Multifunctional Electrodes for Signal Soil Measurements: Benchmark With ML-Based Algorithms
Soil monitoring is a crucial issue for sustainable field and agricultural management. This article explores the performance of machine learning models in classifying soil types under varying moisture levels using wire–plate and plate–plate sensor configurations. Voltammetric sensors can be used to a...
        Saved in:
      
    
          | Published in | IEEE pervasive computing Vol. 24; no. 3; pp. 32 - 42 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            IEEE
    
        01.07.2025
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1536-1268 1558-2590  | 
| DOI | 10.1109/MPRV.2025.3574965 | 
Cover
| Abstract | Soil monitoring is a crucial issue for sustainable field and agricultural management. This article explores the performance of machine learning models in classifying soil types under varying moisture levels using wire–plate and plate–plate sensor configurations. Voltammetric sensors can be used to analyze soil in situ and act as a microbial fuel cell (MFC). Several classifiers were applied, and the logistic regression and support vector machine achieved the highest accuracy, reaching 99% in the wire–plate configuration and 94% in the plate–plate configuration. Focusing on soil classification under different moisture conditions, Adaboost and random forest outperformed other models, achieving an accuracy of 93% and 90%, respectively. The study highlights the importance of sensor design, model selection, and environmental factors in optimizing soil classification accuracy. These findings suggest that tailored machine learning approaches, in combination with refined sensor configurations, can improve the reliability of soil monitoring systems in agricultural and environmental applications. Furthermore, the integration of MFCs enables simultaneous soil characterization and energy harvesting, enhancing the potential for self-sustaining monitoring solutions. | 
    
|---|---|
| AbstractList | Soil monitoring is a crucial issue for sustainable field and agricultural management. This article explores the performance of machine learning models in classifying soil types under varying moisture levels using wire–plate and plate–plate sensor configurations. Voltammetric sensors can be used to analyze soil in situ and act as a microbial fuel cell (MFC). Several classifiers were applied, and the logistic regression and support vector machine achieved the highest accuracy, reaching 99% in the wire–plate configuration and 94% in the plate–plate configuration. Focusing on soil classification under different moisture conditions, Adaboost and random forest outperformed other models, achieving an accuracy of 93% and 90%, respectively. The study highlights the importance of sensor design, model selection, and environmental factors in optimizing soil classification accuracy. These findings suggest that tailored machine learning approaches, in combination with refined sensor configurations, can improve the reliability of soil monitoring systems in agricultural and environmental applications. Furthermore, the integration of MFCs enables simultaneous soil characterization and energy harvesting, enhancing the potential for self-sustaining monitoring solutions. | 
    
| Author | Pennazza, Giorgio Santonico, Marco Vollero, Luca Sasso, Daniele Muraro, Mattia Sabatini, Anna  | 
    
| Author_xml | – sequence: 1 givenname: Anna orcidid: 0000-0002-6206-5366 surname: Sabatini fullname: Sabatini, Anna email: a.sabatini@unicampus.it organization: Università Campus Bio-Medico di Roma, Rome, Italy – sequence: 2 givenname: Daniele orcidid: 0009-0009-3137-9715 surname: Sasso fullname: Sasso, Daniele email: d.sasso@unicampus.it organization: Università Campus Bio-Medico di Roma, Rome, Italy – sequence: 3 givenname: Mattia surname: Muraro fullname: Muraro, Mattia email: mattia.muraro@alcampus.it organization: Università Campus Bio-Medico di Roma, Rome, Italy – sequence: 4 givenname: Marco orcidid: 0000-0002-3755-6198 surname: Santonico fullname: Santonico, Marco email: m.santonico@unicampus.it organization: Università Campus Bio-Medico di Roma, Rome, Italy – sequence: 5 givenname: Luca orcidid: 0000-0002-6928-0157 surname: Vollero fullname: Vollero, Luca email: l.vollero@unicampus.it organization: Università Campus Bio-Medico di Roma, Rome, Italy – sequence: 6 givenname: Giorgio orcidid: 0000-0003-4843-9445 surname: Pennazza fullname: Pennazza, Giorgio email: g.pennazza@unicampus.it organization: Università Campus Bio-Medico di Roma, Rome, Italy  | 
    
| BookMark | eNpFkEtLAzEUhYNUsFZ_gOAif2BqHs3LXVvqAzoo1sfCxZAmd9rR6USS6cJ_7wwtuDqXwz2Hw3eOBk1oAKErSsaUEnOTP7-8jxlhYsyFmhgpTtCQCqEzJgwZ9DeXGWVSn6HzlL4IodoYM0Sf-b5uq3LfuLYKja3xogbXxuAh4TJEvKo2vbsKVY1zsGkfYQdNm27xDBq33dn4jT-qdovzZTazCTye1psQO2eXLtBpaesEl0cdobe7xev8IVs-3T_Op8vMMUbabCKFkU5SJYFQbxiTotTgwK056Qa7NVHKgjLag_ZOeeb52mnuiZJS2dLwEaKHXhdDShHK4idW3bLfgpKip1P0dIqeTnGk02WuD5kKAP7_KRFMK87_APKYY_g | 
    
| CODEN | IPCECF | 
    
| Cites_doi | 10.1016/j.compag.2019.105169 10.3390/mi13091440 10.1002/er.7288 10.2136/sssaj2017.04.0122 10.3390/s19061378 10.1007/s11277-020-07437-5 10.1016/j.iswcr.2023.03.002 10.5194/isprs-annals-IV-2-W5-615-2019 10.1016/j.biortech.2014.01.058 10.3390/rs14153814 10.1016/j.biortech.2021.125772  | 
    
| ContentType | Journal Article | 
    
| DBID | 97E RIA RIE AAYXX CITATION  | 
    
| DOI | 10.1109/MPRV.2025.3574965 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library CrossRef  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1558-2590 | 
    
| EndPage | 42 | 
    
| ExternalDocumentID | 10_1109_MPRV_2025_3574965 11052873  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: PON "Ricerca e Innovazione" grantid: 2014-2020 – fundername: National Recovery and Resilience Plan – fundername: European Union-NextGenerationEU  | 
    
| GroupedDBID | -D7 -DT -~X .DC 0R~ 1OL 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABHFT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AFOGA AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV AZLTO BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IEDLZ IFIPE IPLJI JAVBF KZ1 LAI LMP M43 O9- OCL P2P PQQKQ RIA RIE RNI RNS RZB AAYXX CITATION  | 
    
| ID | FETCH-LOGICAL-c220t-46596c6176e01d92265f8ececb30268cb077ae798de8dc7d2d3bc83d07667af93 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 1536-1268 | 
    
| IngestDate | Wed Oct 01 05:33:07 EDT 2025 Wed Aug 27 07:40:16 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c220t-46596c6176e01d92265f8ececb30268cb077ae798de8dc7d2d3bc83d07667af93 | 
    
| ORCID | 0000-0002-6928-0157 0009-0009-3137-9715 0000-0002-6206-5366 0000-0003-4843-9445 0000-0002-3755-6198  | 
    
| PageCount | 11 | 
    
| ParticipantIDs | ieee_primary_11052873 crossref_primary_10_1109_MPRV_2025_3574965  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-07-01 | 
    
| PublicationDateYYYYMMDD | 2025-07-01 | 
    
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | IEEE pervasive computing | 
    
| PublicationTitleAbbrev | MPRV | 
    
| PublicationYear | 2025 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| References | ref13 ref12 ref15 (ref1) 2018 (ref2) 2022 T (ref14) 2022; 170 ref17 ref8 ref7 ref9 Xu (ref10) 2024 ref4 (ref16) 2023 Bishop (ref19) 2006 ref3 ref6 ref5 Delgadillo-Duran (ref11) 2020  | 
    
| References_xml | – ident: ref5 doi: 10.1016/j.compag.2019.105169 – ident: ref6 doi: 10.3390/mi13091440 – ident: ref12 doi: 10.1002/er.7288 – year: 2018 ident: ref1 article-title: The future of food and agriculture: Alternative pathways to 2050 – ident: ref7 doi: 10.2136/sssaj2017.04.0122 – year: 2024 ident: ref10 article-title: Soil analysis with machine-learning-based processing of stepped-frequency GPR field measurements: Preliminary study – year: 2022 ident: ref2 article-title: Forced from home: Climate-fueled displacement – ident: ref17 doi: 10.3390/s19061378 – volume-title: Pattern Recognition and Machine Learning year: 2006 ident: ref19 – ident: ref4 doi: 10.1007/s11277-020-07437-5 – ident: ref3 doi: 10.1016/j.iswcr.2023.03.002 – ident: ref9 doi: 10.5194/isprs-annals-IV-2-W5-615-2019 – ident: ref15 doi: 10.1016/j.biortech.2014.01.058 – year: 2023 ident: ref16 article-title: LoRa TTGO 32 board specifications – volume: 170 year: 2022 ident: ref14 article-title: Agricultural waste-derived biochar in microbial fuel cells towards a carbon-negative circular economy publication-title: Renewable Sustain. Energy Rev. – ident: ref8 doi: 10.3390/rs14153814 – year: 2020 ident: ref11 article-title: Using vis-NIRS and machine learning methods to diagnose sugarcane soil chemical properties – ident: ref13 doi: 10.1016/j.biortech.2021.125772  | 
    
| SSID | ssj0018999 | 
    
| Score | 2.4452875 | 
    
| Snippet | Soil monitoring is a crucial issue for sustainable field and agricultural management. This article explores the performance of machine learning models in... | 
    
| SourceID | crossref ieee  | 
    
| SourceType | Index Database Publisher  | 
    
| StartPage | 32 | 
    
| SubjectTerms | Accuracy Electrodes Graphite Machine learning Machine learning algorithms Moisture Monitoring Smart agriculture Soil measurements Soil properties  | 
    
| Title | Multifunctional Electrodes for Signal Soil Measurements: Benchmark With ML-Based Algorithms | 
    
| URI | https://ieeexplore.ieee.org/document/11052873 | 
    
| Volume | 24 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library customDbUrl: eissn: 1558-2590 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0018999 issn: 1536-1268 databaseCode: RIE dateStart: 20020101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8NAFB5sT3pwrVg35uBJSJommUnGWystRUwRa7XgIWSWtKVLpE0v_nrfJKmtguBteCQwvHnwfW9H6IYygE2bAXMjghtgFI7BmGsZviKURQ6JKdG9w0GXdvruw4AMimb1rBdGKZUVnylTH7NcvkzESofKagBVBBi-U0Ilz6d5s9Z3ygAcB5YPR9WLZahfpDDrFqsFT8-v4AraxHSIpwek_wChra0qGai0D1B3fZ28lmRirlJuis9fkxr_fd9DtF_QS9zI7eEI7aj5MdrbGjp4gt6znluNZ3kYELfyTThSLTEwWNwbD7W0l4ynONhEEJd3uAkWPZpFiwl-G6cjHDwaTcBAiRvTYbIAyWxZQf126-W-YxQrFgxh21ZquJQwKoDFUGXVJQMuRmJfCSW4A86ZL7jleZHymC-VL4Unbelw4TvS8ij1opg5p6g8T-bqDGHtKkoWuTwGVhApOMWcA1-zInCK4npcRbdrnYcf-SSNMPNALBbqBwr1A4XFA1VRRatz82GhyfM_5BdoV_-e19FeonK6WKkrYAspv86s5AtV7LtQ | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8NAFB5cDurBXazrHDwJqdNMZpLxpqJUbYq4g4eQWdIWbSNtevHX-yYTVxC8DY8QhjcPvu_tCO1xAbDpC2BuTEkPjIJ6QgTEiwzjIqUs48z2Dsdt3rwLLh7ZY9WsXvbCGGPK4jNTt8cyl69zNbahsgOAKgYMn06iaRYEAXPtWp9JA3AdhBuPalfL8KhKYjaIOIivru_BGfRZnbLQjkj_AUPf9qqUsHK2gNofF3LVJM_1cSHr6u3XrMZ_33gRzVcEEx85i1hCE2awjOa-jR1cQU9l161FNBcIxKduF442IwwcFt_0OlZ6k_decPwVQxwd4mOw6W4_HT7jh17RxXHLOwYU1PjopZMPQdIfraK7s9Pbk6ZXLVnwlO-Twgs4E1wBj-GGNLQANsayyCijJAX3LFKShGFqQhFpE2kVal9TqSKqSch5mGaCrqGpQT4w6whbZ1GLNJAZ8ILUwCmTEhgbScEtyhpZDe1_6Dx5dbM0ktIHISKxD5TYB0qqB6qhVavOrw8rTW78Id9FM83buJW0ztuXm2jW_spV1W6hqWI4NtvAHQq5U1rMO1K1vp0 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multifunctional+Electrodes+for+Signal+Soil+Measurements%3A+Benchmark+With+ML-Based+Algorithms&rft.jtitle=IEEE+pervasive+computing&rft.au=Sabatini%2C+Anna&rft.au=Sasso%2C+Daniele&rft.au=Muraro%2C+Mattia&rft.au=Santonico%2C+Marco&rft.date=2025-07-01&rft.issn=1536-1268&rft.eissn=1558-2590&rft.volume=24&rft.issue=3&rft.spage=32&rft.epage=42&rft_id=info:doi/10.1109%2FMPRV.2025.3574965&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_MPRV_2025_3574965 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1268&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1268&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1268&client=summon |