Improving Floating Offshore Wind Farm Flow Control With Scalable Model-Based Deep Reinforcement Learning

This paper proposes a model-based deep reinforcement learning (DRL) framework to maximize the total power output and minimize the fatigue load of a floating offshore wind farm subject to wake effect. Recognizing the extensive interactions required for the DRL training, we first develop an open-sourc...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automation science and engineering Vol. 22; pp. 18255 - 18268
Main Authors Mei, Mingyang, Kou, Peng, Xu, Yilin, Zhang, Zhihao, Tian, Runze, Liang, Deliang
Format Journal Article
LanguageEnglish
Published IEEE 2025
Subjects
Online AccessGet full text
ISSN1545-5955
1558-3783
DOI10.1109/TASE.2025.3585016

Cover

Abstract This paper proposes a model-based deep reinforcement learning (DRL) framework to maximize the total power output and minimize the fatigue load of a floating offshore wind farm subject to wake effect. Recognizing the extensive interactions required for the DRL training, we first develop an open-source physics-based model that describes the time-averaged dynamics of the floating wind farm. This model is designed with sufficient fidelity to support the wind farm control and high computational efficiency to facilitate DRL training. Subsequently, a model-based DRL approach is proposed, featuring simultaneous learning of system dynamics and optimal control policies. This dual learning process enhances the scalability of the DRL agent, making the framework suitable for large-scale floating wind farms. Finally, the effectiveness of the proposed scheme is validated by case studies with a dynamic floating wind farm simulator FAST.Farm. Note to Practitioners -This paper was motivated by the problem of improving the energy production and reducing fatigue load for floating offshore wind farms affected by wake effects, but it also applies to other types of wind farms. Traditional approaches to wind farm optimization often struggle with the computational complexity of modeling turbine interactions and wake dynamics. To address this, this paper proposes a new approach for optimal wind farm flow control using model-based DRL, which simultaneously learns system dynamics and optimizes control strategies. This integrated approach enhances the training stability and scalability of the DRL agent, making it suitable for large-scale wind farms. Simulation results on a dynamic wind farm simulator FAST.Farm suggest that this approach is feasible but it has not yet been incorporated into a real wind farm energy management system. Future work will explore its integration with real-time monitoring systems.
AbstractList This paper proposes a model-based deep reinforcement learning (DRL) framework to maximize the total power output and minimize the fatigue load of a floating offshore wind farm subject to wake effect. Recognizing the extensive interactions required for the DRL training, we first develop an open-source physics-based model that describes the time-averaged dynamics of the floating wind farm. This model is designed with sufficient fidelity to support the wind farm control and high computational efficiency to facilitate DRL training. Subsequently, a model-based DRL approach is proposed, featuring simultaneous learning of system dynamics and optimal control policies. This dual learning process enhances the scalability of the DRL agent, making the framework suitable for large-scale floating wind farms. Finally, the effectiveness of the proposed scheme is validated by case studies with a dynamic floating wind farm simulator FAST.Farm. Note to Practitioners -This paper was motivated by the problem of improving the energy production and reducing fatigue load for floating offshore wind farms affected by wake effects, but it also applies to other types of wind farms. Traditional approaches to wind farm optimization often struggle with the computational complexity of modeling turbine interactions and wake dynamics. To address this, this paper proposes a new approach for optimal wind farm flow control using model-based DRL, which simultaneously learns system dynamics and optimizes control strategies. This integrated approach enhances the training stability and scalability of the DRL agent, making it suitable for large-scale wind farms. Simulation results on a dynamic wind farm simulator FAST.Farm suggest that this approach is feasible but it has not yet been incorporated into a real wind farm energy management system. Future work will explore its integration with real-time monitoring systems.
Author Mei, Mingyang
Liang, Deliang
Tian, Runze
Xu, Yilin
Kou, Peng
Zhang, Zhihao
Author_xml – sequence: 1
  givenname: Mingyang
  orcidid: 0009-0007-8313-8855
  surname: Mei
  fullname: Mei, Mingyang
  email: meimingyang@mail.stu.xjtu.edu.cn
  organization: State Key Laboratory of Electrical Insulation and Power Equipment, Shaanxi Key Laboratory of Smart Grid, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, China
– sequence: 2
  givenname: Peng
  orcidid: 0000-0002-6122-3959
  surname: Kou
  fullname: Kou, Peng
  email: koupeng@mail.xjtu.edu.cn
  organization: State Key Laboratory of Electrical Insulation and Power Equipment, Shaanxi Key Laboratory of Smart Grid, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, China
– sequence: 3
  givenname: Yilin
  surname: Xu
  fullname: Xu, Yilin
  organization: State Key Laboratory of Electrical Insulation and Power Equipment, Shaanxi Key Laboratory of Smart Grid, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, China
– sequence: 4
  givenname: Zhihao
  orcidid: 0000-0003-3900-2305
  surname: Zhang
  fullname: Zhang, Zhihao
  organization: State Key Laboratory of Electrical Insulation and Power Equipment, Shaanxi Key Laboratory of Smart Grid, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, China
– sequence: 5
  givenname: Runze
  orcidid: 0000-0001-8923-0328
  surname: Tian
  fullname: Tian, Runze
  organization: State Key Laboratory of Electrical Insulation and Power Equipment, Shaanxi Key Laboratory of Smart Grid, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, China
– sequence: 6
  givenname: Deliang
  orcidid: 0000-0002-2394-1781
  surname: Liang
  fullname: Liang, Deliang
  organization: State Key Laboratory of Electrical Insulation and Power Equipment, Shaanxi Key Laboratory of Smart Grid, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, China
BookMark eNpFkF9LwzAUxYNMcJt-AMGHfIHO_Gna9HHOTQeTgZv4WNLkxlXaZCRF2be3ZQOfzuHce87Db4JGzjtA6J6SGaWkeNzPd8sZI0zMuJCC0OwKjakQMuG55KPBpyIRhRA3aBLjNyEslQUZo8O6PQb_U7svvGq86gaztTYefAD8WTuDVyq0w-0XL7zrgm_6uDvgnVaNqhrAb95AkzypCAY_AxzxO9TO-qChBdfhDajg-tVbdG1VE-HuolP0sVruF6_JZvuyXsw3iWaMdEmVG60MTw0objKeE0opM4XgMqXSiEzzlBRVRbQqtJKG8SLnlIPNBLFasIpPET3v6uBjDGDLY6hbFU4lJeWAqhxQlQOq8oKq7zycOzUA_P9TkvWUMv4HMidnuw
CODEN ITASC7
Cites_doi 10.1088/2516-1083/ac6cc1
10.1017/jfm.2023.129
10.5194/wes-2021-19
10.1016/j.rser.2023.113416
10.1175/JTECH1886.1
10.5194/wes-5-451-2020
10.1109/tste.2025.3555266
10.1016/j.taml.2023.100475
10.1016/j.neunet.2022.03.037
10.1109/TASE.2024.3393918
10.1016/j.jfranklin.2024.107112
10.1016/j.renene.2023.119129
10.1109/TCST.2022.3223185
10.1016/j.renene.2016.07.038
10.1016/j.apenergy.2023.121849
10.1007/s11036-017-0962-2
10.1109/TCST.2023.3243383
10.5194/wes-9-1827-2024
10.1016/j.oceaneng.2024.119971
10.5194/wes-5-945-2020
10.1109/TSTE.2024.3392882
10.5194/wes-7-2271-2022
10.1088/1742-6596/2767/3/032017
10.1088/1361-6501/ad0f6d
10.1016/j.rser.2025.115605
10.23919/ACC.2019.8814600
10.1007/s11036-017-0886-x
10.5194/wes-8-1071-2023
10.5194/wes-6-701-2021
10.1088/1742-6596/2265/2/022063
10.1109/TASE.2023.3295576
10.1088/1742-6596/2767/9/092090
10.1109/MCS.2024.3432342
10.1063/5.0141683
10.2172/891594
10.1109/TASE.2024.3389020
10.1088/1742-6596/2265/3/032109
10.1038/s41560-022-01085-8
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TASE.2025.3585016
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-3783
EndPage 18268
ExternalDocumentID 10_1109_TASE_2025_3585016
11062486
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 52077165
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
ID FETCH-LOGICAL-c220t-b7dcad34dea3d63701112d9538418d56c3409bb0ca9ca8d2397313ef650fc52b3
IEDL.DBID RIE
ISSN 1545-5955
IngestDate Wed Oct 01 05:44:26 EDT 2025
Wed Aug 27 02:13:12 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c220t-b7dcad34dea3d63701112d9538418d56c3409bb0ca9ca8d2397313ef650fc52b3
ORCID 0000-0001-8923-0328
0009-0007-8313-8855
0000-0002-6122-3959
0000-0002-2394-1781
0000-0003-3900-2305
PageCount 14
ParticipantIDs ieee_primary_11062486
crossref_primary_10_1109_TASE_2025_3585016
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationTitle IEEE transactions on automation science and engineering
PublicationTitleAbbrev TASE
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref32
Hafner (ref35) 2023
ref1
Becker (ref10) 2025
ref17
ref16
ref38
(ref2) 2024
ref19
Kadoche (ref13) 2025
ref18
Hall (ref39) 2024
ref24
Jonkman (ref43) 2021
ref23
ref45
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Fujimoto (ref26); 36
ref40
References_xml – ident: ref33
  doi: 10.1088/2516-1083/ac6cc1
– ident: ref38
  doi: 10.1017/jfm.2023.129
– ident: ref37
  doi: 10.5194/wes-2021-19
– ident: ref1
  doi: 10.1016/j.rser.2023.113416
– ident: ref4
  doi: 10.1175/JTECH1886.1
– ident: ref5
  doi: 10.5194/wes-5-451-2020
– ident: ref15
  doi: 10.1109/tste.2025.3555266
– ident: ref32
  doi: 10.1016/j.taml.2023.100475
– ident: ref34
  doi: 10.1016/j.neunet.2022.03.037
– year: 2023
  ident: ref35
  article-title: Mastering diverse domains through world models
  publication-title: arXiv:2301.04104
– ident: ref18
  doi: 10.1109/TASE.2024.3393918
– ident: ref31
  doi: 10.1016/j.jfranklin.2024.107112
– year: 2025
  ident: ref13
  article-title: How to craft a deep reinforcement learning policy for wind farm flow control
  publication-title: arXiv:2506.06204
– ident: ref14
  doi: 10.1016/j.renene.2023.119129
– ident: ref12
  doi: 10.1109/TCST.2022.3223185
– ident: ref42
  doi: 10.1016/j.renene.2016.07.038
– ident: ref9
  doi: 10.1016/j.apenergy.2023.121849
– ident: ref29
  doi: 10.1007/s11036-017-0962-2
– ident: ref19
  doi: 10.1109/TCST.2023.3243383
– ident: ref21
  doi: 10.5194/wes-9-1827-2024
– ident: ref23
  doi: 10.1016/j.oceaneng.2024.119971
– ident: ref8
  doi: 10.5194/wes-5-945-2020
– ident: ref17
  doi: 10.1109/TSTE.2024.3392882
– volume: 36
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process
  ident: ref26
  article-title: For SALE: State-action representation learning for deep reinforcement learning
– ident: ref6
  doi: 10.5194/wes-7-2271-2022
– ident: ref11
  doi: 10.1088/1742-6596/2767/3/032017
– ident: ref30
  doi: 10.1088/1361-6501/ad0f6d
– volume-title: Moorpy (Quasi-Static Mooring Analysis in Python)
  year: 2024
  ident: ref39
– ident: ref36
  doi: 10.1016/j.rser.2025.115605
– year: 2021
  ident: ref43
  article-title: Fast.Farm user’s guide and theory manual
– ident: ref20
  doi: 10.23919/ACC.2019.8814600
– ident: ref45
  doi: 10.1007/s11036-017-0886-x
– ident: ref3
  doi: 10.5194/wes-8-1071-2023
– year: 2025
  ident: ref10
  article-title: Closed-loop model-predictive wind farm flow control under time-varying inflow using FLORIDyn
  publication-title: arXiv:2503.02790
– ident: ref40
  doi: 10.5194/wes-6-701-2021
– ident: ref41
  doi: 10.1088/1742-6596/2265/2/022063
– ident: ref16
  doi: 10.1109/TASE.2023.3295576
– ident: ref24
  doi: 10.1088/1742-6596/2767/9/092090
– ident: ref22
  doi: 10.1109/MCS.2024.3432342
– ident: ref28
  doi: 10.1063/5.0141683
– ident: ref44
  doi: 10.2172/891594
– ident: ref27
  doi: 10.1109/TASE.2024.3389020
– volume-title: Offshore Wind Technical Potential | Analysis and Maps
  year: 2024
  ident: ref2
– ident: ref7
  doi: 10.1088/1742-6596/2265/3/032109
– ident: ref25
  doi: 10.1038/s41560-022-01085-8
SSID ssj0024890
Score 2.3920715
Snippet This paper proposes a model-based deep reinforcement learning (DRL) framework to maximize the total power output and minimize the fatigue load of a floating...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 18255
SubjectTerms Automation
Computational modeling
deep reinforcement learning
energy generation
Fatigue
fatigue load
floating offshore wind farm
Load modeling
Optimal control
System dynamics
Training
turbine repositioning
wake effect
Wind energy
Wind farms
Wind speed
Wind turbines
Title Improving Floating Offshore Wind Farm Flow Control With Scalable Model-Based Deep Reinforcement Learning
URI https://ieeexplore.ieee.org/document/11062486
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1558-3783
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024890
  issn: 1545-5955
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LS8MwGA9uJz34nDhf5OBJaNc1bZoc59wYghPchruVvOrAuY3ZIfjXmy_t3BAEbyVNS8gX8r1_P4RudFMqbm89j0eZ8iLr93gc0oWKUcBCkYlh0Jz82Ke9UfQwjsdls7rrhTHGuOIz48Ojy-XruVpBqKxhVRUNI0YrqJIkvGjW2gDrMRdQAZPAi3kclynMZsAbw9agY13BMPaJtY4D4DbfUkJbrCpOqXQPUH-9nKKW5M1f5dJXX7-QGv-93kO0X5qXuFWchyO0Y2bHaG8LdPAETX7iCLg7nQsoe8ZPWfYxsX_HL9ZFx12xfId3n7hdFLLb4XyCB1ac0GiFgT9t6t1Z_afxvTEL_Gwc_qpyoUZcQra-1tCo2xm2e17Jt-CpMAxyTyZaCU0ibQTRlCRAQx9qbq_EqMl0TBWxzqCUgRJcCaZDArRXxGTWyMtUHEpyiqqz-cycIdykiWBUWPtF80hwzRinGc0iJhJJpAjr6HYtgHRRwGqkzh0JeArSSkFaaSmtOqrB3m4mltt6_sf4BdqFz4tAySWq5suVubKmQy6v3ZH5BpKJv24
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA46H9QH7-LdPPgkdHZNmyaPc25M3Sa4DX0rudWBuo3ZIfjrzUk7NwTBt5KGEHJCzndu30HoQlek4vbV83iYKi-0do_HIVyoGAUuFBkbBsXJ7Q5t9sO75-i5KFZ3tTDGGJd8Zsrw6WL5eqSm4Cq7sqqKBiGjy2glsmZFnJdrzan1mHOpACjwIh5FRRCz4vOrXrVbt8ZgEJWJxcc-dDdfUEMLfVWcWmlsos5sQ3k2yWt5msmy-vrF1fjvHW-hjQJg4mp-I7bRkhnuoPUF2sFdNPjxJODG20hA4jN-SNOPgV0dP1kjHTfE5B3-feJanspuh7MB7lqBQqkVhg5qb9611YAa3xgzxo_GMbAq52zEBWnryx7qN-q9WtMrOi54Kgj8zJOxVkKTUBtBNCUxNKIPNLePYlhhOqKKWHNQSl8JrgTTAYHGV8SkFualKgok2Uel4WhoDhCu0FgwKiyC0TwUXDPGaUrTkIlYEimCQ3Q5E0Ayzok1EmeQ-DwBaSUgraSQ1iHag7OdTyyO9eiP8XO02uy1W0nrtnN_jNZgqdxtcoJK2WRqTi2QyOSZuz7f0GjCvw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+Floating+Offshore+Wind+Farm+Flow+Control+With+Scalable+Model-Based+Deep+Reinforcement+Learning&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Mei%2C+Mingyang&rft.au=Kou%2C+Peng&rft.au=Xu%2C+Yilin&rft.au=Zhang%2C+Zhihao&rft.date=2025&rft.issn=1545-5955&rft.eissn=1558-3783&rft.volume=22&rft.spage=18255&rft.epage=18268&rft_id=info:doi/10.1109%2FTASE.2025.3585016&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TASE_2025_3585016
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon