The Applicability of Some Machine Learning Algorithms in the Prediction of Type 2 Diabetes
Type 2 diabetes is a metabolic disease that causes abnormal high levels of glucose in the blood. The pancreas is healthy, but the body doesn’t respond properly to its own insulin. The principal culprit is obesity, too much high fat tissue. So, measuring the body mass index or the waist circumference...
Saved in:
| Published in | Proceedings of the ... International Conference on Business Excellence Vol. 18; no. 1; pp. 246 - 257 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Sciendo
01.06.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2558-9652 2502-0226 2558-9652 |
| DOI | 10.2478/picbe-2024-0021 |
Cover
| Abstract | Type 2 diabetes is a metabolic disease that causes abnormal high levels of glucose in the blood. The pancreas is healthy, but the body doesn’t respond properly to its own insulin. The principal culprit is obesity, too much high fat tissue. So, measuring the body mass index or the waist circumference is a step to estimate the risk for this disease. Many people have no symptoms and the disease develops silently, causing serious problems with eyes, feet, heart and nerves. The prediction of diabetes is a very topical problem. In addition to medical guides, more and more machine learning models appear, trained on different databases. The purpose of these models is to predict diabetes, based on different parameters, not all of them coming from medical analyses. In the paper we present four diabetes prediction models, respectively based on the decision tree, support vector machine, logistic regression and k-nearest neighbors’ algorithms. All models are trained and tested on a database with approximately 65,000 records (divided into 70% for training and 30% for testing), which contains two blood markers (haemoglobin A1c and glucose), an anthropometric parameter (body mass index), age, gender and three categorical parameters (smoking status, hypertension, heart disease). We identify that Haemoglobin A1C and glucose are the most influential predictors. The models are evaluated in terms of accuracy score and confusion matrix and a ranking is presented at the end. The results obtained are very encouraging for all the presented models. |
|---|---|
| AbstractList | Type 2 diabetes is a metabolic disease that causes abnormal high levels of glucose in the blood. The pancreas is healthy, but the body doesn’t respond properly to its own insulin. The principal culprit is obesity, too much high fat tissue. So, measuring the body mass index or the waist circumference is a step to estimate the risk for this disease. Many people have no symptoms and the disease develops silently, causing serious problems with eyes, feet, heart and nerves. The prediction of diabetes is a very topical problem. In addition to medical guides, more and more machine learning models appear, trained on different databases. The purpose of these models is to predict diabetes, based on different parameters, not all of them coming from medical analyses. In the paper we present four diabetes prediction models, respectively based on the decision tree, support vector machine, logistic regression and k-nearest neighbors’ algorithms. All models are trained and tested on a database with approximately 65,000 records (divided into 70% for training and 30% for testing), which contains two blood markers (haemoglobin A1c and glucose), an anthropometric parameter (body mass index), age, gender and three categorical parameters (smoking status, hypertension, heart disease). We identify that Haemoglobin A1C and glucose are the most influential predictors. The models are evaluated in terms of accuracy score and confusion matrix and a ranking is presented at the end. The results obtained are very encouraging for all the presented models. |
| Author | Vîrgolici, Oana Tănăsescu, Laura Gabriela |
| Author_xml | – sequence: 1 givenname: Oana surname: Vîrgolici fullname: Vîrgolici, Oana email: oanavirgolici2022@gmail.com organization: Academy of Economic Studies (ASE), Bucharest, Romania – sequence: 2 givenname: Laura Gabriela surname: Tănăsescu fullname: Tănăsescu, Laura Gabriela email: tanasesculaura15@stud.ase.ro organization: Academy of Economic Studies (ASE), Bucharest, Romania |
| BookMark | eNqNkDtPwzAUhS0EEqV0ZvUfCLVvnIcHhqo8pSKQKAtL5MdN6yp1IicVyr8noQwsSEz3DPc70vkuyKmvPRJyxdk1iCyfN85ojICBiBgDfkImkCR5JNMETn_lczJr2x0bXwRLmJyQj_UW6aJpKmeUdpXrelqX9K3eI31WZus80hWq4J3f0EW1qYPrtvuWOk-7AXwNaJ3pXO1Hat03SIHeOqWxw_aSnJWqanH2c6fk_f5uvXyMVi8PT8vFKjIArIt4CsxKC1lcArepjlOrE9DG6iwXmDOWK6YyVkqQMkmlKFOVcUgyU2qrRCbiKWHH3oNvVP-pqqpogtur0BecFaOe4ltPMeopxu0DMj8iJtRtG7D8B3FzJIb-DoPFTTj0Qyh29SH4Yd5fJM85iDT-AuUCffM |
| Cites_doi | 10.1016/j.procs.2018.05.122 10.1016/j.procs.2020.01.047 10.1049/htl2.12039 10.1007/978-981-15-5546-6_42 10.3389/fgene.2018.00515 10.1038/nrdp.2015.19 10.14445/22312803/IJCTT-V11P120 10.1590/1516-3180.2016.0309010217 10.5121/ijdkp.2015.5101 10.1016/j.procs.2016.04.016 10.12720/jait.11.2.78-83 10.1007/978-981-13-8798-2_12 10.1155/2021/6053824 10.1051/e3sconf/202343001151 10.1007/978-3-030-58861-8_7 10.3844/jcssp.2009.1003.1008 10.4093/dmj.2020.0081 10.1186/1472-6947-10-16 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ADTOC UNPAY |
| DOI | 10.2478/picbe-2024-0021 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Business |
| EISSN | 2558-9652 |
| EndPage | 257 |
| ExternalDocumentID | 10.2478/picbe-2024-0021 10_2478_picbe_2024_0021 10_2478_picbe_2024_0021181246 |
| GroupedDBID | 9WM ABFKT ADBBV ADBLJ AHGSO ALMA_UNASSIGNED_HOLDINGS BCNDV EBS QD8 SLJYH AAYXX CITATION ADTOC AIKXB UNPAY |
| ID | FETCH-LOGICAL-c220t-1620d9d273f21d6b36db52bcdb784e8008a0a70f92995694f6a71257cfbda4743 |
| IEDL.DBID | UNPAY |
| ISSN | 2558-9652 2502-0226 |
| IngestDate | Sun Sep 07 11:10:11 EDT 2025 Wed Oct 01 05:45:15 EDT 2025 Thu Jul 10 10:30:01 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | This work is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0 cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c220t-1620d9d273f21d6b36db52bcdb784e8008a0a70f92995694f6a71257cfbda4743 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.2478/picbe-2024-0021 |
| PageCount | 12 |
| ParticipantIDs | unpaywall_primary_10_2478_picbe_2024_0021 crossref_primary_10_2478_picbe_2024_0021 walterdegruyter_journals_10_2478_picbe_2024_0021181246 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-06-01 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings of the ... International Conference on Business Excellence |
| PublicationYear | 2024 |
| Publisher | Sciendo |
| Publisher_xml | – name: Sciendo |
| References | 2025072906495429677_j_picbe-2024-0021_ref_014 2025072906495429677_j_picbe-2024-0021_ref_015 2025072906495429677_j_picbe-2024-0021_ref_012 2025072906495429677_j_picbe-2024-0021_ref_013 2025072906495429677_j_picbe-2024-0021_ref_010 2025072906495429677_j_picbe-2024-0021_ref_011 2025072906495429677_j_picbe-2024-0021_ref_018 2025072906495429677_j_picbe-2024-0021_ref_019 2025072906495429677_j_picbe-2024-0021_ref_016 2025072906495429677_j_picbe-2024-0021_ref_017 2025072906495429677_j_picbe-2024-0021_ref_003 2025072906495429677_j_picbe-2024-0021_ref_025 2025072906495429677_j_picbe-2024-0021_ref_004 2025072906495429677_j_picbe-2024-0021_ref_026 2025072906495429677_j_picbe-2024-0021_ref_001 2025072906495429677_j_picbe-2024-0021_ref_023 2025072906495429677_j_picbe-2024-0021_ref_002 2025072906495429677_j_picbe-2024-0021_ref_024 2025072906495429677_j_picbe-2024-0021_ref_021 2025072906495429677_j_picbe-2024-0021_ref_022 2025072906495429677_j_picbe-2024-0021_ref_020 2025072906495429677_j_picbe-2024-0021_ref_009 2025072906495429677_j_picbe-2024-0021_ref_007 2025072906495429677_j_picbe-2024-0021_ref_008 2025072906495429677_j_picbe-2024-0021_ref_005 2025072906495429677_j_picbe-2024-0021_ref_006 |
| References_xml | – ident: 2025072906495429677_j_picbe-2024-0021_ref_003 – ident: 2025072906495429677_j_picbe-2024-0021_ref_020 doi: 10.1016/j.procs.2018.05.122 – ident: 2025072906495429677_j_picbe-2024-0021_ref_013 doi: 10.1016/j.procs.2020.01.047 – ident: 2025072906495429677_j_picbe-2024-0021_ref_023 doi: 10.1049/htl2.12039 – ident: 2025072906495429677_j_picbe-2024-0021_ref_024 doi: 10.1007/978-981-15-5546-6_42 – ident: 2025072906495429677_j_picbe-2024-0021_ref_026 doi: 10.3389/fgene.2018.00515 – ident: 2025072906495429677_j_picbe-2024-0021_ref_007 doi: 10.1038/nrdp.2015.19 – ident: 2025072906495429677_j_picbe-2024-0021_ref_018 doi: 10.14445/22312803/IJCTT-V11P120 – ident: 2025072906495429677_j_picbe-2024-0021_ref_014 doi: 10.1590/1516-3180.2016.0309010217 – ident: 2025072906495429677_j_picbe-2024-0021_ref_008 – ident: 2025072906495429677_j_picbe-2024-0021_ref_021 – ident: 2025072906495429677_j_picbe-2024-0021_ref_010 doi: 10.5121/ijdkp.2015.5101 – ident: 2025072906495429677_j_picbe-2024-0021_ref_002 – ident: 2025072906495429677_j_picbe-2024-0021_ref_015 doi: 10.1016/j.procs.2016.04.016 – ident: 2025072906495429677_j_picbe-2024-0021_ref_006 doi: 10.12720/jait.11.2.78-83 – ident: 2025072906495429677_j_picbe-2024-0021_ref_004 – ident: 2025072906495429677_j_picbe-2024-0021_ref_009 doi: 10.1007/978-981-13-8798-2_12 – ident: 2025072906495429677_j_picbe-2024-0021_ref_005 doi: 10.1155/2021/6053824 – ident: 2025072906495429677_j_picbe-2024-0021_ref_011 doi: 10.1051/e3sconf/202343001151 – ident: 2025072906495429677_j_picbe-2024-0021_ref_012 doi: 10.1007/978-3-030-58861-8_7 – ident: 2025072906495429677_j_picbe-2024-0021_ref_019 – ident: 2025072906495429677_j_picbe-2024-0021_ref_016 doi: 10.3844/jcssp.2009.1003.1008 – ident: 2025072906495429677_j_picbe-2024-0021_ref_017 doi: 10.4093/dmj.2020.0081 – ident: 2025072906495429677_j_picbe-2024-0021_ref_022 – ident: 2025072906495429677_j_picbe-2024-0021_ref_001 – ident: 2025072906495429677_j_picbe-2024-0021_ref_025 doi: 10.1186/1472-6947-10-16 |
| SSID | ssj0002140509 |
| Score | 2.260014 |
| Snippet | Type 2 diabetes is a metabolic disease that causes abnormal high levels of glucose in the blood. The pancreas is healthy, but the body doesn’t respond properly... |
| SourceID | unpaywall crossref walterdegruyter |
| SourceType | Open Access Repository Index Database Publisher |
| StartPage | 246 |
| SubjectTerms | Decision Tree (DT) k Nearest Neighbors (kNN) Logistic Regression (LR) Machine Learning Support Vector Machine (SVM) type 2 diabetes mellitus |
| Title | The Applicability of Some Machine Learning Algorithms in the Prediction of Type 2 Diabetes |
| URI | https://www.degruyter.com/doi/10.2478/picbe-2024-0021 https://doi.org/10.2478/picbe-2024-0021 |
| UnpaywallVersion | publishedVersion |
| Volume | 18 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVJWN databaseName: Sciendo customDbUrl: eissn: 2558-9652 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002140509 issn: 2558-9652 databaseCode: 9WM dateStart: 20171215 isFulltext: true titleUrlDefault: https://content.sciendo.com/ providerName: Sciendo – providerCode: PRVJWN databaseName: Sciendo:Open Access customDbUrl: eissn: 2558-9652 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002140509 issn: 2558-9652 databaseCode: ADBLJ dateStart: 20171215 isFulltext: true titleUrlDefault: https://www.sciendo.com/ providerName: Sciendo – providerCode: PRVAZK databaseName: Walter De Gruyter: Open Access Journals customDbUrl: eissn: 2558-9652 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002140509 issn: 2558-9652 databaseCode: AHGSO dateStart: 20171215 isFulltext: true titleUrlDefault: https://www.degruyterbrill.com providerName: Walter de Gruyter |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60BcWDb1FR2YMHPUSTze4mPcYXRVQELaiXsM9arGlpU6T-eneTVFQU9Z7NJjOzzDd8384A7GKhYiF55DVCbTxi_NjjETZegAPBpDAsVO7u8OUVa7bI-R29q5okubswH_h7TKL4sN-RQltXYuK5dDQNdUYt6K5BvXV1ndy70XHUaWhxMVjN4mN7fBnFZROf797wKf_MjrI-H7_wbncO5l8Kflrp9mA0zid8aJFmzhagOfnAUl3ydDDKxYF8_dK78Q9_sAjzFdRESRkbSzCls2WYmSjdV-DBhghKSgK7kMiOUc-gm96zRpeFxFKjqvtqGyXddm_QyR-fh6iTIQsa0fXAUTzOrW6VK2cRRpW-ZrgKrbPT2-OmV41a8CTGfu4FDPuqoSyWMThQTIRMCYqFVCKKibagMuY-j3xjwZQtqBrEMB5ZaBRJIxQnFoWsQS3rZXodUCwahgoscagJoZHPbTYIHBkYSkJjQzdgb-KAtF921EhtJeJslRa2Sp2tUmerDdh_d9Dvz7IvDkyr0zj8aUkBbtjmPzbZglo-GOlti0NysQP15OTo4nynisU3hhraRw |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60BR-H4hPrMwcPeljczWaz22MRa9W2Cm2heFmSTVKFui19UPrvTbLbgqII3jMQvslmvsk3MwtwibmIeMJCp-JL5RDlRg4LsXI87HGacEV9YXqHmy1a75LHXtDL-7hNL4y994VVK29y7Gy5Mgmjm9F7wqV2KyaOCU3rUDTD2EkBitX6fft59bSCddKg42A2yOcnyy8xaHOWjthizgaDbSjNrUYtZH88W0yXmqgNNbUdKOUcEVWzje3Cmkz3YGNZor4Pr9q3qJopz7a2dYGGCrWHHxI1bW2kRPnY1D6qDvpDnf-_fUzQe4o020MvY6PNGH8YK5OHIozywpjJAXRrd53bupP_I8FJMHanjkexKypCkxCFPUG5TwUPME8E18hIzQYj5rLQVZoF6UyoQhRloeY0YaK4YETTh0MopMNUHgGKeEUFHCfYl4QEocv0Ne4ZFc9PSBCpoAxXS9TiUTYKI9YphAE4tgDHBuDYAFyG6xWqf6-l31CP889o8puJZSX0-L-GF7BZ7zQbceOh9XQCW9mxMO8qp1CYjmfyTNOMKT_Pj9UnOqnOaQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5qC1UPxSfWZw4e9LB0N5vNbo9FrfXRKmhBvCzJJqlC3ZY-KP33JtltQVEE7zuXb7KZ78s3mQCcYi4inrDQqftSOUS5kcNCrBwPe5wmXFFfmLvD7Q5tdcntS_BSgNriLozd94V1K2tDoWyrMgmj2vA94VKnFBPHlKUVKJlB7EERSo3W9dPD8lgFa8Gga2A2xOenyC_1Z3WaDtl8xvr9dajMrD8tZG80nU8WfqgtM80NqOT8EDWyhG5CQaZbUF60p2_Dq84ramSus-1rnaOBQk-DD4nati9Sonxkag81-r2B1v5vH2P0niLN9NDjyPgyJhcmymhQhFHeFDPegW7z6vmi5eTvIzgJxu7E8Sh2RV1oAqKwJyj3qeAB5ongYUSkZoIRc1noKs2AtAqqE0VZqPlMmCguGNHUYReK6SCVe4AiXlcBxwn2JSFB6DK9hXvGwfMTEkQqqMLZArV4mI3BiLV8MADHFuDYABwbgKtwvkT172_pN9Tj_Bca_xZiGQnd_2_gCZQfL5vx_U3n7gDWslVhjlQOoTgZTeWRZhgTfpyvqk_cvsxg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEF20BcVD_caKyh486CE12exu0mMRSxFaClqoXsJ-1mKblDal1F_vbpKKFkW9Z7PJzCzzhvd2BoBLxGXIBQucuq-0g7UbOixA2vGQx6ngmvrS3h1ud2irh-_7pF80SbJ3YT7x9wgH4c1kKLgyrkTYseloE5QpMaC7BMq9TrfxZEfHEauhRdlgNYOPzfGlBOVNfL57w5f8sz2PJ2y5YKPRDqgsMn5aqsF0vkxXfGiWZpq7oLX6wFxd8lqbp7wm3tZ6N_7hD_ZApYCasJHHxj7YUPEB2Fop3Q_BswkR2MgJ7Ewiu4SJhg_JWMF2JrFUsOi-OoCN0SCZDtOX8QwOY2hAI-xOLcVj3WpX2XIWIljoa2ZHoNe8e7xtOcWoBUcg5KaOR5Er69JgGY08SblPJSeIC8mDECsDKkPmssDVBkyZgqqONWWBgUaB0FwybFDIMSjFSaxOAAx5XROOBPIVxiRwmckGniUDfYFJqEkVXK0cEE3yjhqRqUSsraLMVpG1VWRtVQXXHw76_Vm65sCoOI2zn5Zk4Iae_mOTM1BKp3N1bnBIyi-KGHwHu-7Yxw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Applicability+of+Some+Machine+Learning+Algorithms+in+the+Prediction+of+Type+2+Diabetes&rft.jtitle=Proceedings+of+the+...+International+Conference+on+Business+Excellence&rft.au=V%C3%AErgolici%2C+Oana&rft.au=T%C4%83n%C4%83sescu%2C+Laura+Gabriela&rft.date=2024-06-01&rft.pub=Sciendo&rft.eissn=2558-9652&rft.volume=18&rft.issue=1&rft.spage=246&rft.epage=257&rft_id=info:doi/10.2478%2Fpicbe-2024-0021&rft.externalDBID=n%2Fa&rft.externalDocID=10_2478_picbe_2024_0021181246 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2558-9652&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2558-9652&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2558-9652&client=summon |