The Applicability of Some Machine Learning Algorithms in the Prediction of Type 2 Diabetes

Type 2 diabetes is a metabolic disease that causes abnormal high levels of glucose in the blood. The pancreas is healthy, but the body doesn’t respond properly to its own insulin. The principal culprit is obesity, too much high fat tissue. So, measuring the body mass index or the waist circumference...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the ... International Conference on Business Excellence Vol. 18; no. 1; pp. 246 - 257
Main Authors Vîrgolici, Oana, Tănăsescu, Laura Gabriela
Format Journal Article
LanguageEnglish
Published Sciendo 01.06.2024
Subjects
Online AccessGet full text
ISSN2558-9652
2502-0226
2558-9652
DOI10.2478/picbe-2024-0021

Cover

Abstract Type 2 diabetes is a metabolic disease that causes abnormal high levels of glucose in the blood. The pancreas is healthy, but the body doesn’t respond properly to its own insulin. The principal culprit is obesity, too much high fat tissue. So, measuring the body mass index or the waist circumference is a step to estimate the risk for this disease. Many people have no symptoms and the disease develops silently, causing serious problems with eyes, feet, heart and nerves. The prediction of diabetes is a very topical problem. In addition to medical guides, more and more machine learning models appear, trained on different databases. The purpose of these models is to predict diabetes, based on different parameters, not all of them coming from medical analyses. In the paper we present four diabetes prediction models, respectively based on the decision tree, support vector machine, logistic regression and k-nearest neighbors’ algorithms. All models are trained and tested on a database with approximately 65,000 records (divided into 70% for training and 30% for testing), which contains two blood markers (haemoglobin A1c and glucose), an anthropometric parameter (body mass index), age, gender and three categorical parameters (smoking status, hypertension, heart disease). We identify that Haemoglobin A1C and glucose are the most influential predictors. The models are evaluated in terms of accuracy score and confusion matrix and a ranking is presented at the end. The results obtained are very encouraging for all the presented models.
AbstractList Type 2 diabetes is a metabolic disease that causes abnormal high levels of glucose in the blood. The pancreas is healthy, but the body doesn’t respond properly to its own insulin. The principal culprit is obesity, too much high fat tissue. So, measuring the body mass index or the waist circumference is a step to estimate the risk for this disease. Many people have no symptoms and the disease develops silently, causing serious problems with eyes, feet, heart and nerves. The prediction of diabetes is a very topical problem. In addition to medical guides, more and more machine learning models appear, trained on different databases. The purpose of these models is to predict diabetes, based on different parameters, not all of them coming from medical analyses. In the paper we present four diabetes prediction models, respectively based on the decision tree, support vector machine, logistic regression and k-nearest neighbors’ algorithms. All models are trained and tested on a database with approximately 65,000 records (divided into 70% for training and 30% for testing), which contains two blood markers (haemoglobin A1c and glucose), an anthropometric parameter (body mass index), age, gender and three categorical parameters (smoking status, hypertension, heart disease). We identify that Haemoglobin A1C and glucose are the most influential predictors. The models are evaluated in terms of accuracy score and confusion matrix and a ranking is presented at the end. The results obtained are very encouraging for all the presented models.
Author Vîrgolici, Oana
Tănăsescu, Laura Gabriela
Author_xml – sequence: 1
  givenname: Oana
  surname: Vîrgolici
  fullname: Vîrgolici, Oana
  email: oanavirgolici2022@gmail.com
  organization: Academy of Economic Studies (ASE), Bucharest, Romania
– sequence: 2
  givenname: Laura Gabriela
  surname: Tănăsescu
  fullname: Tănăsescu, Laura Gabriela
  email: tanasesculaura15@stud.ase.ro
  organization: Academy of Economic Studies (ASE), Bucharest, Romania
BookMark eNqNkDtPwzAUhS0EEqV0ZvUfCLVvnIcHhqo8pSKQKAtL5MdN6yp1IicVyr8noQwsSEz3DPc70vkuyKmvPRJyxdk1iCyfN85ojICBiBgDfkImkCR5JNMETn_lczJr2x0bXwRLmJyQj_UW6aJpKmeUdpXrelqX9K3eI31WZus80hWq4J3f0EW1qYPrtvuWOk-7AXwNaJ3pXO1Hat03SIHeOqWxw_aSnJWqanH2c6fk_f5uvXyMVi8PT8vFKjIArIt4CsxKC1lcArepjlOrE9DG6iwXmDOWK6YyVkqQMkmlKFOVcUgyU2qrRCbiKWHH3oNvVP-pqqpogtur0BecFaOe4ltPMeopxu0DMj8iJtRtG7D8B3FzJIb-DoPFTTj0Qyh29SH4Yd5fJM85iDT-AuUCffM
Cites_doi 10.1016/j.procs.2018.05.122
10.1016/j.procs.2020.01.047
10.1049/htl2.12039
10.1007/978-981-15-5546-6_42
10.3389/fgene.2018.00515
10.1038/nrdp.2015.19
10.14445/22312803/IJCTT-V11P120
10.1590/1516-3180.2016.0309010217
10.5121/ijdkp.2015.5101
10.1016/j.procs.2016.04.016
10.12720/jait.11.2.78-83
10.1007/978-981-13-8798-2_12
10.1155/2021/6053824
10.1051/e3sconf/202343001151
10.1007/978-3-030-58861-8_7
10.3844/jcssp.2009.1003.1008
10.4093/dmj.2020.0081
10.1186/1472-6947-10-16
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.2478/picbe-2024-0021
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Business
EISSN 2558-9652
EndPage 257
ExternalDocumentID 10.2478/picbe-2024-0021
10_2478_picbe_2024_0021
10_2478_picbe_2024_0021181246
GroupedDBID 9WM
ABFKT
ADBBV
ADBLJ
AHGSO
ALMA_UNASSIGNED_HOLDINGS
BCNDV
EBS
QD8
SLJYH
AAYXX
CITATION
ADTOC
AIKXB
UNPAY
ID FETCH-LOGICAL-c220t-1620d9d273f21d6b36db52bcdb784e8008a0a70f92995694f6a71257cfbda4743
IEDL.DBID UNPAY
ISSN 2558-9652
2502-0226
IngestDate Sun Sep 07 11:10:11 EDT 2025
Wed Oct 01 05:45:15 EDT 2025
Thu Jul 10 10:30:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c220t-1620d9d273f21d6b36db52bcdb784e8008a0a70f92995694f6a71257cfbda4743
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.2478/picbe-2024-0021
PageCount 12
ParticipantIDs unpaywall_primary_10_2478_picbe_2024_0021
crossref_primary_10_2478_picbe_2024_0021
walterdegruyter_journals_10_2478_picbe_2024_0021181246
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Proceedings of the ... International Conference on Business Excellence
PublicationYear 2024
Publisher Sciendo
Publisher_xml – name: Sciendo
References 2025072906495429677_j_picbe-2024-0021_ref_014
2025072906495429677_j_picbe-2024-0021_ref_015
2025072906495429677_j_picbe-2024-0021_ref_012
2025072906495429677_j_picbe-2024-0021_ref_013
2025072906495429677_j_picbe-2024-0021_ref_010
2025072906495429677_j_picbe-2024-0021_ref_011
2025072906495429677_j_picbe-2024-0021_ref_018
2025072906495429677_j_picbe-2024-0021_ref_019
2025072906495429677_j_picbe-2024-0021_ref_016
2025072906495429677_j_picbe-2024-0021_ref_017
2025072906495429677_j_picbe-2024-0021_ref_003
2025072906495429677_j_picbe-2024-0021_ref_025
2025072906495429677_j_picbe-2024-0021_ref_004
2025072906495429677_j_picbe-2024-0021_ref_026
2025072906495429677_j_picbe-2024-0021_ref_001
2025072906495429677_j_picbe-2024-0021_ref_023
2025072906495429677_j_picbe-2024-0021_ref_002
2025072906495429677_j_picbe-2024-0021_ref_024
2025072906495429677_j_picbe-2024-0021_ref_021
2025072906495429677_j_picbe-2024-0021_ref_022
2025072906495429677_j_picbe-2024-0021_ref_020
2025072906495429677_j_picbe-2024-0021_ref_009
2025072906495429677_j_picbe-2024-0021_ref_007
2025072906495429677_j_picbe-2024-0021_ref_008
2025072906495429677_j_picbe-2024-0021_ref_005
2025072906495429677_j_picbe-2024-0021_ref_006
References_xml – ident: 2025072906495429677_j_picbe-2024-0021_ref_003
– ident: 2025072906495429677_j_picbe-2024-0021_ref_020
  doi: 10.1016/j.procs.2018.05.122
– ident: 2025072906495429677_j_picbe-2024-0021_ref_013
  doi: 10.1016/j.procs.2020.01.047
– ident: 2025072906495429677_j_picbe-2024-0021_ref_023
  doi: 10.1049/htl2.12039
– ident: 2025072906495429677_j_picbe-2024-0021_ref_024
  doi: 10.1007/978-981-15-5546-6_42
– ident: 2025072906495429677_j_picbe-2024-0021_ref_026
  doi: 10.3389/fgene.2018.00515
– ident: 2025072906495429677_j_picbe-2024-0021_ref_007
  doi: 10.1038/nrdp.2015.19
– ident: 2025072906495429677_j_picbe-2024-0021_ref_018
  doi: 10.14445/22312803/IJCTT-V11P120
– ident: 2025072906495429677_j_picbe-2024-0021_ref_014
  doi: 10.1590/1516-3180.2016.0309010217
– ident: 2025072906495429677_j_picbe-2024-0021_ref_008
– ident: 2025072906495429677_j_picbe-2024-0021_ref_021
– ident: 2025072906495429677_j_picbe-2024-0021_ref_010
  doi: 10.5121/ijdkp.2015.5101
– ident: 2025072906495429677_j_picbe-2024-0021_ref_002
– ident: 2025072906495429677_j_picbe-2024-0021_ref_015
  doi: 10.1016/j.procs.2016.04.016
– ident: 2025072906495429677_j_picbe-2024-0021_ref_006
  doi: 10.12720/jait.11.2.78-83
– ident: 2025072906495429677_j_picbe-2024-0021_ref_004
– ident: 2025072906495429677_j_picbe-2024-0021_ref_009
  doi: 10.1007/978-981-13-8798-2_12
– ident: 2025072906495429677_j_picbe-2024-0021_ref_005
  doi: 10.1155/2021/6053824
– ident: 2025072906495429677_j_picbe-2024-0021_ref_011
  doi: 10.1051/e3sconf/202343001151
– ident: 2025072906495429677_j_picbe-2024-0021_ref_012
  doi: 10.1007/978-3-030-58861-8_7
– ident: 2025072906495429677_j_picbe-2024-0021_ref_019
– ident: 2025072906495429677_j_picbe-2024-0021_ref_016
  doi: 10.3844/jcssp.2009.1003.1008
– ident: 2025072906495429677_j_picbe-2024-0021_ref_017
  doi: 10.4093/dmj.2020.0081
– ident: 2025072906495429677_j_picbe-2024-0021_ref_022
– ident: 2025072906495429677_j_picbe-2024-0021_ref_001
– ident: 2025072906495429677_j_picbe-2024-0021_ref_025
  doi: 10.1186/1472-6947-10-16
SSID ssj0002140509
Score 2.260014
Snippet Type 2 diabetes is a metabolic disease that causes abnormal high levels of glucose in the blood. The pancreas is healthy, but the body doesn’t respond properly...
SourceID unpaywall
crossref
walterdegruyter
SourceType Open Access Repository
Index Database
Publisher
StartPage 246
SubjectTerms Decision Tree (DT)
k Nearest Neighbors (kNN)
Logistic Regression (LR)
Machine Learning
Support Vector Machine (SVM)
type 2 diabetes mellitus
Title The Applicability of Some Machine Learning Algorithms in the Prediction of Type 2 Diabetes
URI https://www.degruyter.com/doi/10.2478/picbe-2024-0021
https://doi.org/10.2478/picbe-2024-0021
UnpaywallVersion publishedVersion
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVJWN
  databaseName: Sciendo
  customDbUrl:
  eissn: 2558-9652
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002140509
  issn: 2558-9652
  databaseCode: 9WM
  dateStart: 20171215
  isFulltext: true
  titleUrlDefault: https://content.sciendo.com/
  providerName: Sciendo
– providerCode: PRVJWN
  databaseName: Sciendo:Open Access
  customDbUrl:
  eissn: 2558-9652
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002140509
  issn: 2558-9652
  databaseCode: ADBLJ
  dateStart: 20171215
  isFulltext: true
  titleUrlDefault: https://www.sciendo.com/
  providerName: Sciendo
– providerCode: PRVAZK
  databaseName: Walter De Gruyter: Open Access Journals
  customDbUrl:
  eissn: 2558-9652
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002140509
  issn: 2558-9652
  databaseCode: AHGSO
  dateStart: 20171215
  isFulltext: true
  titleUrlDefault: https://www.degruyterbrill.com
  providerName: Walter de Gruyter
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60BcWDb1FR2YMHPUSTze4mPcYXRVQELaiXsM9arGlpU6T-eneTVFQU9Z7NJjOzzDd8384A7GKhYiF55DVCbTxi_NjjETZegAPBpDAsVO7u8OUVa7bI-R29q5okubswH_h7TKL4sN-RQltXYuK5dDQNdUYt6K5BvXV1ndy70XHUaWhxMVjN4mN7fBnFZROf797wKf_MjrI-H7_wbncO5l8Kflrp9mA0zid8aJFmzhagOfnAUl3ydDDKxYF8_dK78Q9_sAjzFdRESRkbSzCls2WYmSjdV-DBhghKSgK7kMiOUc-gm96zRpeFxFKjqvtqGyXddm_QyR-fh6iTIQsa0fXAUTzOrW6VK2cRRpW-ZrgKrbPT2-OmV41a8CTGfu4FDPuqoSyWMThQTIRMCYqFVCKKibagMuY-j3xjwZQtqBrEMB5ZaBRJIxQnFoWsQS3rZXodUCwahgoscagJoZHPbTYIHBkYSkJjQzdgb-KAtF921EhtJeJslRa2Sp2tUmerDdh_d9Dvz7IvDkyr0zj8aUkBbtjmPzbZglo-GOlti0NysQP15OTo4nynisU3hhraRw
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60BR-H4hPrMwcPeljczWaz22MRa9W2Cm2heFmSTVKFui19UPrvTbLbgqII3jMQvslmvsk3MwtwibmIeMJCp-JL5RDlRg4LsXI87HGacEV9YXqHmy1a75LHXtDL-7hNL4y994VVK29y7Gy5Mgmjm9F7wqV2KyaOCU3rUDTD2EkBitX6fft59bSCddKg42A2yOcnyy8xaHOWjthizgaDbSjNrUYtZH88W0yXmqgNNbUdKOUcEVWzje3Cmkz3YGNZor4Pr9q3qJopz7a2dYGGCrWHHxI1bW2kRPnY1D6qDvpDnf-_fUzQe4o020MvY6PNGH8YK5OHIozywpjJAXRrd53bupP_I8FJMHanjkexKypCkxCFPUG5TwUPME8E18hIzQYj5rLQVZoF6UyoQhRloeY0YaK4YETTh0MopMNUHgGKeEUFHCfYl4QEocv0Ne4ZFc9PSBCpoAxXS9TiUTYKI9YphAE4tgDHBuDYAFyG6xWqf6-l31CP889o8puJZSX0-L-GF7BZ7zQbceOh9XQCW9mxMO8qp1CYjmfyTNOMKT_Pj9UnOqnOaQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5qC1UPxSfWZw4e9LB0N5vNbo9FrfXRKmhBvCzJJqlC3ZY-KP33JtltQVEE7zuXb7KZ78s3mQCcYi4inrDQqftSOUS5kcNCrBwPe5wmXFFfmLvD7Q5tdcntS_BSgNriLozd94V1K2tDoWyrMgmj2vA94VKnFBPHlKUVKJlB7EERSo3W9dPD8lgFa8Gga2A2xOenyC_1Z3WaDtl8xvr9dajMrD8tZG80nU8WfqgtM80NqOT8EDWyhG5CQaZbUF60p2_Dq84ramSus-1rnaOBQk-DD4nati9Sonxkag81-r2B1v5vH2P0niLN9NDjyPgyJhcmymhQhFHeFDPegW7z6vmi5eTvIzgJxu7E8Sh2RV1oAqKwJyj3qeAB5ongYUSkZoIRc1noKs2AtAqqE0VZqPlMmCguGNHUYReK6SCVe4AiXlcBxwn2JSFB6DK9hXvGwfMTEkQqqMLZArV4mI3BiLV8MADHFuDYABwbgKtwvkT172_pN9Tj_Bca_xZiGQnd_2_gCZQfL5vx_U3n7gDWslVhjlQOoTgZTeWRZhgTfpyvqk_cvsxg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEF20BcVD_caKyh486CE12exu0mMRSxFaClqoXsJ-1mKblDal1F_vbpKKFkW9Z7PJzCzzhvd2BoBLxGXIBQucuq-0g7UbOixA2vGQx6ngmvrS3h1ud2irh-_7pF80SbJ3YT7x9wgH4c1kKLgyrkTYseloE5QpMaC7BMq9TrfxZEfHEauhRdlgNYOPzfGlBOVNfL57w5f8sz2PJ2y5YKPRDqgsMn5aqsF0vkxXfGiWZpq7oLX6wFxd8lqbp7wm3tZ6N_7hD_ZApYCasJHHxj7YUPEB2Fop3Q_BswkR2MgJ7Ewiu4SJhg_JWMF2JrFUsOi-OoCN0SCZDtOX8QwOY2hAI-xOLcVj3WpX2XIWIljoa2ZHoNe8e7xtOcWoBUcg5KaOR5Er69JgGY08SblPJSeIC8mDECsDKkPmssDVBkyZgqqONWWBgUaB0FwybFDIMSjFSaxOAAx5XROOBPIVxiRwmckGniUDfYFJqEkVXK0cEE3yjhqRqUSsraLMVpG1VWRtVQXXHw76_Vm65sCoOI2zn5Zk4Iae_mOTM1BKp3N1bnBIyi-KGHwHu-7Yxw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Applicability+of+Some+Machine+Learning+Algorithms+in+the+Prediction+of+Type+2+Diabetes&rft.jtitle=Proceedings+of+the+...+International+Conference+on+Business+Excellence&rft.au=V%C3%AErgolici%2C+Oana&rft.au=T%C4%83n%C4%83sescu%2C+Laura+Gabriela&rft.date=2024-06-01&rft.pub=Sciendo&rft.eissn=2558-9652&rft.volume=18&rft.issue=1&rft.spage=246&rft.epage=257&rft_id=info:doi/10.2478%2Fpicbe-2024-0021&rft.externalDBID=n%2Fa&rft.externalDocID=10_2478_picbe_2024_0021181246
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2558-9652&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2558-9652&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2558-9652&client=summon