Fault Detection and Prediction for a Wood Chip Screw Conveyor
Equipment maintenance is a key aspect to maximize its availability. The present work focuses on data analysis of a screw conveyor of a biomass industry. The screw velocity and load were monitored and analysed, in order to detect and predict possible faults. A machine learning approach was used to de...
Saved in:
Published in | Eksploatacja i niezawodność Vol. 26; no. 3 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
01.01.2024
|
Online Access | Get full text |
ISSN | 1507-2711 2956-3860 |
DOI | 10.17531/ein/189323 |
Cover
Abstract | Equipment maintenance is a key aspect to maximize its availability. The present work focuses on data analysis of a screw conveyor of a biomass industry. The screw velocity and load were monitored and analysed, in order to detect and predict possible faults. A machine learning approach was used to detect anomalies, where different algorithms were tested with the data available, in order to train an anomaly classifier. The anomaly classifier was able to accurately identify most anomalies, based on historical data, temporal patterns and information of the maintenance interventions performed. The research carried out allowed to conclude that the Extra Trees Classifier algorithm achieved the best performance, among all algorithms tested, with 0.7974 F-score in the test set. The anomaly classifier has been shown to achieve remarkable accuracy in identifying anomalies. This research not only improves understanding of the performance of screw conveyors in biomass industries, but also highlights the practical utility of employing machine learning for proactive fault detection. |
---|---|
AbstractList | Equipment maintenance is a key aspect to maximize its availability. The present work focuses on data analysis of a screw conveyor of a biomass industry. The screw velocity and load were monitored and analysed, in order to detect and predict possible faults. A machine learning approach was used to detect anomalies, where different algorithms were tested with the data available, in order to train an anomaly classifier. The anomaly classifier was able to accurately identify most anomalies, based on historical data, temporal patterns and information of the maintenance interventions performed. The research carried out allowed to conclude that the Extra Trees Classifier algorithm achieved the best performance, among all algorithms tested, with 0.7974 F-score in the test set. The anomaly classifier has been shown to achieve remarkable accuracy in identifying anomalies. This research not only improves understanding of the performance of screw conveyors in biomass industries, but also highlights the practical utility of employing machine learning for proactive fault detection. |
Author | Mendes, Mateus Farinha, Torres Henriques, Lucas |
Author_xml | – sequence: 1 givenname: Lucas surname: Henriques fullname: Henriques, Lucas – sequence: 2 givenname: Torres orcidid: 0000-0002-9694-8079 surname: Farinha fullname: Farinha, Torres – sequence: 3 givenname: Mateus orcidid: 0000-0003-4313-7966 surname: Mendes fullname: Mendes, Mateus |
BookMark | eNptkEFLxDAUhIOs4LruyT-Qu9TNS5qkPXiQ6qqwoKDisaSvrxiozZJWZf_9dq0n8TQMzAzDd8pmXeiIsXMQl2C1ghX5bgVZrqQ6YnOZa5OozIgZm4MWNpEW4IQt-95XQkgDaQ4wZ1dr99kO_IYGwsGHjruu5k-Raj_ZJkTu-FsINS_e_ZY_Y6RvXoTui3YhnrHjxrU9LX91wV7Xty_FfbJ5vHsorjcJSgkicVWd5tpio53SdHBSIDoDdY62Sp0TRo2PTJOjSC1WKZpMCWNSjRUJIrVgMO1iDH0fqSnRD-5wcIjOtyWI8gdBOSIoJwRj5-JPZxv9h4u7f9N7osNeng |
CitedBy_id | crossref_primary_10_3390_app14167191 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.17531/ein/189323 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2956-3860 |
ExternalDocumentID | 10_17531_ein_189323 |
GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ |
ID | FETCH-LOGICAL-c2210-abd4957cf5a35eabd420cca61d9c7b4aa0632616f9c047cb4c68306645cbe0ee3 |
ISSN | 1507-2711 |
IngestDate | Tue Jul 01 00:47:08 EDT 2025 Thu Apr 24 23:12:17 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2210-abd4957cf5a35eabd420cca61d9c7b4aa0632616f9c047cb4c68306645cbe0ee3 |
ORCID | 0000-0003-4313-7966 0000-0002-9694-8079 |
OpenAccessLink | https://doi.org/10.17531/ein/189323 |
ParticipantIDs | crossref_citationtrail_10_17531_ein_189323 crossref_primary_10_17531_ein_189323 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Eksploatacja i niezawodność |
PublicationYear | 2024 |
SSID | ssib002614911 ssib055055523 ssib002614910 ssib017424316 ssj0002902076 ssib002609232 ssib036247523 ssib002805487 ssib002610536 ssib051634453 ssib017424317 |
Score | 2.2903578 |
Snippet | Equipment maintenance is a key aspect to maximize its availability. The present work focuses on data analysis of a screw conveyor of a biomass industry. The... |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
Title | Fault Detection and Prediction for a Wood Chip Screw Conveyor |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2956-3860 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002902076 issn: 1507-2711 databaseCode: DOA dateStart: 20040101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2956-3860 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib051634453 issn: 1507-2711 databaseCode: M~E dateStart: 20020101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVKe-GCqABRCpUP7YVVaNaxneRIV11VCLh0q_a2sh1HKqySqqRU9NczYztOttpDQVpFa-dDceZp8p7jmSHksLYqxV-iDWy4lBr8YMYTW-WFNjVneorRyN--y7ML_uVKXPUl7kN0Sac_mYeNcSX_Y1XoA7tilOw_WDZeFDrgP9gXtmBh2D7JxnN1t-rAZXQ2FPx2K__x00tcQagml5i3eIZrss6BId5jjN9v-6e9XZuT__nrZtWqTpkfanI9aa7tg7pvq6Y9momj8sQxzmGlLdwOZn11CPiKRdMiCEB4N_4L0sJV_YjmxIl2P68N3HZ9roHx0VxDcI9pnrA8uEfr-hhmMswKXxWg96k-Cj5gJ9voqkEnoa92JT3nU6BNPu54PSX2o1dVXECI0gUvsITTl_7kZ2SH5VKykaz2EjMt2ThFG_BFkY1TqoFGHFMg1x7H9qYo6vo2CDiG2QMeteN-4AM8FwPlEsB3OR8oEQpC0e9HtsBKIOyuBmJ8uCGMFMd3DOM79uMbEacRA1q8JC-CdKGfPQ53yZZtXhGPQRoxSAGDdMAgBQxSRRGDFDFIHQZpj8HX5GJ-upidJaEkR2IYgze20hUo6tzUQmXCYoul4APktCpNrrlSwHjhCcq6NCnPjeZGFiBKJRdG29Ta7A3ZbtrGviW0sFaVogIFnRW8rnnJ4VkWsuCFKg1Lsz3ysR_v0oR89Vg2ZbXcYPw9chgPvvFpWjYd9u5ph-2T5wP635Pt7vbOfgDu2ekDB66_PSxwpA |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+Detection+and+Prediction+for+a+Wood+Chip+Screw+Conveyor&rft.jtitle=Eksploatacja+i+niezawodno%C5%9B%C4%87&rft.au=Henriques%2C+Lucas&rft.au=Farinha%2C+Torres&rft.au=Mendes%2C+Mateus&rft.date=2024-01-01&rft.issn=1507-2711&rft.eissn=2956-3860&rft.volume=26&rft.issue=3&rft_id=info:doi/10.17531%2Fein%2F189323&rft.externalDBID=n%2Fa&rft.externalDocID=10_17531_ein_189323 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1507-2711&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1507-2711&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1507-2711&client=summon |