+Conveyor&rft.jtitle=Eksploatacja+i+niezawodno%C5%9B%C4%87&rft.au=Henriques%2C+Lucas&rft.au=Farinha%2C+Torres&rft.au=Mendes%2C+Mateus&rft.date=2024-01-01&rft.issn=1507-2711&rft.eissn=2956-3860&rft.volume=26&rft.issue=3&rft_id=info:doi/10.17531%2Fein%2F189323&rft.externalDBID=n%2Fa&rft.externalDocID=10_17531_ein_189323
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1507-2711&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1507-2711&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1507-2711&client=summon