An artificial neural network‐based optimization of reverse electrodialysis power generating cells using CFD and genetic algorithm

Summary Reverse electrodialysis (RED) is a renewable energy production method that employs salinity gradient to produce electricity. The salinity gradient between the rejected brine of desalination process and river water/seawater is a reliable source of energy, particularly for desalination plants...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of energy research Vol. 46; no. 15; pp. 21217 - 21233
Main Authors Faghihi, Parsa, Jalali, Alireza
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Inc 01.12.2022
Subjects
Online AccessGet full text
ISSN0363-907X
1099-114X
DOI10.1002/er.8379

Cover

Abstract Summary Reverse electrodialysis (RED) is a renewable energy production method that employs salinity gradient to produce electricity. The salinity gradient between the rejected brine of desalination process and river water/seawater is a reliable source of energy, particularly for desalination plants located in susceptible areas. In this study, the performance of RED is predicted using computational fluid dynamics and an artificial neural network. This approach reduces the computational costs of optimization, and more importantly, networks can be updated by more data in the future. Since geometric, hydrodynamic, and electrochemical variables affect the performance of these cells, ignoring any of them will influence the final design. We can consider all of these factors through deep learning. Performance parameters such as Sherwood number, Power number, and concentration polarization coefficient are evaluated in this study. Mass transport and pressure drop are optimized using genetic algorithm, and accessible electrical power is obtained for the optimized cases that help designers make final decisions. Using predictors and a set of optimized cases provide an efficient tool for the design. Based on our results, RED cells can produce net power density of 2.4 W m−2 by using rejected brine of desalination and river water as the two solutions. In addition, Sherwood number of 80 and Power number of 5248 show a good balance between the amount of mass transfer and pressure drop in RED cells. Reverse electrodialysis (RED) is a renewable energy production method that employs salinity gradient to produce electricity. The salinity gradient between the rejected brine of desalination process and river water/seawater is a reliable source of energy, particularly for desalination plants located in susceptible areas. In this study, the performance of reverse electrodialysis is predicted using computational fluid dynamics and an artificial neural network.
AbstractList Reverse electrodialysis (RED) is a renewable energy production method that employs salinity gradient to produce electricity. The salinity gradient between the rejected brine of desalination process and river water/seawater is a reliable source of energy, particularly for desalination plants located in susceptible areas. In this study, the performance of RED is predicted using computational fluid dynamics and an artificial neural network. This approach reduces the computational costs of optimization, and more importantly, networks can be updated by more data in the future. Since geometric, hydrodynamic, and electrochemical variables affect the performance of these cells, ignoring any of them will influence the final design. We can consider all of these factors through deep learning. Performance parameters such as Sherwood number, Power number, and concentration polarization coefficient are evaluated in this study. Mass transport and pressure drop are optimized using genetic algorithm, and accessible electrical power is obtained for the optimized cases that help designers make final decisions. Using predictors and a set of optimized cases provide an efficient tool for the design. Based on our results, RED cells can produce net power density of 2.4 W m−2 by using rejected brine of desalination and river water as the two solutions. In addition, Sherwood number of 80 and Power number of 5248 show a good balance between the amount of mass transfer and pressure drop in RED cells.
Summary Reverse electrodialysis (RED) is a renewable energy production method that employs salinity gradient to produce electricity. The salinity gradient between the rejected brine of desalination process and river water/seawater is a reliable source of energy, particularly for desalination plants located in susceptible areas. In this study, the performance of RED is predicted using computational fluid dynamics and an artificial neural network. This approach reduces the computational costs of optimization, and more importantly, networks can be updated by more data in the future. Since geometric, hydrodynamic, and electrochemical variables affect the performance of these cells, ignoring any of them will influence the final design. We can consider all of these factors through deep learning. Performance parameters such as Sherwood number, Power number, and concentration polarization coefficient are evaluated in this study. Mass transport and pressure drop are optimized using genetic algorithm, and accessible electrical power is obtained for the optimized cases that help designers make final decisions. Using predictors and a set of optimized cases provide an efficient tool for the design. Based on our results, RED cells can produce net power density of 2.4 W m−2 by using rejected brine of desalination and river water as the two solutions. In addition, Sherwood number of 80 and Power number of 5248 show a good balance between the amount of mass transfer and pressure drop in RED cells. Reverse electrodialysis (RED) is a renewable energy production method that employs salinity gradient to produce electricity. The salinity gradient between the rejected brine of desalination process and river water/seawater is a reliable source of energy, particularly for desalination plants located in susceptible areas. In this study, the performance of reverse electrodialysis is predicted using computational fluid dynamics and an artificial neural network.
Author Jalali, Alireza
Faghihi, Parsa
Author_xml – sequence: 1
  givenname: Parsa
  surname: Faghihi
  fullname: Faghihi, Parsa
  organization: University of Tehran
– sequence: 2
  givenname: Alireza
  orcidid: 0000-0001-5345-2279
  surname: Jalali
  fullname: Jalali, Alireza
  email: arjalali@ut.ac.ir
  organization: University of Tehran
BookMark eNp10M1KAzEQB_AgCtYPfIWABw-yNWl2m81R6icIgij0tqTJbI1ukzpJLfUk-AI-o0_itvUkeprA_5cZZnbIpg8eCDngrMsZ650Adksh1QbpcKZUxnk-3CQdJvoiU0wOt8lOjE-MtRmXHfJx6qnG5GpnnG6ohxmuSpoHfP56_xzpCJaGaXIT96aTC56GmiK8Akag0IBJGGz7dRFdpNMwB6Rj8ICt9WNqoGkincXle3BxRrW3qzg5Q3UzDujS42SPbNW6ibD_U3fJw8X5_eAqu7m9vB6c3mSmx9tNTG2lAm7Lfq3MSOaiMLmVMu_bko2E6Vktc1UbqwyUqsgLoTkzbcQFlLIwIHbJ4brvFMPLDGKqnsIMfTuy6smi7AvBRdmqbK0MhhgR6sq4tNo8oXZNxVm1vHMFWC3v3PqjX36KbqJx8Yc8Xsu5a2DxH6vO71b6GxwfkR8
CitedBy_id crossref_primary_10_1016_j_cep_2023_109421
crossref_primary_10_1016_j_nexus_2025_100362
crossref_primary_10_1016_j_cherd_2023_08_028
crossref_primary_10_1016_j_cherd_2023_10_060
crossref_primary_10_1016_j_coche_2024_101081
crossref_primary_10_1016_j_csite_2024_104568
crossref_primary_10_1038_s41598_023_34799_0
Cites_doi 10.3390/ijms20010165
10.1016/j.memsci.2015.11.031
10.1016/j.desal.2017.10.021
10.1016/j.rser.2020.110114
10.1016/j.electacta.2021.139221
10.1016/j.memsci.2014.05.058
10.1002/er.3728
10.1016/j.memsci.2015.09.006
10.1021/i200033a016
10.1080/19443994.2012.699355
10.1016/j.memsci.2008.11.015
10.1016/j.desal.2020.114389
10.1002/aic.11643
10.1023/A:1012763531803
10.1080/19443994.2012.705084
10.1002/er.7902
10.1016/j.memsci.2013.06.045
10.1016/j.desal.2019.01.005
10.1016/j.enconman.2021.114152
10.3390/ijms21176325
10.1002/er.6062
10.1016/S0011-9164(00)88124-2
10.1016/j.apenergy.2019.114482
10.1016/j.memsci.2009.05.047
10.1016/j.desal.2017.09.006
10.1016/0378-7753(83)80077-9
10.1016/j.energy.2019.05.183
10.1016/j.cherd.2020.02.025
10.1002/er.5354
10.1016/j.cej.2021.128936
10.1016/S0011-9164(02)00208-4
10.1016/B978-0-12-813551-8.00017-6
10.1016/j.cep.2021.108583
10.1016/j.adapen.2021.100023
10.1016/j.memsci.2017.07.030
10.1038/174660a0
10.1115/1.2960953
10.1016/0029-8018(80)90030-X
ContentType Journal Article
Copyright 2022 John Wiley & Sons Ltd.
2022 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2022 John Wiley & Sons Ltd.
– notice: 2022 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SP
7ST
7TB
7TN
8FD
C1K
F1W
F28
FR3
H96
KR7
L.G
L7M
SOI
DOI 10.1002/er.8379
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Oceanic Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Environmental Sciences and Pollution Management
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-114X
EndPage 21233
ExternalDocumentID 10_1002_er_8379
ER8379
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AAJEY
AANHP
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJCF
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AEUYN
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AI.
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARAPS
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BKSAR
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CCPQU
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
FEDTE
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
H13
HCIFZ
HF~
HHY
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
M7S
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PATMY
PCBAR
PIMPY
PTHSS
PYCSY
Q.N
Q11
QB0
QRW
R.K
RHX
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WLBEL
WOHZO
WQJ
WWI
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AGQPQ
AGXDD
AIDQK
AIDYY
AIQQE
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SP
7ST
7TB
7TN
8FD
C1K
F1W
F28
FR3
H96
KR7
L.G
L7M
SOI
ID FETCH-LOGICAL-c2199-cfd79e1d86f9cb7435c4d7746d80b3c2da749fcd9ce895453a10c80b13e875ce3
IEDL.DBID DR2
ISSN 0363-907X
IngestDate Wed Aug 13 07:09:49 EDT 2025
Wed Oct 01 02:19:00 EDT 2025
Thu Apr 24 23:09:41 EDT 2025
Wed Jan 22 16:20:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2199-cfd79e1d86f9cb7435c4d7746d80b3c2da749fcd9ce895453a10c80b13e875ce3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5345-2279
PQID 2758633138
PQPubID 996365
PageCount 17
ParticipantIDs proquest_journals_2758633138
crossref_citationtrail_10_1002_er_8379
crossref_primary_10_1002_er_8379
wiley_primary_10_1002_er_8379_ER8379
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
20221201
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Bognor Regis
PublicationTitle International journal of energy research
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2017; 41
2021; 2
2021; 289
2018; 425
2020; 262
2020; 482
2021; 168
2010
2013; 446
1983; 10
2022; 46
1997
2006
2008; 54
2016; 502
2003
1979; 28
2021; 417
2014; 468
2020; 4
2019; 181
2002; 142
2019; 20
2021; 135
2021; 238
1986; 25
2019; 457
2016; 497
2019
2009; 343
1980; 7
1954; 174
2021; 395
2001; 37
2020; 45
2020; 157
2020; 44
2012; 49
2020; 21
2012; 48
2009; 327
2017; 541
2017; 423
2008; 130
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
Mir N (e_1_2_8_7_1) 2021; 289
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_37_1
Perry RH (e_1_2_8_38_1) 1997
Nocedal J (e_1_2_8_43_1) 2006
Sharma S (e_1_2_8_44_1) 2020; 4
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 46
  start-page: 1
  year: 2022
  end-page: 16
  article-title: Computational fluid dynamics model based artificial neural network prediction of flammable vapor clouds formed by liquid hydrogen releases
  publication-title: Int J Energy Res
– volume: 446
  start-page: 266
  year: 2013
  end-page: 276
  article-title: Performance‐determining membrane properties in reverse electrodialysis
  publication-title: Membr Sci
– volume: 37
  start-page: 1164
  year: 2001
  end-page: 1171
  article-title: Local mass transfer during electrodialysis with ion‐exchange membranes and spacers
  publication-title: Russ J Electrochem
– volume: 327
  start-page: 136
  year: 2009
  end-page: 144
  article-title: Reverse electrodialysis: performance of a stack with 50 cells on the mixing of sea and river water
  publication-title: Membr Sci
– volume: 238
  start-page: 114
  year: 2021
  end-page: 152
  article-title: Multi‐objective optimization of a solar chimney for power generation and water desalination using neural network
  publication-title: Energy Convers Manag
– volume: 343
  start-page: 7
  year: 2009
  end-page: 15
  article-title: Reverse electrodialysis: comparison of six commercial membrane pairs on the thermodynamic efficiency and power density
  publication-title: Membr Sci
– volume: 28
  start-page: 31
  year: 1979
  end-page: 40
  article-title: The electrodialysls reversal (EDR) process
  publication-title: Desalination
– volume: 25
  start-page: 443
  year: 1986
  end-page: 449
  article-title: Novel process for direct conversion of free energy of mixing into electric power
  publication-title: Ind Eng Chem Process Des Dev
– year: 2003
– volume: 48
  start-page: 370
  year: 2012
  end-page: 389
  article-title: CFD simulation of channels for direct and reverse electrodialysis
  publication-title: Desalin Water Treat
– volume: 289
  year: 2021
  article-title: Integration of electrodialysis with renewable energy sources for sustainable freshwater production: a review
  publication-title: Environ Manag
– volume: 174
  start-page: 660
  year: 1954
  article-title: Production of electric power by mixing fresh and salt water in the hydroelectric pile
  publication-title: Nature
– volume: 502
  start-page: 179
  year: 2016
  end-page: 190
  article-title: Computational fluid dynamics (CFD) assisted analysis of profiled membranes performance in reverse electrodialysis
  publication-title: J Membr Sci
– volume: 49
  start-page: 404
  year: 2012
  end-page: 424
  article-title: Modelling the reverse electrodialysis process with seawater and concentrated brines
  publication-title: Desalin Water Treat
– volume: 21
  start-page: 6325
  issue: 17
  year: 2020
  article-title: Analysis of membrane transport equations for reverse electrodialysis (RED) using irreversible thermodynamics
  publication-title: Int J Mol Sci
– volume: 10
  start-page: 203
  year: 1983
  end-page: 2017
  article-title: Reverse electrodialysis
  publication-title: Power Sources
– volume: 7
  start-page: 1
  year: 1980
  end-page: 47
  article-title: Energy by reverse electrodialysis
  publication-title: Ocean Eng
– volume: 157
  start-page: 77
  year: 2020
  end-page: 91
  article-title: Numerical simulation of flow and mass transfer in profiled membrane channels for reverse electrodialysis
  publication-title: Chem Eng Res Des
– volume: 45
  start-page: 3495
  year: 2020
  end-page: 3522
  article-title: From non‐renewable energy to renewable by harvesting salinity gradient power by reverse electrodialysis: a review
  publication-title: Int J Energy Res
– volume: 457
  start-page: 8
  year: 2019
  end-page: 21
  article-title: Comparative performance of salinity gradient power‐reverse electrodialysis under different operating conditions
  publication-title: Desalination
– volume: 482
  year: 2020
  article-title: A comprehensive study on the effects of operation variables on reverse electrodialysis performance
  publication-title: Desalination
– volume: 497
  start-page: 300
  year: 2016
  end-page: 317
  article-title: Flow and mass transfer in spacer‐filled channels for reverse electrodialysis: a CFD parametrical study
  publication-title: Membr Sci
– volume: 181
  start-page: 576
  year: 2019
  end-page: 588
  article-title: Optimization of net power density in reverse electrodialysis
  publication-title: Energy
– volume: 468
  start-page: 133
  year: 2014
  end-page: 148
  article-title: CFD prediction of concentration polarization phenomena in spacer‐filled channels for reverse electrodialysis
  publication-title: Membr Sci
– year: 2006
– volume: 2
  year: 2021
  article-title: Optimizing multistage reverse electrodialysis for enhanced energy recovery from river water and seawater: experimental and modeling investigation
  publication-title: Adv Appl Energy
– year: 1997
– volume: 262
  start-page: 114482
  year: 2020
  article-title: Unique applications and improvements of reverse electrodialysis: a review and outlook
  publication-title: Appl Energy
– volume: 423
  start-page: 52
  year: 2017
  end-page: 64
  article-title: Multi‐physical modelling of reverse electrodialysis
  publication-title: Desalination
– volume: 44
  start-page: 7093
  year: 2020
  end-page: 7102
  article-title: Performance parameters analysis of reverse electrodialysis process: sensitive to the repeating unit pairs, inflow velocity and feed concentration
  publication-title: Int J Energy Res
– volume: 417
  start-page: 128936
  year: 2021
  article-title: A computational workflow to study particle transport and filtration in porous media: coupling CFD and deep learning
  publication-title: Chem Eng J
– volume: 395
  year: 2021
  article-title: Augmentation of the reverse electrodialysis power generation in soft nanochannels via tailoring the soft layer properties
  publication-title: Electrochim Acta
– volume: 168
  year: 2021
  article-title: Performance analysis of cross‐flow forward osmosis membrane modules with mesh feed spacer using three‐dimensional computational fluid dynamics simulations
  publication-title: Chem Eng Process Process Intensif
– volume: 130
  issue: 7
  year: 2008
  article-title: Procedure for estimation and reporting of uncertainity due to discretization in CFD applications
  publication-title: Fluids Eng
– volume: 135
  start-page: 110114
  year: 2021
  article-title: Prediction of daily global solar radiation using different machine learning algorithms: evaluation and comparison
  publication-title: Renew Sust Energ Rev
– volume: 142
  start-page: 267
  year: 2002
  end-page: 286
  article-title: Designing of an electrodialysis desalination plant
  publication-title: Desalination
– volume: 54
  start-page: 3147
  issue: 12
  year: 2008
  end-page: 3159
  article-title: Electrodialysis‐based separation technologies: a critical review
  publication-title: AIChE J
– volume: 541
  start-page: 595
  year: 2017
  end-page: 610
  article-title: Coupling CFD with a one‐dimensional model to predict the performance of reverse electrodialysis stacks
  publication-title: J Membr Sci
– volume: 425
  start-page: 156
  year: 2018
  end-page: 174
  article-title: Recent developments and future perspectives of reverse electrodialysis
  publication-title: Desalination
– volume: 20
  start-page: 165
  issue: 1
  year: 2019
  article-title: Profiled ion exchange membranes: a comprehensible review
  publication-title: Int J Mol Sci
– start-page: 249
  year: 2010
  end-page: 256
– volume: 41
  start-page: 1474
  year: 2017
  end-page: 1486
  article-title: Experimental study of the natural organic matters effect on the power generation of reverse electrodialysis
  publication-title: Int J Energy Res
– start-page: 407
  year: 2019
  end-page: 448
– volume: 4
  start-page: 310
  issue: 12
  year: 2020
  end-page: 316
  article-title: Activation functions in neural networks
  publication-title: Int J Eng Appl Sci Technol
– ident: e_1_2_8_15_1
  doi: 10.3390/ijms20010165
– volume: 4
  start-page: 310
  issue: 12
  year: 2020
  ident: e_1_2_8_44_1
  article-title: Activation functions in neural networks
  publication-title: Int J Eng Appl Sci Technol
– ident: e_1_2_8_27_1
  doi: 10.1016/j.memsci.2015.11.031
– volume-title: Perry's Chemical Engineerings’ Handbook
  year: 1997
  ident: e_1_2_8_38_1
– ident: e_1_2_8_9_1
  doi: 10.1016/j.desal.2017.10.021
– ident: e_1_2_8_34_1
  doi: 10.1016/j.rser.2020.110114
– volume: 289
  start-page: 112496
  year: 2021
  ident: e_1_2_8_7_1
  article-title: Integration of electrodialysis with renewable energy sources for sustainable freshwater production: a review
  publication-title: Environ Manag
– ident: e_1_2_8_12_1
  doi: 10.1016/j.electacta.2021.139221
– ident: e_1_2_8_24_1
  doi: 10.1016/j.memsci.2014.05.058
– ident: e_1_2_8_13_1
  doi: 10.1002/er.3728
– volume-title: Numerical Optimization
  year: 2006
  ident: e_1_2_8_43_1
– ident: e_1_2_8_25_1
  doi: 10.1016/j.memsci.2015.09.006
– ident: e_1_2_8_18_1
  doi: 10.1021/i200033a016
– ident: e_1_2_8_41_1
  doi: 10.1080/19443994.2012.699355
– ident: e_1_2_8_20_1
  doi: 10.1016/j.memsci.2008.11.015
– ident: e_1_2_8_22_1
  doi: 10.1016/j.desal.2020.114389
– ident: e_1_2_8_4_1
  doi: 10.1002/aic.11643
– ident: e_1_2_8_14_1
  doi: 10.1023/A:1012763531803
– ident: e_1_2_8_23_1
  doi: 10.1080/19443994.2012.705084
– ident: e_1_2_8_35_1
  doi: 10.1002/er.7902
– ident: e_1_2_8_40_1
  doi: 10.1016/j.memsci.2013.06.045
– ident: e_1_2_8_11_1
  doi: 10.1016/j.desal.2019.01.005
– ident: e_1_2_8_33_1
  doi: 10.1016/j.enconman.2021.114152
– ident: e_1_2_8_10_1
  doi: 10.3390/ijms21176325
– ident: e_1_2_8_2_1
– ident: e_1_2_8_6_1
  doi: 10.1002/er.6062
– ident: e_1_2_8_5_1
  doi: 10.1016/S0011-9164(00)88124-2
– ident: e_1_2_8_19_1
  doi: 10.1016/j.apenergy.2019.114482
– ident: e_1_2_8_21_1
  doi: 10.1016/j.memsci.2009.05.047
– ident: e_1_2_8_26_1
  doi: 10.1016/j.desal.2017.09.006
– ident: e_1_2_8_17_1
  doi: 10.1016/0378-7753(83)80077-9
– ident: e_1_2_8_31_1
  doi: 10.1016/j.energy.2019.05.183
– ident: e_1_2_8_28_1
  doi: 10.1016/j.cherd.2020.02.025
– ident: e_1_2_8_29_1
  doi: 10.1002/er.5354
– ident: e_1_2_8_36_1
  doi: 10.1016/j.cej.2021.128936
– ident: e_1_2_8_3_1
  doi: 10.1016/S0011-9164(02)00208-4
– ident: e_1_2_8_39_1
  doi: 10.1016/B978-0-12-813551-8.00017-6
– ident: e_1_2_8_37_1
  doi: 10.1016/j.cep.2021.108583
– ident: e_1_2_8_30_1
  doi: 10.1016/j.adapen.2021.100023
– ident: e_1_2_8_32_1
  doi: 10.1016/j.memsci.2017.07.030
– ident: e_1_2_8_42_1
– ident: e_1_2_8_16_1
  doi: 10.1038/174660a0
– ident: e_1_2_8_45_1
  doi: 10.1115/1.2960953
– ident: e_1_2_8_8_1
  doi: 10.1016/0029-8018(80)90030-X
SSID ssj0009917
Score 2.4155278
Snippet Summary Reverse electrodialysis (RED) is a renewable energy production method that employs salinity gradient to produce electricity. The salinity gradient...
Reverse electrodialysis (RED) is a renewable energy production method that employs salinity gradient to produce electricity. The salinity gradient between the...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 21217
SubjectTerms Algorithms
Artificial neural networks
Brines
Cells
CFD
Computational fluid dynamics
Computer applications
Computing costs
Deep learning
Desalination
Desalination plants
Design
Electric power
Electrochemistry
Electrodialysis
Energy sources
Fluid dynamics
Genetic algorithms
Hydrodynamics
ion exchange membranes
Machine learning
Mass transfer
Mass transport
neural network
Neural networks
Optimization
Pareto front
Pressure drop
Production methods
Renewable energy
reverse electrodialysis
River water
Rivers
Salinity
Salinity effects
Salinity gradients
Seawater
Water desalting
Title An artificial neural network‐based optimization of reverse electrodialysis power generating cells using CFD and genetic algorithm
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fer.8379
https://www.proquest.com/docview/2758633138
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1099-114X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009917
  issn: 0363-907X
  databaseCode: ADMLS
  dateStart: 20050610
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0363-907X
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1099-114X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009917
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ29TsMwEMctBAsMfCMKpfKA2FKSOE3isYJWFQKGQqWKJUpspyDatErThQmJF-AZeRLunKQtICTE5MG2ZMVf_4vvfkfIKZcOB6XbMOzYk4bDzYYRYiCwp0TEbN-UTLP0bm7dTs-56jf6S6m-cj7E_Icb7gx9XuMGD6Pp-QIaqtI6GFcYumcxVxtT3QU4ClSPV75SgvnXz8Nlsed50e_rPbQQl8sSVd8x7S3yUI4udy15rs-yqC5evoEb_zX8bbJZKE_azJfKDllRyS7ZWOIR7pG3ZkJxKeVUCYqsS11oT_GP13e88iQdwykzKsI36TimCIFKp4oWGXUwEgUxJ3SCCdjoQHOt0bma4iPBlKKn_YBetC9pmEhdDQOi4XAwTp-yx9E-6bVb9xcdo8jSYAg47bghYulxZUnfjbmIQJA0hCNBVLrSNyMmbBl6Do-F5EL5HPQaCy1TQJXFFNhKQrEDspqME3VIKKglJlTkx2CXO0K6PmZW4oqF0FyalqiQs3LOAlEgzDGTxjDI4ct2oNIAv2qF0HnDSU7t-NmkWk56UGzbaWCD9eQyZjG_Qk717P3WPWh1sTj6W7Njsm5j2IR2g6mS1SydqRMQM1lUI2vNy5vru5pev5_gc_Z1
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2xHIADO6KsPiBuKUmczUcEVGU9IJAqcYgS2ymINkVpuXBC4gf4Rr6EGSelLEJCnHzwWHJiz_iNPfMGYEcoTyDS9S03C5XlCdu3EkoEDrVMuRvZihsuvfOLoHntnbT8VhVVSbkwJT_Ex4UbaYax16TgdCG9N2IN1UUdvSsxDpNegF4KAaLLEXUU4p5w-E6JDmCrTJiloXvVwK8n0Qhefgap5pRpzMHNcH5lcMl9_XGQ1uXTN-rG_33APMxW4JPtl7tlAcZ0vggznygJl-BlP2e0m0piCUZ0l6YxweJvz6906inWQ0PTrTI4WS9jxANV9DWriupQMgoxnbAHqsHG2obamuKrGb0T9BkF27fZQeOQJbky3TghlnTaveJucNtdhuvG0dVB06oKNVgSDZ6wZKZCoR0VBZmQKWISX3oKcWWgIjvl0lVJ6IlMKiF1JBCy8cSxJXY5XKO7JDVfgYm8l-tVYAiYuNRplKFr7kkVRFRcSWieoLiyHVmD3eGixbJiMadiGp245F92Y13E9FdrwD4EH0rijp8iG8NVjyvN7ccuOlAB5w6ParBjlu-34fHRJTVrfxPbhqnm1flZfHZ8cboO0y5lUZiomA2YGBSPehOxzSDdMpv4HXle-QI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFH64gOjBXRzXHMRbx7bplqM4Du6IKAx4KG2SjqJ2hs548ST4B_yN_hLfSzuOC4J4yiEvkDTb95rvfQ9gSyhPINL1LTcLleUJ27cSCgQOtUy5G9mKGy2907Pg4Mo7avmtilVJsTClPsTHDzfaGea8pg2uuyrbGaqG6qKO3pUYhXHPFxHR-RoXQ-koxD3h4J0SHcBWGTBLTXeqhl9voiG8_AxSzS3TnIHrQf9Kcsld_bGf1uXTN-nG_w1gFqYr8Ml2y9UyByM6n4epT5KEC_CymzNaTaWwBCO5S1MYsvjb8yvdeop18KB5qCI4WSdjpANV9DSrkupQMAopnbAu5WBjbSNtTfxqRu8EPUZk-zbbazZYkitTjR1iyX27U9z2bx4W4aq5f7l3YFWJGiyJB56wZKZCoR0VBZmQKWISX3oKcWWgIjvl0lVJ6IlMKiF1JBCy8cSxJVY5XKO7JDVfgrG8k-tlYAiYuNRplKFr7kkVRJRcSWieoLmyHVmD7cGkxbJSMadkGvdxqb_sxrqI6avWgH0Ydkvhjp8ma4NZj6ud24tddKACzh0e1WDLTN9vzeP9CypW_ma2CRPnjWZ8cnh2vAqTLgVRGFLMGoz1i0e9jtCmn26YNfwOLEH4hg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+artificial+neural+network%E2%80%90based+optimization+of+reverse+electrodialysis+power+generating+cells+using+CFD+and+genetic+algorithm&rft.jtitle=International+journal+of+energy+research&rft.au=Faghihi%2C+Parsa&rft.au=Jalali%2C+Alireza&rft.date=2022-12-01&rft.issn=0363-907X&rft.eissn=1099-114X&rft.volume=46&rft.issue=15&rft.spage=21217&rft.epage=21233&rft_id=info:doi/10.1002%2Fer.8379&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_er_8379
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-907X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-907X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-907X&client=summon