pyrtklib: An Open-Source Package for Tightly Coupled Deep Learning and GNSS Integration for Positioning in Urban Canyons
Global Navigation Satellite Systems (GNSS) are crucial for intelligent transportation systems (ITS), providing essential positioning capabilities globally. However, in urban canyons, the GNSS performance could significantly degraded due to the blockage of direct GNSS signals. The pseudorange measure...
        Saved in:
      
    
          | Published in | IEEE transactions on intelligent transportation systems Vol. 26; no. 7; pp. 10652 - 10662 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            IEEE
    
        01.07.2025
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1524-9050 1558-0016  | 
| DOI | 10.1109/TITS.2025.3552691 | 
Cover
| Abstract | Global Navigation Satellite Systems (GNSS) are crucial for intelligent transportation systems (ITS), providing essential positioning capabilities globally. However, in urban canyons, the GNSS performance could significantly degraded due to the blockage of direct GNSS signals. The pseudorange measurements are largely affected and the conventional model of weighting observations is not suitable in urban canyons. This paper addresses these challenges by integrating Artificial Intelligence (AI), specifically deep learning, into GNSS positioning process to enhance positioning accuracy. Traditional methods have primarily focused on pseudorange correction due to the absence of ground truth for weight estimation. In response, we propose an innovative indirect training approach using deep learning to optimize both pseudorange bias and weight estimation, aiming to minimize the positioning errors. To support this integration, we developed pyrtklib, a Python binding for the open-source RTKLIB tool, bridging the gap between traditional GNSS algorithms, typically developed in Fortran or C, and modern Python-based AI frameworks. Comparative analyses demonstrate that our method surpasses established tools like goGPS and RTKLIB in positioning accuracy, marking a significant advancement in the field. The source code of tightly coupled deep learning and GNSS integration, along with pyrtklib, is available on GitHub at https://github.com/ebhrz/TDL-GNSS and https://github.com/IPNL-POLYU/pyrtklib . | 
    
|---|---|
| AbstractList | Global Navigation Satellite Systems (GNSS) are crucial for intelligent transportation systems (ITS), providing essential positioning capabilities globally. However, in urban canyons, the GNSS performance could significantly degraded due to the blockage of direct GNSS signals. The pseudorange measurements are largely affected and the conventional model of weighting observations is not suitable in urban canyons. This paper addresses these challenges by integrating Artificial Intelligence (AI), specifically deep learning, into GNSS positioning process to enhance positioning accuracy. Traditional methods have primarily focused on pseudorange correction due to the absence of ground truth for weight estimation. In response, we propose an innovative indirect training approach using deep learning to optimize both pseudorange bias and weight estimation, aiming to minimize the positioning errors. To support this integration, we developed pyrtklib, a Python binding for the open-source RTKLIB tool, bridging the gap between traditional GNSS algorithms, typically developed in Fortran or C, and modern Python-based AI frameworks. Comparative analyses demonstrate that our method surpasses established tools like goGPS and RTKLIB in positioning accuracy, marking a significant advancement in the field. The source code of tightly coupled deep learning and GNSS integration, along with pyrtklib, is available on GitHub at https://github.com/ebhrz/TDL-GNSS and https://github.com/IPNL-POLYU/pyrtklib . | 
    
| Author | Hu, Runzhi Wen, Weisong Xu, Penghui Zhong, Yihan  | 
    
| Author_xml | – sequence: 1 givenname: Runzhi orcidid: 0000-0002-9199-1086 surname: Hu fullname: Hu, Runzhi organization: Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong – sequence: 2 givenname: Penghui orcidid: 0000-0002-5693-7172 surname: Xu fullname: Xu, Penghui organization: Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong – sequence: 3 givenname: Yihan orcidid: 0000-0002-1462-3642 surname: Zhong fullname: Zhong, Yihan organization: Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong – sequence: 4 givenname: Weisong orcidid: 0000-0003-4158-0913 surname: Wen fullname: Wen, Weisong email: welson.wen@polyu.edu.hk organization: Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong  | 
    
| BookMark | eNpNkEFOwzAQRS0EEm3hAEgsfIEU24ndmF0VoFSqaKWk68hxJsE02JGTSuT2NLQLVvNn9N8s3hRdW2cBoQdK5pQS-ZSts3TOCOPzkHMmJL1CE8p5HBBCxfWYWRRIwsktmnbd1-kacUon6KcdfH9oTPGMlxZvW7BB6o5eA94pfVA14Mp5nJn6s28GnLhj20CJXwBavAHlrbE1VrbEq480xWvbQ-1Vb5z9w3auM-MylozFe18oixNlB2e7O3RTqaaD-8ucof3ba5a8B5vtap0sN4FmjPRBIUUlBI1DFsYREwAsIuyU43JRCCF1RaNSy5BSoJJTpQjoqGCgBa-iciFkOEP0_Fd713Ueqrz15lv5IackH9Xlo7p8VJdf1J2YxzNjAOBfXwouw0X4CxPxbKs | 
    
| CODEN | ITISFG | 
    
| Cites_doi | 10.1109/TITS.2014.2342200 10.1109/TITS.2021.3134702 10.1109/iSES54909.2022.00116 10.1109/AIDA-AT48540.2020.9049188 10.1109/MAES.2014.14110 10.1109/TITS.2020.2988531 10.1109/MAES.2024.3395182 10.1109/IV55152.2023.10186566 10.1109/ITSC57777.2023.10422672 10.1109/PLANS46316.2020.9110155 10.1109/JSEN.2021.3098006 10.33012/2021.17895 10.33012/2022.18333 10.3389/frobt.2023.1106439 10.1109/TRO.2021.3133730 10.33012/2023.19421 10.1109/PLANS.2006.1650612 10.33012/2019.17128 10.1007/s10291-015-0469-x 10.5194/isprs-archives-XLVI-3-W1-2022-61-2022 10.33012/2020.17663 10.1109/ITSC.2019.8917224 10.1155/2021/6573230 10.1109/LRA.2021.3138527 10.3390/rs10122052 10.1002/navi.448 10.33012/navi.622 10.3390/s23031566 10.1109/LRA.2021.3068893 10.1016/j.array.2022.100167 10.33012/2021.18014 10.1109/TITS.2020.2993052 10.1109/TAES.2022.3197098 10.33012/2021.18004 10.1109/ITSC57777.2023.10422540 10.1109/TITS.2022.3166275 10.1109/LRA.2022.3180441 10.3390/s21072503 10.33012/navi.548 10.1109/TITS.2021.3067057 10.1109/TITS.2024.3374819  | 
    
| ContentType | Journal Article | 
    
| DBID | 97E RIA RIE AAYXX CITATION  | 
    
| DOI | 10.1109/TITS.2025.3552691 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1558-0016 | 
    
| EndPage | 10662 | 
    
| ExternalDocumentID | 10_1109_TITS_2025_3552691 10965937  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: Research Centre for Data Sciences and Artificial Intelligence (RCDSAI) – fundername: Meituan Academy of Robotics Shenzhen (H-ZGHQ)  | 
    
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS ZY4 AAYXX CITATION  | 
    
| ID | FETCH-LOGICAL-c220t-b96f66183238426ee24022388d7b669cf14dc9311e1951aa0ec4b2ec65f4d7693 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 1524-9050 | 
    
| IngestDate | Wed Oct 01 05:46:25 EDT 2025 Wed Aug 27 02:14:28 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 7 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c220t-b96f66183238426ee24022388d7b669cf14dc9311e1951aa0ec4b2ec65f4d7693 | 
    
| ORCID | 0000-0002-5693-7172 0000-0002-1462-3642 0000-0003-4158-0913 0000-0002-9199-1086  | 
    
| PageCount | 11 | 
    
| ParticipantIDs | ieee_primary_10965937 crossref_primary_10_1109_TITS_2025_3552691  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-07-01 | 
    
| PublicationDateYYYYMMDD | 2025-07-01 | 
    
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | IEEE transactions on intelligent transportation systems | 
    
| PublicationTitleAbbrev | TITS | 
    
| PublicationYear | 2025 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| References | ref13 ref17 ref16 ref19 ref18 Takasu (ref12); 1 Jakob (ref15) 2016 ref46 ref45 ref48 ref47 ref42 ref41 ref44 Dach (ref11) 2015 ref8 ref7 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 Paszke (ref10); 32 Bendersky (ref14) 2022 ref24 ref23 ref26 ref25 van Diggelen (ref43) 2021; 16 ref20 ref22 Abadi (ref9) ref21 ref28 ref27 ref29 Kingma (ref49) 2014  | 
    
| References_xml | – volume-title: arXiv:1412.6980 year: 2014 ident: ref49 article-title: Adam: A method for stochastic optimization – ident: ref5 doi: 10.1109/TITS.2014.2342200 – volume-title: pybind11—Seamless Operability Between C++11 and Python year: 2016 ident: ref15 – ident: ref2 doi: 10.1109/TITS.2021.3134702 – ident: ref25 doi: 10.1109/iSES54909.2022.00116 – ident: ref33 doi: 10.1109/AIDA-AT48540.2020.9049188 – ident: ref8 doi: 10.1109/MAES.2014.14110 – ident: ref4 doi: 10.1109/TITS.2020.2988531 – ident: ref21 doi: 10.1109/MAES.2024.3395182 – ident: ref37 doi: 10.1109/IV55152.2023.10186566 – ident: ref38 doi: 10.1109/ITSC57777.2023.10422672 – ident: ref24 doi: 10.1109/PLANS46316.2020.9110155 – ident: ref31 doi: 10.1109/JSEN.2021.3098006 – ident: ref48 doi: 10.33012/2021.17895 – ident: ref28 doi: 10.33012/2022.18333 – ident: ref30 doi: 10.3389/frobt.2023.1106439 – ident: ref18 doi: 10.1109/TRO.2021.3133730 – ident: ref26 doi: 10.33012/2023.19421 – ident: ref47 doi: 10.1109/PLANS.2006.1650612 – ident: ref13 doi: 10.33012/2019.17128 – start-page: 265 volume-title: Proc. 12th USENIX Symp. Operating Syst. Design Implement. (OSDI) ident: ref9 article-title: TensorFlow: A system for large-scale machine learning – ident: ref16 doi: 10.1007/s10291-015-0469-x – ident: ref29 doi: 10.5194/isprs-archives-XLVI-3-W1-2022-61-2022 – ident: ref34 doi: 10.33012/2020.17663 – ident: ref35 doi: 10.1109/ITSC.2019.8917224 – volume-title: Bernese GNSS software version 5.2 year: 2015 ident: ref11 – ident: ref41 doi: 10.1155/2021/6573230 – ident: ref17 doi: 10.1109/LRA.2021.3138527 – ident: ref36 doi: 10.3390/rs10122052 – ident: ref7 doi: 10.1002/navi.448 – ident: ref39 doi: 10.33012/navi.622 – ident: ref22 doi: 10.3390/s23031566 – ident: ref20 doi: 10.1109/LRA.2021.3068893 – ident: ref27 doi: 10.1016/j.array.2022.100167 – volume: 1 start-page: 1 volume-title: Proc. Int. Symp. GPS/GNSS ident: ref12 article-title: Development of the low-cost RTK-GPS receiver with an open source program package RTKLIB – ident: ref46 doi: 10.33012/2021.18014 – ident: ref6 doi: 10.1109/TITS.2020.2993052 – ident: ref23 doi: 10.1109/TAES.2022.3197098 – ident: ref42 doi: 10.33012/2021.18004 – ident: ref45 doi: 10.1109/ITSC57777.2023.10422540 – ident: ref3 doi: 10.1109/TITS.2022.3166275 – volume: 16 start-page: 42 issue: 2 year: 2021 ident: ref43 article-title: End game for urban GNSS: Google’s use of 3D building models publication-title: Inside GNSS – ident: ref19 doi: 10.1109/LRA.2022.3180441 – ident: ref32 doi: 10.3390/s21072503 – ident: ref40 doi: 10.33012/navi.548 – volume: 32 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref10 article-title: PyTorch: An imperative style, high-performance deep learning library – ident: ref1 doi: 10.1109/TITS.2021.3067057 – volume-title: Complete C99 Parser in Pure Python year: 2022 ident: ref14 – ident: ref44 doi: 10.1109/TITS.2024.3374819  | 
    
| SSID | ssj0014511 | 
    
| Score | 2.4537597 | 
    
| Snippet | Global Navigation Satellite Systems (GNSS) are crucial for intelligent transportation systems (ITS), providing essential positioning capabilities globally.... | 
    
| SourceID | crossref ieee  | 
    
| SourceType | Index Database Publisher  | 
    
| StartPage | 10652 | 
    
| SubjectTerms | Artificial intelligence Deep learning Global navigation satellite system GNSS Mathematical models Position measurement Python Receivers RTKLIB Satellites Training Weight measurement  | 
    
| Title | pyrtklib: An Open-Source Package for Tightly Coupled Deep Learning and GNSS Integration for Positioning in Urban Canyons | 
    
| URI | https://ieeexplore.ieee.org/document/10965937 | 
    
| Volume | 26 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0016 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014511 issn: 1524-9050 databaseCode: RIE dateStart: 20000101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62Jz34rFhf5OBJSN1H9uWt1EcrWAq7hd6WTTIr0rItZQvWX-8ku5UqCN5CyEDITDIzmZlvCLlxvYxzS9jMd0LBuK0E05gwLMgdyC3BRZTpQuHXod8f85eJN6mL1U0tDACY5DPo6KGJ5au5XOmvMrzhGv7ODRqkEYR-Vaz1HTLQQFsGHNXhLLK8TQgTae6SQRKjK-h4HdSujh_ZP5TQVlcVo1SeDshws50ql2TaWZWiIz9_ITX-e7-HZL82L2m3kocjsgPFMdnbAh08IR-L9bLU8dF72i2oTihhsfnBp6NMTvF5oWjH0kQ77bM17c1Xixko-gCwoDUY6xvNCkWfh3FMBzXaBHLXkI3qHDC96L2g46XICtrDBweFu0XGT49Jr8_q_gtMOo5VMhH5OapvvPNuiIocQEdicByqQPh-JHObKxm5tg022mlZZoHkwgHpezlXusfiKWkW8wLOCEXHRVpKck9GGc8DCJWtLGXw1biL_nyb3G4Yki4qmI3UuCdWlGrupZp7ac29Nmnps95aWB3z-R_zF2RXk1dJtpekWS5XcIWmRCmujQh9AW5wxQc | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5aD-rBt1ifOXgSUveR3Xa9lWpttS2FbqG3ZZPMirRsS9mC9dc7yW6lCoK3EJIQMpPMTGbmG0JuXS_m3BI2852aYNxWgmlMGFZNHEgswUUQ60Thbs9vDfnLyBsVyeomFwYATPAZVHTT-PLVVC70VxnecA1_51Y3yZbHOffydK1vp4GG2jLwqA5ngeWtnJg46z5shwM0Bh2vgvLV8QP7hxhaq6tixEpzn_RWG8qjScaVRSYq8vMXVuO_d3xA9goFk9ZzjjgkG5Aekd012MFj8jFbzjPtIX2g9ZTqkBI2MH_4tB_LMT4wFDVZGmqzfbKkjeliNgFFHwFmtIBjfaNxquhzbzCg7QJvAulrpvWLKDA96D2lw7mIU9rAJwfZ-4QMm09ho8WKCgxMOo6VMRH4CQpwvPVuDUU5gPbFYLumqsL3A5nYXMnAtW2wUVOLYwskFw5I30u40lUWT0kpnaZwRiiaLtJSknsyiHlShZqylaUMwhp30aIvk7sVQaJZDrQRGQPFCiJNvUhTLyqoVyYn-qzXBubHfP5H_w3ZboXdTtRp914vyI5eKg-5vSSlbL6AK1QsMnFt2OkL7SDIVA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=pyrtklib%3A+An+Open-Source+Package+for+Tightly+Coupled+Deep+Learning+and+GNSS+Integration+for+Positioning+in+Urban+Canyons&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Hu%2C+Runzhi&rft.au=Xu%2C+Penghui&rft.au=Zhong%2C+Yihan&rft.au=Wen%2C+Weisong&rft.date=2025-07-01&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=26&rft.issue=7&rft.spage=10652&rft.epage=10662&rft_id=info:doi/10.1109%2FTITS.2025.3552691&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TITS_2025_3552691 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon |