Multifunctional Electrodes for Signal Soil Measurements: Benchmark With ML-Based Algorithms

Soil monitoring is a crucial issue for sustainable field and agricultural management. This article explores the performance of machine learning models in classifying soil types under varying moisture levels using wire–plate and plate–plate sensor configurations. Voltammetric sensors can be used to a...

Full description

Saved in:
Bibliographic Details
Published inIEEE pervasive computing Vol. 24; no. 3; pp. 32 - 42
Main Authors Sabatini, Anna, Sasso, Daniele, Muraro, Mattia, Santonico, Marco, Vollero, Luca, Pennazza, Giorgio
Format Journal Article
LanguageEnglish
Published IEEE 01.07.2025
Subjects
Online AccessGet full text
ISSN1536-1268
1558-2590
DOI10.1109/MPRV.2025.3574965

Cover

Abstract Soil monitoring is a crucial issue for sustainable field and agricultural management. This article explores the performance of machine learning models in classifying soil types under varying moisture levels using wire–plate and plate–plate sensor configurations. Voltammetric sensors can be used to analyze soil in situ and act as a microbial fuel cell (MFC). Several classifiers were applied, and the logistic regression and support vector machine achieved the highest accuracy, reaching 99% in the wire–plate configuration and 94% in the plate–plate configuration. Focusing on soil classification under different moisture conditions, Adaboost and random forest outperformed other models, achieving an accuracy of 93% and 90%, respectively. The study highlights the importance of sensor design, model selection, and environmental factors in optimizing soil classification accuracy. These findings suggest that tailored machine learning approaches, in combination with refined sensor configurations, can improve the reliability of soil monitoring systems in agricultural and environmental applications. Furthermore, the integration of MFCs enables simultaneous soil characterization and energy harvesting, enhancing the potential for self-sustaining monitoring solutions.
AbstractList Soil monitoring is a crucial issue for sustainable field and agricultural management. This article explores the performance of machine learning models in classifying soil types under varying moisture levels using wire–plate and plate–plate sensor configurations. Voltammetric sensors can be used to analyze soil in situ and act as a microbial fuel cell (MFC). Several classifiers were applied, and the logistic regression and support vector machine achieved the highest accuracy, reaching 99% in the wire–plate configuration and 94% in the plate–plate configuration. Focusing on soil classification under different moisture conditions, Adaboost and random forest outperformed other models, achieving an accuracy of 93% and 90%, respectively. The study highlights the importance of sensor design, model selection, and environmental factors in optimizing soil classification accuracy. These findings suggest that tailored machine learning approaches, in combination with refined sensor configurations, can improve the reliability of soil monitoring systems in agricultural and environmental applications. Furthermore, the integration of MFCs enables simultaneous soil characterization and energy harvesting, enhancing the potential for self-sustaining monitoring solutions.
Author Pennazza, Giorgio
Santonico, Marco
Vollero, Luca
Sasso, Daniele
Muraro, Mattia
Sabatini, Anna
Author_xml – sequence: 1
  givenname: Anna
  orcidid: 0000-0002-6206-5366
  surname: Sabatini
  fullname: Sabatini, Anna
  email: a.sabatini@unicampus.it
  organization: Università Campus Bio-Medico di Roma, Rome, Italy
– sequence: 2
  givenname: Daniele
  orcidid: 0009-0009-3137-9715
  surname: Sasso
  fullname: Sasso, Daniele
  email: d.sasso@unicampus.it
  organization: Università Campus Bio-Medico di Roma, Rome, Italy
– sequence: 3
  givenname: Mattia
  surname: Muraro
  fullname: Muraro, Mattia
  email: mattia.muraro@alcampus.it
  organization: Università Campus Bio-Medico di Roma, Rome, Italy
– sequence: 4
  givenname: Marco
  orcidid: 0000-0002-3755-6198
  surname: Santonico
  fullname: Santonico, Marco
  email: m.santonico@unicampus.it
  organization: Università Campus Bio-Medico di Roma, Rome, Italy
– sequence: 5
  givenname: Luca
  orcidid: 0000-0002-6928-0157
  surname: Vollero
  fullname: Vollero, Luca
  email: l.vollero@unicampus.it
  organization: Università Campus Bio-Medico di Roma, Rome, Italy
– sequence: 6
  givenname: Giorgio
  orcidid: 0000-0003-4843-9445
  surname: Pennazza
  fullname: Pennazza, Giorgio
  email: g.pennazza@unicampus.it
  organization: Università Campus Bio-Medico di Roma, Rome, Italy
BookMark eNpFkEtLAzEUhYNUsFZ_gOAif2BqHs3LXVvqAzoo1sfCxZAmd9rR6USS6cJ_7wwtuDqXwz2Hw3eOBk1oAKErSsaUEnOTP7-8jxlhYsyFmhgpTtCQCqEzJgwZ9DeXGWVSn6HzlL4IodoYM0Sf-b5uq3LfuLYKja3xogbXxuAh4TJEvKo2vbsKVY1zsGkfYQdNm27xDBq33dn4jT-qdovzZTazCTye1psQO2eXLtBpaesEl0cdobe7xev8IVs-3T_Op8vMMUbabCKFkU5SJYFQbxiTotTgwK056Qa7NVHKgjLag_ZOeeb52mnuiZJS2dLwEaKHXhdDShHK4idW3bLfgpKip1P0dIqeTnGk02WuD5kKAP7_KRFMK87_APKYY_g
CODEN IPCECF
Cites_doi 10.1016/j.compag.2019.105169
10.3390/mi13091440
10.1002/er.7288
10.2136/sssaj2017.04.0122
10.3390/s19061378
10.1007/s11277-020-07437-5
10.1016/j.iswcr.2023.03.002
10.5194/isprs-annals-IV-2-W5-615-2019
10.1016/j.biortech.2014.01.058
10.3390/rs14153814
10.1016/j.biortech.2021.125772
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/MPRV.2025.3574965
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2590
EndPage 42
ExternalDocumentID 10_1109_MPRV_2025_3574965
11052873
Genre orig-research
GrantInformation_xml – fundername: PON "Ricerca e Innovazione"
  grantid: 2014-2020
– fundername: National Recovery and Resilience Plan
– fundername: European Union-NextGenerationEU
GroupedDBID -D7
-DT
-~X
.DC
0R~
1OL
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABHFT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AFOGA
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IEDLZ
IFIPE
IPLJI
JAVBF
KZ1
LAI
LMP
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RZB
AAYXX
CITATION
ID FETCH-LOGICAL-c220t-46596c6176e01d92265f8ececb30268cb077ae798de8dc7d2d3bc83d07667af93
IEDL.DBID RIE
ISSN 1536-1268
IngestDate Wed Oct 01 05:33:07 EDT 2025
Wed Aug 27 07:40:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c220t-46596c6176e01d92265f8ececb30268cb077ae798de8dc7d2d3bc83d07667af93
ORCID 0000-0002-6928-0157
0009-0009-3137-9715
0000-0002-6206-5366
0000-0003-4843-9445
0000-0002-3755-6198
PageCount 11
ParticipantIDs ieee_primary_11052873
crossref_primary_10_1109_MPRV_2025_3574965
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE pervasive computing
PublicationTitleAbbrev MPRV
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
(ref1) 2018
(ref2) 2022
T (ref14) 2022; 170
ref17
ref8
ref7
ref9
Xu (ref10) 2024
ref4
(ref16) 2023
Bishop (ref19) 2006
ref3
ref6
ref5
Delgadillo-Duran (ref11) 2020
References_xml – ident: ref5
  doi: 10.1016/j.compag.2019.105169
– ident: ref6
  doi: 10.3390/mi13091440
– ident: ref12
  doi: 10.1002/er.7288
– year: 2018
  ident: ref1
  article-title: The future of food and agriculture: Alternative pathways to 2050
– ident: ref7
  doi: 10.2136/sssaj2017.04.0122
– year: 2024
  ident: ref10
  article-title: Soil analysis with machine-learning-based processing of stepped-frequency GPR field measurements: Preliminary study
– year: 2022
  ident: ref2
  article-title: Forced from home: Climate-fueled displacement
– ident: ref17
  doi: 10.3390/s19061378
– volume-title: Pattern Recognition and Machine Learning
  year: 2006
  ident: ref19
– ident: ref4
  doi: 10.1007/s11277-020-07437-5
– ident: ref3
  doi: 10.1016/j.iswcr.2023.03.002
– ident: ref9
  doi: 10.5194/isprs-annals-IV-2-W5-615-2019
– ident: ref15
  doi: 10.1016/j.biortech.2014.01.058
– year: 2023
  ident: ref16
  article-title: LoRa TTGO 32 board specifications
– volume: 170
  year: 2022
  ident: ref14
  article-title: Agricultural waste-derived biochar in microbial fuel cells towards a carbon-negative circular economy
  publication-title: Renewable Sustain. Energy Rev.
– ident: ref8
  doi: 10.3390/rs14153814
– year: 2020
  ident: ref11
  article-title: Using vis-NIRS and machine learning methods to diagnose sugarcane soil chemical properties
– ident: ref13
  doi: 10.1016/j.biortech.2021.125772
SSID ssj0018999
Score 2.4452875
Snippet Soil monitoring is a crucial issue for sustainable field and agricultural management. This article explores the performance of machine learning models in...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 32
SubjectTerms Accuracy
Electrodes
Graphite
Machine learning
Machine learning algorithms
Moisture
Monitoring
Smart agriculture
Soil measurements
Soil properties
Title Multifunctional Electrodes for Signal Soil Measurements: Benchmark With ML-Based Algorithms
URI https://ieeexplore.ieee.org/document/11052873
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library
  customDbUrl:
  eissn: 1558-2590
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0018999
  issn: 1536-1268
  databaseCode: RIE
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8NAFB5sT3pwrVg35uBJSJommUnGWystRUwRa7XgIWSWtKVLpE0v_nrfJKmtguBteCQwvHnwfW9H6IYygE2bAXMjghtgFI7BmGsZviKURQ6JKdG9w0GXdvruw4AMimb1rBdGKZUVnylTH7NcvkzESofKagBVBBi-U0Ilz6d5s9Z3ygAcB5YPR9WLZahfpDDrFqsFT8-v4AraxHSIpwek_wChra0qGai0D1B3fZ28lmRirlJuis9fkxr_fd9DtF_QS9zI7eEI7aj5MdrbGjp4gt6znluNZ3kYELfyTThSLTEwWNwbD7W0l4ynONhEEJd3uAkWPZpFiwl-G6cjHDwaTcBAiRvTYbIAyWxZQf126-W-YxQrFgxh21ZquJQwKoDFUGXVJQMuRmJfCSW4A86ZL7jleZHymC-VL4Unbelw4TvS8ij1opg5p6g8T-bqDGHtKkoWuTwGVhApOMWcA1-zInCK4npcRbdrnYcf-SSNMPNALBbqBwr1A4XFA1VRRatz82GhyfM_5BdoV_-e19FeonK6WKkrYAspv86s5AtV7LtQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8NAFB5cDurBXazrHDwJqdNMZpLxpqJUbYq4g4eQWdIWbSNtevHX-yYTVxC8DY8QhjcPvu_tCO1xAbDpC2BuTEkPjIJ6QgTEiwzjIqUs48z2Dsdt3rwLLh7ZY9WsXvbCGGPK4jNTt8cyl69zNbahsgOAKgYMn06iaRYEAXPtWp9JA3AdhBuPalfL8KhKYjaIOIivru_BGfRZnbLQjkj_AUPf9qqUsHK2gNofF3LVJM_1cSHr6u3XrMZ_33gRzVcEEx85i1hCE2awjOa-jR1cQU9l161FNBcIxKduF442IwwcFt_0OlZ6k_decPwVQxwd4mOw6W4_HT7jh17RxXHLOwYU1PjopZMPQdIfraK7s9Pbk6ZXLVnwlO-Twgs4E1wBj-GGNLQANsayyCijJAX3LFKShGFqQhFpE2kVal9TqSKqSch5mGaCrqGpQT4w6whbZ1GLNJAZ8ILUwCmTEhgbScEtyhpZDe1_6Dx5dbM0ktIHISKxD5TYB0qqB6qhVavOrw8rTW78Id9FM83buJW0ztuXm2jW_spV1W6hqWI4NtvAHQq5U1rMO1K1vp0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multifunctional+Electrodes+for+Signal+Soil+Measurements%3A+Benchmark+With+ML-Based+Algorithms&rft.jtitle=IEEE+pervasive+computing&rft.au=Sabatini%2C+Anna&rft.au=Sasso%2C+Daniele&rft.au=Muraro%2C+Mattia&rft.au=Santonico%2C+Marco&rft.date=2025-07-01&rft.issn=1536-1268&rft.eissn=1558-2590&rft.volume=24&rft.issue=3&rft.spage=32&rft.epage=42&rft_id=info:doi/10.1109%2FMPRV.2025.3574965&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_MPRV_2025_3574965
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1268&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1268&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1268&client=summon