pyrtklib: An Open-Source Package for Tightly Coupled Deep Learning and GNSS Integration for Positioning in Urban Canyons

Global Navigation Satellite Systems (GNSS) are crucial for intelligent transportation systems (ITS), providing essential positioning capabilities globally. However, in urban canyons, the GNSS performance could significantly degraded due to the blockage of direct GNSS signals. The pseudorange measure...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on intelligent transportation systems Vol. 26; no. 7; pp. 10652 - 10662
Main Authors Hu, Runzhi, Xu, Penghui, Zhong, Yihan, Wen, Weisong
Format Journal Article
LanguageEnglish
Published IEEE 01.07.2025
Subjects
Online AccessGet full text
ISSN1524-9050
1558-0016
DOI10.1109/TITS.2025.3552691

Cover

Abstract Global Navigation Satellite Systems (GNSS) are crucial for intelligent transportation systems (ITS), providing essential positioning capabilities globally. However, in urban canyons, the GNSS performance could significantly degraded due to the blockage of direct GNSS signals. The pseudorange measurements are largely affected and the conventional model of weighting observations is not suitable in urban canyons. This paper addresses these challenges by integrating Artificial Intelligence (AI), specifically deep learning, into GNSS positioning process to enhance positioning accuracy. Traditional methods have primarily focused on pseudorange correction due to the absence of ground truth for weight estimation. In response, we propose an innovative indirect training approach using deep learning to optimize both pseudorange bias and weight estimation, aiming to minimize the positioning errors. To support this integration, we developed pyrtklib, a Python binding for the open-source RTKLIB tool, bridging the gap between traditional GNSS algorithms, typically developed in Fortran or C, and modern Python-based AI frameworks. Comparative analyses demonstrate that our method surpasses established tools like goGPS and RTKLIB in positioning accuracy, marking a significant advancement in the field. The source code of tightly coupled deep learning and GNSS integration, along with pyrtklib, is available on GitHub at https://github.com/ebhrz/TDL-GNSS and https://github.com/IPNL-POLYU/pyrtklib .
AbstractList Global Navigation Satellite Systems (GNSS) are crucial for intelligent transportation systems (ITS), providing essential positioning capabilities globally. However, in urban canyons, the GNSS performance could significantly degraded due to the blockage of direct GNSS signals. The pseudorange measurements are largely affected and the conventional model of weighting observations is not suitable in urban canyons. This paper addresses these challenges by integrating Artificial Intelligence (AI), specifically deep learning, into GNSS positioning process to enhance positioning accuracy. Traditional methods have primarily focused on pseudorange correction due to the absence of ground truth for weight estimation. In response, we propose an innovative indirect training approach using deep learning to optimize both pseudorange bias and weight estimation, aiming to minimize the positioning errors. To support this integration, we developed pyrtklib, a Python binding for the open-source RTKLIB tool, bridging the gap between traditional GNSS algorithms, typically developed in Fortran or C, and modern Python-based AI frameworks. Comparative analyses demonstrate that our method surpasses established tools like goGPS and RTKLIB in positioning accuracy, marking a significant advancement in the field. The source code of tightly coupled deep learning and GNSS integration, along with pyrtklib, is available on GitHub at https://github.com/ebhrz/TDL-GNSS and https://github.com/IPNL-POLYU/pyrtklib .
Author Hu, Runzhi
Wen, Weisong
Xu, Penghui
Zhong, Yihan
Author_xml – sequence: 1
  givenname: Runzhi
  orcidid: 0000-0002-9199-1086
  surname: Hu
  fullname: Hu, Runzhi
  organization: Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
– sequence: 2
  givenname: Penghui
  orcidid: 0000-0002-5693-7172
  surname: Xu
  fullname: Xu, Penghui
  organization: Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
– sequence: 3
  givenname: Yihan
  orcidid: 0000-0002-1462-3642
  surname: Zhong
  fullname: Zhong, Yihan
  organization: Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
– sequence: 4
  givenname: Weisong
  orcidid: 0000-0003-4158-0913
  surname: Wen
  fullname: Wen, Weisong
  email: welson.wen@polyu.edu.hk
  organization: Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
BookMark eNpNkEFOwzAQRS0EEm3hAEgsfIEU24ndmF0VoFSqaKWk68hxJsE02JGTSuT2NLQLVvNn9N8s3hRdW2cBoQdK5pQS-ZSts3TOCOPzkHMmJL1CE8p5HBBCxfWYWRRIwsktmnbd1-kacUon6KcdfH9oTPGMlxZvW7BB6o5eA94pfVA14Mp5nJn6s28GnLhj20CJXwBavAHlrbE1VrbEq480xWvbQ-1Vb5z9w3auM-MylozFe18oixNlB2e7O3RTqaaD-8ucof3ba5a8B5vtap0sN4FmjPRBIUUlBI1DFsYREwAsIuyU43JRCCF1RaNSy5BSoJJTpQjoqGCgBa-iciFkOEP0_Fd713Ueqrz15lv5IackH9Xlo7p8VJdf1J2YxzNjAOBfXwouw0X4CxPxbKs
CODEN ITISFG
Cites_doi 10.1109/TITS.2014.2342200
10.1109/TITS.2021.3134702
10.1109/iSES54909.2022.00116
10.1109/AIDA-AT48540.2020.9049188
10.1109/MAES.2014.14110
10.1109/TITS.2020.2988531
10.1109/MAES.2024.3395182
10.1109/IV55152.2023.10186566
10.1109/ITSC57777.2023.10422672
10.1109/PLANS46316.2020.9110155
10.1109/JSEN.2021.3098006
10.33012/2021.17895
10.33012/2022.18333
10.3389/frobt.2023.1106439
10.1109/TRO.2021.3133730
10.33012/2023.19421
10.1109/PLANS.2006.1650612
10.33012/2019.17128
10.1007/s10291-015-0469-x
10.5194/isprs-archives-XLVI-3-W1-2022-61-2022
10.33012/2020.17663
10.1109/ITSC.2019.8917224
10.1155/2021/6573230
10.1109/LRA.2021.3138527
10.3390/rs10122052
10.1002/navi.448
10.33012/navi.622
10.3390/s23031566
10.1109/LRA.2021.3068893
10.1016/j.array.2022.100167
10.33012/2021.18014
10.1109/TITS.2020.2993052
10.1109/TAES.2022.3197098
10.33012/2021.18004
10.1109/ITSC57777.2023.10422540
10.1109/TITS.2022.3166275
10.1109/LRA.2022.3180441
10.3390/s21072503
10.33012/navi.548
10.1109/TITS.2021.3067057
10.1109/TITS.2024.3374819
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TITS.2025.3552691
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 10662
ExternalDocumentID 10_1109_TITS_2025_3552691
10965937
Genre orig-research
GrantInformation_xml – fundername: Research Centre for Data Sciences and Artificial Intelligence (RCDSAI)
– fundername: Meituan Academy of Robotics Shenzhen (H-ZGHQ)
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
ZY4
AAYXX
CITATION
ID FETCH-LOGICAL-c220t-b96f66183238426ee24022388d7b669cf14dc9311e1951aa0ec4b2ec65f4d7693
IEDL.DBID RIE
ISSN 1524-9050
IngestDate Wed Oct 01 05:46:25 EDT 2025
Wed Aug 27 02:14:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c220t-b96f66183238426ee24022388d7b669cf14dc9311e1951aa0ec4b2ec65f4d7693
ORCID 0000-0002-5693-7172
0000-0002-1462-3642
0000-0003-4158-0913
0000-0002-9199-1086
PageCount 11
ParticipantIDs ieee_primary_10965937
crossref_primary_10_1109_TITS_2025_3552691
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref17
ref16
ref19
ref18
Takasu (ref12); 1
Jakob (ref15) 2016
ref46
ref45
ref48
ref47
ref42
ref41
ref44
Dach (ref11) 2015
ref8
ref7
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Paszke (ref10); 32
Bendersky (ref14) 2022
ref24
ref23
ref26
ref25
van Diggelen (ref43) 2021; 16
ref20
ref22
Abadi (ref9)
ref21
ref28
ref27
ref29
Kingma (ref49) 2014
References_xml – volume-title: arXiv:1412.6980
  year: 2014
  ident: ref49
  article-title: Adam: A method for stochastic optimization
– ident: ref5
  doi: 10.1109/TITS.2014.2342200
– volume-title: pybind11—Seamless Operability Between C++11 and Python
  year: 2016
  ident: ref15
– ident: ref2
  doi: 10.1109/TITS.2021.3134702
– ident: ref25
  doi: 10.1109/iSES54909.2022.00116
– ident: ref33
  doi: 10.1109/AIDA-AT48540.2020.9049188
– ident: ref8
  doi: 10.1109/MAES.2014.14110
– ident: ref4
  doi: 10.1109/TITS.2020.2988531
– ident: ref21
  doi: 10.1109/MAES.2024.3395182
– ident: ref37
  doi: 10.1109/IV55152.2023.10186566
– ident: ref38
  doi: 10.1109/ITSC57777.2023.10422672
– ident: ref24
  doi: 10.1109/PLANS46316.2020.9110155
– ident: ref31
  doi: 10.1109/JSEN.2021.3098006
– ident: ref48
  doi: 10.33012/2021.17895
– ident: ref28
  doi: 10.33012/2022.18333
– ident: ref30
  doi: 10.3389/frobt.2023.1106439
– ident: ref18
  doi: 10.1109/TRO.2021.3133730
– ident: ref26
  doi: 10.33012/2023.19421
– ident: ref47
  doi: 10.1109/PLANS.2006.1650612
– ident: ref13
  doi: 10.33012/2019.17128
– start-page: 265
  volume-title: Proc. 12th USENIX Symp. Operating Syst. Design Implement. (OSDI)
  ident: ref9
  article-title: TensorFlow: A system for large-scale machine learning
– ident: ref16
  doi: 10.1007/s10291-015-0469-x
– ident: ref29
  doi: 10.5194/isprs-archives-XLVI-3-W1-2022-61-2022
– ident: ref34
  doi: 10.33012/2020.17663
– ident: ref35
  doi: 10.1109/ITSC.2019.8917224
– volume-title: Bernese GNSS software version 5.2
  year: 2015
  ident: ref11
– ident: ref41
  doi: 10.1155/2021/6573230
– ident: ref17
  doi: 10.1109/LRA.2021.3138527
– ident: ref36
  doi: 10.3390/rs10122052
– ident: ref7
  doi: 10.1002/navi.448
– ident: ref39
  doi: 10.33012/navi.622
– ident: ref22
  doi: 10.3390/s23031566
– ident: ref20
  doi: 10.1109/LRA.2021.3068893
– ident: ref27
  doi: 10.1016/j.array.2022.100167
– volume: 1
  start-page: 1
  volume-title: Proc. Int. Symp. GPS/GNSS
  ident: ref12
  article-title: Development of the low-cost RTK-GPS receiver with an open source program package RTKLIB
– ident: ref46
  doi: 10.33012/2021.18014
– ident: ref6
  doi: 10.1109/TITS.2020.2993052
– ident: ref23
  doi: 10.1109/TAES.2022.3197098
– ident: ref42
  doi: 10.33012/2021.18004
– ident: ref45
  doi: 10.1109/ITSC57777.2023.10422540
– ident: ref3
  doi: 10.1109/TITS.2022.3166275
– volume: 16
  start-page: 42
  issue: 2
  year: 2021
  ident: ref43
  article-title: End game for urban GNSS: Google’s use of 3D building models
  publication-title: Inside GNSS
– ident: ref19
  doi: 10.1109/LRA.2022.3180441
– ident: ref32
  doi: 10.3390/s21072503
– ident: ref40
  doi: 10.33012/navi.548
– volume: 32
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref10
  article-title: PyTorch: An imperative style, high-performance deep learning library
– ident: ref1
  doi: 10.1109/TITS.2021.3067057
– volume-title: Complete C99 Parser in Pure Python
  year: 2022
  ident: ref14
– ident: ref44
  doi: 10.1109/TITS.2024.3374819
SSID ssj0014511
Score 2.4537597
Snippet Global Navigation Satellite Systems (GNSS) are crucial for intelligent transportation systems (ITS), providing essential positioning capabilities globally....
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 10652
SubjectTerms Artificial intelligence
Deep learning
Global navigation satellite system
GNSS
Mathematical models
Position measurement
Python
Receivers
RTKLIB
Satellites
Training
Weight measurement
Title pyrtklib: An Open-Source Package for Tightly Coupled Deep Learning and GNSS Integration for Positioning in Urban Canyons
URI https://ieeexplore.ieee.org/document/10965937
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0016
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014511
  issn: 1524-9050
  databaseCode: RIE
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62Jz34rFhf5OBJSN1H9uWt1EcrWAq7hd6WTTIr0rItZQvWX-8ku5UqCN5CyEDITDIzmZlvCLlxvYxzS9jMd0LBuK0E05gwLMgdyC3BRZTpQuHXod8f85eJN6mL1U0tDACY5DPo6KGJ5au5XOmvMrzhGv7ODRqkEYR-Vaz1HTLQQFsGHNXhLLK8TQgTae6SQRKjK-h4HdSujh_ZP5TQVlcVo1SeDshws50ql2TaWZWiIz9_ITX-e7-HZL82L2m3kocjsgPFMdnbAh08IR-L9bLU8dF72i2oTihhsfnBp6NMTvF5oWjH0kQ77bM17c1Xixko-gCwoDUY6xvNCkWfh3FMBzXaBHLXkI3qHDC96L2g46XICtrDBweFu0XGT49Jr8_q_gtMOo5VMhH5OapvvPNuiIocQEdicByqQPh-JHObKxm5tg022mlZZoHkwgHpezlXusfiKWkW8wLOCEXHRVpKck9GGc8DCJWtLGXw1biL_nyb3G4Yki4qmI3UuCdWlGrupZp7ac29Nmnps95aWB3z-R_zF2RXk1dJtpekWS5XcIWmRCmujQh9AW5wxQc
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5aD-rBt1ifOXgSUveR3Xa9lWpttS2FbqG3ZZPMirRsS9mC9dc7yW6lCoK3EJIQMpPMTGbmG0JuXS_m3BI2852aYNxWgmlMGFZNHEgswUUQ60Thbs9vDfnLyBsVyeomFwYATPAZVHTT-PLVVC70VxnecA1_51Y3yZbHOffydK1vp4GG2jLwqA5ngeWtnJg46z5shwM0Bh2vgvLV8QP7hxhaq6tixEpzn_RWG8qjScaVRSYq8vMXVuO_d3xA9goFk9ZzjjgkG5Aekd012MFj8jFbzjPtIX2g9ZTqkBI2MH_4tB_LMT4wFDVZGmqzfbKkjeliNgFFHwFmtIBjfaNxquhzbzCg7QJvAulrpvWLKDA96D2lw7mIU9rAJwfZ-4QMm09ho8WKCgxMOo6VMRH4CQpwvPVuDUU5gPbFYLumqsL3A5nYXMnAtW2wUVOLYwskFw5I30u40lUWT0kpnaZwRiiaLtJSknsyiHlShZqylaUMwhp30aIvk7sVQaJZDrQRGQPFCiJNvUhTLyqoVyYn-qzXBubHfP5H_w3ZboXdTtRp914vyI5eKg-5vSSlbL6AK1QsMnFt2OkL7SDIVA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=pyrtklib%3A+An+Open-Source+Package+for+Tightly+Coupled+Deep+Learning+and+GNSS+Integration+for+Positioning+in+Urban+Canyons&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Hu%2C+Runzhi&rft.au=Xu%2C+Penghui&rft.au=Zhong%2C+Yihan&rft.au=Wen%2C+Weisong&rft.date=2025-07-01&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=26&rft.issue=7&rft.spage=10652&rft.epage=10662&rft_id=info:doi/10.1109%2FTITS.2025.3552691&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TITS_2025_3552691
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon