An artificial neural network‐based optimization of reverse electrodialysis power generating cells using CFD and genetic algorithm
Summary Reverse electrodialysis (RED) is a renewable energy production method that employs salinity gradient to produce electricity. The salinity gradient between the rejected brine of desalination process and river water/seawater is a reliable source of energy, particularly for desalination plants...
Saved in:
| Published in | International journal of energy research Vol. 46; no. 15; pp. 21217 - 21233 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Chichester, UK
John Wiley & Sons, Inc
01.12.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0363-907X 1099-114X |
| DOI | 10.1002/er.8379 |
Cover
| Abstract | Summary
Reverse electrodialysis (RED) is a renewable energy production method that employs salinity gradient to produce electricity. The salinity gradient between the rejected brine of desalination process and river water/seawater is a reliable source of energy, particularly for desalination plants located in susceptible areas. In this study, the performance of RED is predicted using computational fluid dynamics and an artificial neural network. This approach reduces the computational costs of optimization, and more importantly, networks can be updated by more data in the future. Since geometric, hydrodynamic, and electrochemical variables affect the performance of these cells, ignoring any of them will influence the final design. We can consider all of these factors through deep learning. Performance parameters such as Sherwood number, Power number, and concentration polarization coefficient are evaluated in this study. Mass transport and pressure drop are optimized using genetic algorithm, and accessible electrical power is obtained for the optimized cases that help designers make final decisions. Using predictors and a set of optimized cases provide an efficient tool for the design. Based on our results, RED cells can produce net power density of 2.4 W m−2 by using rejected brine of desalination and river water as the two solutions. In addition, Sherwood number of 80 and Power number of 5248 show a good balance between the amount of mass transfer and pressure drop in RED cells.
Reverse electrodialysis (RED) is a renewable energy production method that employs salinity gradient to produce electricity. The salinity gradient between the rejected brine of desalination process and river water/seawater is a reliable source of energy, particularly for desalination plants located in susceptible areas. In this study, the performance of reverse electrodialysis is predicted using computational fluid dynamics and an artificial neural network. |
|---|---|
| AbstractList | Reverse electrodialysis (RED) is a renewable energy production method that employs salinity gradient to produce electricity. The salinity gradient between the rejected brine of desalination process and river water/seawater is a reliable source of energy, particularly for desalination plants located in susceptible areas. In this study, the performance of RED is predicted using computational fluid dynamics and an artificial neural network. This approach reduces the computational costs of optimization, and more importantly, networks can be updated by more data in the future. Since geometric, hydrodynamic, and electrochemical variables affect the performance of these cells, ignoring any of them will influence the final design. We can consider all of these factors through deep learning. Performance parameters such as Sherwood number, Power number, and concentration polarization coefficient are evaluated in this study. Mass transport and pressure drop are optimized using genetic algorithm, and accessible electrical power is obtained for the optimized cases that help designers make final decisions. Using predictors and a set of optimized cases provide an efficient tool for the design. Based on our results, RED cells can produce net power density of 2.4 W m−2 by using rejected brine of desalination and river water as the two solutions. In addition, Sherwood number of 80 and Power number of 5248 show a good balance between the amount of mass transfer and pressure drop in RED cells. Summary Reverse electrodialysis (RED) is a renewable energy production method that employs salinity gradient to produce electricity. The salinity gradient between the rejected brine of desalination process and river water/seawater is a reliable source of energy, particularly for desalination plants located in susceptible areas. In this study, the performance of RED is predicted using computational fluid dynamics and an artificial neural network. This approach reduces the computational costs of optimization, and more importantly, networks can be updated by more data in the future. Since geometric, hydrodynamic, and electrochemical variables affect the performance of these cells, ignoring any of them will influence the final design. We can consider all of these factors through deep learning. Performance parameters such as Sherwood number, Power number, and concentration polarization coefficient are evaluated in this study. Mass transport and pressure drop are optimized using genetic algorithm, and accessible electrical power is obtained for the optimized cases that help designers make final decisions. Using predictors and a set of optimized cases provide an efficient tool for the design. Based on our results, RED cells can produce net power density of 2.4 W m−2 by using rejected brine of desalination and river water as the two solutions. In addition, Sherwood number of 80 and Power number of 5248 show a good balance between the amount of mass transfer and pressure drop in RED cells. Reverse electrodialysis (RED) is a renewable energy production method that employs salinity gradient to produce electricity. The salinity gradient between the rejected brine of desalination process and river water/seawater is a reliable source of energy, particularly for desalination plants located in susceptible areas. In this study, the performance of reverse electrodialysis is predicted using computational fluid dynamics and an artificial neural network. |
| Author | Jalali, Alireza Faghihi, Parsa |
| Author_xml | – sequence: 1 givenname: Parsa surname: Faghihi fullname: Faghihi, Parsa organization: University of Tehran – sequence: 2 givenname: Alireza orcidid: 0000-0001-5345-2279 surname: Jalali fullname: Jalali, Alireza email: arjalali@ut.ac.ir organization: University of Tehran |
| BookMark | eNp10M1KAzEQB_AgCtYPfIWABw-yNWl2m81R6icIgij0tqTJbI1ukzpJLfUk-AI-o0_itvUkeprA_5cZZnbIpg8eCDngrMsZ650Adksh1QbpcKZUxnk-3CQdJvoiU0wOt8lOjE-MtRmXHfJx6qnG5GpnnG6ohxmuSpoHfP56_xzpCJaGaXIT96aTC56GmiK8Akag0IBJGGz7dRFdpNMwB6Rj8ICt9WNqoGkincXle3BxRrW3qzg5Q3UzDujS42SPbNW6ibD_U3fJw8X5_eAqu7m9vB6c3mSmx9tNTG2lAm7Lfq3MSOaiMLmVMu_bko2E6Vktc1UbqwyUqsgLoTkzbcQFlLIwIHbJ4brvFMPLDGKqnsIMfTuy6smi7AvBRdmqbK0MhhgR6sq4tNo8oXZNxVm1vHMFWC3v3PqjX36KbqJx8Yc8Xsu5a2DxH6vO71b6GxwfkR8 |
| CitedBy_id | crossref_primary_10_1016_j_cep_2023_109421 crossref_primary_10_1016_j_nexus_2025_100362 crossref_primary_10_1016_j_cherd_2023_08_028 crossref_primary_10_1016_j_cherd_2023_10_060 crossref_primary_10_1016_j_coche_2024_101081 crossref_primary_10_1016_j_csite_2024_104568 crossref_primary_10_1038_s41598_023_34799_0 |
| Cites_doi | 10.3390/ijms20010165 10.1016/j.memsci.2015.11.031 10.1016/j.desal.2017.10.021 10.1016/j.rser.2020.110114 10.1016/j.electacta.2021.139221 10.1016/j.memsci.2014.05.058 10.1002/er.3728 10.1016/j.memsci.2015.09.006 10.1021/i200033a016 10.1080/19443994.2012.699355 10.1016/j.memsci.2008.11.015 10.1016/j.desal.2020.114389 10.1002/aic.11643 10.1023/A:1012763531803 10.1080/19443994.2012.705084 10.1002/er.7902 10.1016/j.memsci.2013.06.045 10.1016/j.desal.2019.01.005 10.1016/j.enconman.2021.114152 10.3390/ijms21176325 10.1002/er.6062 10.1016/S0011-9164(00)88124-2 10.1016/j.apenergy.2019.114482 10.1016/j.memsci.2009.05.047 10.1016/j.desal.2017.09.006 10.1016/0378-7753(83)80077-9 10.1016/j.energy.2019.05.183 10.1016/j.cherd.2020.02.025 10.1002/er.5354 10.1016/j.cej.2021.128936 10.1016/S0011-9164(02)00208-4 10.1016/B978-0-12-813551-8.00017-6 10.1016/j.cep.2021.108583 10.1016/j.adapen.2021.100023 10.1016/j.memsci.2017.07.030 10.1038/174660a0 10.1115/1.2960953 10.1016/0029-8018(80)90030-X |
| ContentType | Journal Article |
| Copyright | 2022 John Wiley & Sons Ltd. 2022 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2022 John Wiley & Sons Ltd. – notice: 2022 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 7SP 7ST 7TB 7TN 8FD C1K F1W F28 FR3 H96 KR7 L.G L7M SOI |
| DOI | 10.1002/er.8379 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Oceanic Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Environment Abstracts |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Environmental Sciences and Pollution Management Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1099-114X |
| EndPage | 21233 |
| ExternalDocumentID | 10_1002_er_8379 ER8379 |
| Genre | article |
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHHS AAJEY AANHP AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJCF ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCMX ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AEUYN AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AI. AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARAPS ASPBG ATCPS ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BKSAR BMNLL BMXJE BNHUX BROTX BRXPI BY8 CCPQU CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 FEDTE G-S G.N GNP GODZA GROUPED_DOAJ H.T H.X H13 HCIFZ HF~ HHY HVGLF HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 M7S MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PATMY PCBAR PIMPY PTHSS PYCSY Q.N Q11 QB0 QRW R.K RHX RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ TN5 UB1 V2E VH1 W8V W99 WBKPD WH7 WIH WIK WLBEL WOHZO WQJ WWI WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAMMB AAYXX ADMLS AEFGJ AGQPQ AGXDD AIDQK AIDYY AIQQE CITATION PHGZM PHGZT PQGLB PUEGO 7SP 7ST 7TB 7TN 8FD C1K F1W F28 FR3 H96 KR7 L.G L7M SOI |
| ID | FETCH-LOGICAL-c2199-cfd79e1d86f9cb7435c4d7746d80b3c2da749fcd9ce895453a10c80b13e875ce3 |
| IEDL.DBID | DR2 |
| ISSN | 0363-907X |
| IngestDate | Wed Aug 13 07:09:49 EDT 2025 Wed Oct 01 02:19:00 EDT 2025 Thu Apr 24 23:09:41 EDT 2025 Wed Jan 22 16:20:01 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 15 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2199-cfd79e1d86f9cb7435c4d7746d80b3c2da749fcd9ce895453a10c80b13e875ce3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5345-2279 |
| PQID | 2758633138 |
| PQPubID | 996365 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_2758633138 crossref_citationtrail_10_1002_er_8379 crossref_primary_10_1002_er_8379 wiley_primary_10_1002_er_8379_ER8379 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | December 2022 2022-12-00 20221201 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: December 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Chichester, UK |
| PublicationPlace_xml | – name: Chichester, UK – name: Bognor Regis |
| PublicationTitle | International journal of energy research |
| PublicationYear | 2022 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | 2017; 41 2021; 2 2021; 289 2018; 425 2020; 262 2020; 482 2021; 168 2010 2013; 446 1983; 10 2022; 46 1997 2006 2008; 54 2016; 502 2003 1979; 28 2021; 417 2014; 468 2020; 4 2019; 181 2002; 142 2019; 20 2021; 135 2021; 238 1986; 25 2019; 457 2016; 497 2019 2009; 343 1980; 7 1954; 174 2021; 395 2001; 37 2020; 45 2020; 157 2020; 44 2012; 49 2020; 21 2012; 48 2009; 327 2017; 541 2017; 423 2008; 130 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 Mir N (e_1_2_8_7_1) 2021; 289 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_23_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_37_1 Perry RH (e_1_2_8_38_1) 1997 Nocedal J (e_1_2_8_43_1) 2006 Sharma S (e_1_2_8_44_1) 2020; 4 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
| References_xml | – volume: 46 start-page: 1 year: 2022 end-page: 16 article-title: Computational fluid dynamics model based artificial neural network prediction of flammable vapor clouds formed by liquid hydrogen releases publication-title: Int J Energy Res – volume: 446 start-page: 266 year: 2013 end-page: 276 article-title: Performance‐determining membrane properties in reverse electrodialysis publication-title: Membr Sci – volume: 37 start-page: 1164 year: 2001 end-page: 1171 article-title: Local mass transfer during electrodialysis with ion‐exchange membranes and spacers publication-title: Russ J Electrochem – volume: 327 start-page: 136 year: 2009 end-page: 144 article-title: Reverse electrodialysis: performance of a stack with 50 cells on the mixing of sea and river water publication-title: Membr Sci – volume: 238 start-page: 114 year: 2021 end-page: 152 article-title: Multi‐objective optimization of a solar chimney for power generation and water desalination using neural network publication-title: Energy Convers Manag – volume: 343 start-page: 7 year: 2009 end-page: 15 article-title: Reverse electrodialysis: comparison of six commercial membrane pairs on the thermodynamic efficiency and power density publication-title: Membr Sci – volume: 28 start-page: 31 year: 1979 end-page: 40 article-title: The electrodialysls reversal (EDR) process publication-title: Desalination – volume: 25 start-page: 443 year: 1986 end-page: 449 article-title: Novel process for direct conversion of free energy of mixing into electric power publication-title: Ind Eng Chem Process Des Dev – year: 2003 – volume: 48 start-page: 370 year: 2012 end-page: 389 article-title: CFD simulation of channels for direct and reverse electrodialysis publication-title: Desalin Water Treat – volume: 289 year: 2021 article-title: Integration of electrodialysis with renewable energy sources for sustainable freshwater production: a review publication-title: Environ Manag – volume: 174 start-page: 660 year: 1954 article-title: Production of electric power by mixing fresh and salt water in the hydroelectric pile publication-title: Nature – volume: 502 start-page: 179 year: 2016 end-page: 190 article-title: Computational fluid dynamics (CFD) assisted analysis of profiled membranes performance in reverse electrodialysis publication-title: J Membr Sci – volume: 49 start-page: 404 year: 2012 end-page: 424 article-title: Modelling the reverse electrodialysis process with seawater and concentrated brines publication-title: Desalin Water Treat – volume: 21 start-page: 6325 issue: 17 year: 2020 article-title: Analysis of membrane transport equations for reverse electrodialysis (RED) using irreversible thermodynamics publication-title: Int J Mol Sci – volume: 10 start-page: 203 year: 1983 end-page: 2017 article-title: Reverse electrodialysis publication-title: Power Sources – volume: 7 start-page: 1 year: 1980 end-page: 47 article-title: Energy by reverse electrodialysis publication-title: Ocean Eng – volume: 157 start-page: 77 year: 2020 end-page: 91 article-title: Numerical simulation of flow and mass transfer in profiled membrane channels for reverse electrodialysis publication-title: Chem Eng Res Des – volume: 45 start-page: 3495 year: 2020 end-page: 3522 article-title: From non‐renewable energy to renewable by harvesting salinity gradient power by reverse electrodialysis: a review publication-title: Int J Energy Res – volume: 457 start-page: 8 year: 2019 end-page: 21 article-title: Comparative performance of salinity gradient power‐reverse electrodialysis under different operating conditions publication-title: Desalination – volume: 482 year: 2020 article-title: A comprehensive study on the effects of operation variables on reverse electrodialysis performance publication-title: Desalination – volume: 497 start-page: 300 year: 2016 end-page: 317 article-title: Flow and mass transfer in spacer‐filled channels for reverse electrodialysis: a CFD parametrical study publication-title: Membr Sci – volume: 181 start-page: 576 year: 2019 end-page: 588 article-title: Optimization of net power density in reverse electrodialysis publication-title: Energy – volume: 468 start-page: 133 year: 2014 end-page: 148 article-title: CFD prediction of concentration polarization phenomena in spacer‐filled channels for reverse electrodialysis publication-title: Membr Sci – year: 2006 – volume: 2 year: 2021 article-title: Optimizing multistage reverse electrodialysis for enhanced energy recovery from river water and seawater: experimental and modeling investigation publication-title: Adv Appl Energy – year: 1997 – volume: 262 start-page: 114482 year: 2020 article-title: Unique applications and improvements of reverse electrodialysis: a review and outlook publication-title: Appl Energy – volume: 423 start-page: 52 year: 2017 end-page: 64 article-title: Multi‐physical modelling of reverse electrodialysis publication-title: Desalination – volume: 44 start-page: 7093 year: 2020 end-page: 7102 article-title: Performance parameters analysis of reverse electrodialysis process: sensitive to the repeating unit pairs, inflow velocity and feed concentration publication-title: Int J Energy Res – volume: 417 start-page: 128936 year: 2021 article-title: A computational workflow to study particle transport and filtration in porous media: coupling CFD and deep learning publication-title: Chem Eng J – volume: 395 year: 2021 article-title: Augmentation of the reverse electrodialysis power generation in soft nanochannels via tailoring the soft layer properties publication-title: Electrochim Acta – volume: 168 year: 2021 article-title: Performance analysis of cross‐flow forward osmosis membrane modules with mesh feed spacer using three‐dimensional computational fluid dynamics simulations publication-title: Chem Eng Process Process Intensif – volume: 130 issue: 7 year: 2008 article-title: Procedure for estimation and reporting of uncertainity due to discretization in CFD applications publication-title: Fluids Eng – volume: 135 start-page: 110114 year: 2021 article-title: Prediction of daily global solar radiation using different machine learning algorithms: evaluation and comparison publication-title: Renew Sust Energ Rev – volume: 142 start-page: 267 year: 2002 end-page: 286 article-title: Designing of an electrodialysis desalination plant publication-title: Desalination – volume: 54 start-page: 3147 issue: 12 year: 2008 end-page: 3159 article-title: Electrodialysis‐based separation technologies: a critical review publication-title: AIChE J – volume: 541 start-page: 595 year: 2017 end-page: 610 article-title: Coupling CFD with a one‐dimensional model to predict the performance of reverse electrodialysis stacks publication-title: J Membr Sci – volume: 425 start-page: 156 year: 2018 end-page: 174 article-title: Recent developments and future perspectives of reverse electrodialysis publication-title: Desalination – volume: 20 start-page: 165 issue: 1 year: 2019 article-title: Profiled ion exchange membranes: a comprehensible review publication-title: Int J Mol Sci – start-page: 249 year: 2010 end-page: 256 – volume: 41 start-page: 1474 year: 2017 end-page: 1486 article-title: Experimental study of the natural organic matters effect on the power generation of reverse electrodialysis publication-title: Int J Energy Res – start-page: 407 year: 2019 end-page: 448 – volume: 4 start-page: 310 issue: 12 year: 2020 end-page: 316 article-title: Activation functions in neural networks publication-title: Int J Eng Appl Sci Technol – ident: e_1_2_8_15_1 doi: 10.3390/ijms20010165 – volume: 4 start-page: 310 issue: 12 year: 2020 ident: e_1_2_8_44_1 article-title: Activation functions in neural networks publication-title: Int J Eng Appl Sci Technol – ident: e_1_2_8_27_1 doi: 10.1016/j.memsci.2015.11.031 – volume-title: Perry's Chemical Engineerings’ Handbook year: 1997 ident: e_1_2_8_38_1 – ident: e_1_2_8_9_1 doi: 10.1016/j.desal.2017.10.021 – ident: e_1_2_8_34_1 doi: 10.1016/j.rser.2020.110114 – volume: 289 start-page: 112496 year: 2021 ident: e_1_2_8_7_1 article-title: Integration of electrodialysis with renewable energy sources for sustainable freshwater production: a review publication-title: Environ Manag – ident: e_1_2_8_12_1 doi: 10.1016/j.electacta.2021.139221 – ident: e_1_2_8_24_1 doi: 10.1016/j.memsci.2014.05.058 – ident: e_1_2_8_13_1 doi: 10.1002/er.3728 – volume-title: Numerical Optimization year: 2006 ident: e_1_2_8_43_1 – ident: e_1_2_8_25_1 doi: 10.1016/j.memsci.2015.09.006 – ident: e_1_2_8_18_1 doi: 10.1021/i200033a016 – ident: e_1_2_8_41_1 doi: 10.1080/19443994.2012.699355 – ident: e_1_2_8_20_1 doi: 10.1016/j.memsci.2008.11.015 – ident: e_1_2_8_22_1 doi: 10.1016/j.desal.2020.114389 – ident: e_1_2_8_4_1 doi: 10.1002/aic.11643 – ident: e_1_2_8_14_1 doi: 10.1023/A:1012763531803 – ident: e_1_2_8_23_1 doi: 10.1080/19443994.2012.705084 – ident: e_1_2_8_35_1 doi: 10.1002/er.7902 – ident: e_1_2_8_40_1 doi: 10.1016/j.memsci.2013.06.045 – ident: e_1_2_8_11_1 doi: 10.1016/j.desal.2019.01.005 – ident: e_1_2_8_33_1 doi: 10.1016/j.enconman.2021.114152 – ident: e_1_2_8_10_1 doi: 10.3390/ijms21176325 – ident: e_1_2_8_2_1 – ident: e_1_2_8_6_1 doi: 10.1002/er.6062 – ident: e_1_2_8_5_1 doi: 10.1016/S0011-9164(00)88124-2 – ident: e_1_2_8_19_1 doi: 10.1016/j.apenergy.2019.114482 – ident: e_1_2_8_21_1 doi: 10.1016/j.memsci.2009.05.047 – ident: e_1_2_8_26_1 doi: 10.1016/j.desal.2017.09.006 – ident: e_1_2_8_17_1 doi: 10.1016/0378-7753(83)80077-9 – ident: e_1_2_8_31_1 doi: 10.1016/j.energy.2019.05.183 – ident: e_1_2_8_28_1 doi: 10.1016/j.cherd.2020.02.025 – ident: e_1_2_8_29_1 doi: 10.1002/er.5354 – ident: e_1_2_8_36_1 doi: 10.1016/j.cej.2021.128936 – ident: e_1_2_8_3_1 doi: 10.1016/S0011-9164(02)00208-4 – ident: e_1_2_8_39_1 doi: 10.1016/B978-0-12-813551-8.00017-6 – ident: e_1_2_8_37_1 doi: 10.1016/j.cep.2021.108583 – ident: e_1_2_8_30_1 doi: 10.1016/j.adapen.2021.100023 – ident: e_1_2_8_32_1 doi: 10.1016/j.memsci.2017.07.030 – ident: e_1_2_8_42_1 – ident: e_1_2_8_16_1 doi: 10.1038/174660a0 – ident: e_1_2_8_45_1 doi: 10.1115/1.2960953 – ident: e_1_2_8_8_1 doi: 10.1016/0029-8018(80)90030-X |
| SSID | ssj0009917 |
| Score | 2.4155278 |
| Snippet | Summary
Reverse electrodialysis (RED) is a renewable energy production method that employs salinity gradient to produce electricity. The salinity gradient... Reverse electrodialysis (RED) is a renewable energy production method that employs salinity gradient to produce electricity. The salinity gradient between the... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 21217 |
| SubjectTerms | Algorithms Artificial neural networks Brines Cells CFD Computational fluid dynamics Computer applications Computing costs Deep learning Desalination Desalination plants Design Electric power Electrochemistry Electrodialysis Energy sources Fluid dynamics Genetic algorithms Hydrodynamics ion exchange membranes Machine learning Mass transfer Mass transport neural network Neural networks Optimization Pareto front Pressure drop Production methods Renewable energy reverse electrodialysis River water Rivers Salinity Salinity effects Salinity gradients Seawater Water desalting |
| Title | An artificial neural network‐based optimization of reverse electrodialysis power generating cells using CFD and genetic algorithm |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fer.8379 https://www.proquest.com/docview/2758633138 |
| Volume | 46 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1099-114X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009917 issn: 0363-907X databaseCode: ADMLS dateStart: 20050610 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0363-907X databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1099-114X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009917 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ29TsMwEMctBAsMfCMKpfKA2FKSOE3isYJWFQKGQqWKJUpspyDatErThQmJF-AZeRLunKQtICTE5MG2ZMVf_4vvfkfIKZcOB6XbMOzYk4bDzYYRYiCwp0TEbN-UTLP0bm7dTs-56jf6S6m-cj7E_Icb7gx9XuMGD6Pp-QIaqtI6GFcYumcxVxtT3QU4ClSPV75SgvnXz8Nlsed50e_rPbQQl8sSVd8x7S3yUI4udy15rs-yqC5evoEb_zX8bbJZKE_azJfKDllRyS7ZWOIR7pG3ZkJxKeVUCYqsS11oT_GP13e88iQdwykzKsI36TimCIFKp4oWGXUwEgUxJ3SCCdjoQHOt0bma4iPBlKKn_YBetC9pmEhdDQOi4XAwTp-yx9E-6bVb9xcdo8jSYAg47bghYulxZUnfjbmIQJA0hCNBVLrSNyMmbBl6Do-F5EL5HPQaCy1TQJXFFNhKQrEDspqME3VIKKglJlTkx2CXO0K6PmZW4oqF0FyalqiQs3LOAlEgzDGTxjDI4ct2oNIAv2qF0HnDSU7t-NmkWk56UGzbaWCD9eQyZjG_Qk717P3WPWh1sTj6W7Njsm5j2IR2g6mS1SydqRMQM1lUI2vNy5vru5pev5_gc_Z1 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2xHIADO6KsPiBuKUmczUcEVGU9IJAqcYgS2ymINkVpuXBC4gf4Rr6EGSelLEJCnHzwWHJiz_iNPfMGYEcoTyDS9S03C5XlCdu3EkoEDrVMuRvZihsuvfOLoHntnbT8VhVVSbkwJT_Ex4UbaYax16TgdCG9N2IN1UUdvSsxDpNegF4KAaLLEXUU4p5w-E6JDmCrTJiloXvVwK8n0Qhefgap5pRpzMHNcH5lcMl9_XGQ1uXTN-rG_33APMxW4JPtl7tlAcZ0vggznygJl-BlP2e0m0piCUZ0l6YxweJvz6906inWQ0PTrTI4WS9jxANV9DWriupQMgoxnbAHqsHG2obamuKrGb0T9BkF27fZQeOQJbky3TghlnTaveJucNtdhuvG0dVB06oKNVgSDZ6wZKZCoR0VBZmQKWISX3oKcWWgIjvl0lVJ6IlMKiF1JBCy8cSxJXY5XKO7JDVfgYm8l-tVYAiYuNRplKFr7kkVRFRcSWieoLiyHVmD3eGixbJiMadiGp245F92Y13E9FdrwD4EH0rijp8iG8NVjyvN7ccuOlAB5w6ParBjlu-34fHRJTVrfxPbhqnm1flZfHZ8cboO0y5lUZiomA2YGBSPehOxzSDdMpv4HXle-QI |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFH64gOjBXRzXHMRbx7bplqM4Du6IKAx4KG2SjqJ2hs548ST4B_yN_hLfSzuOC4J4yiEvkDTb95rvfQ9gSyhPINL1LTcLleUJ27cSCgQOtUy5G9mKGy2907Pg4Mo7avmtilVJsTClPsTHDzfaGea8pg2uuyrbGaqG6qKO3pUYhXHPFxHR-RoXQ-koxD3h4J0SHcBWGTBLTXeqhl9voiG8_AxSzS3TnIHrQf9Kcsld_bGf1uXTN-nG_w1gFqYr8Ml2y9UyByM6n4epT5KEC_CymzNaTaWwBCO5S1MYsvjb8yvdeop18KB5qCI4WSdjpANV9DSrkupQMAopnbAu5WBjbSNtTfxqRu8EPUZk-zbbazZYkitTjR1iyX27U9z2bx4W4aq5f7l3YFWJGiyJB56wZKZCoR0VBZmQKWISX3oKcWWgIjvl0lVJ6IlMKiF1JBCy8cSxJVY5XKO7JDVfgrG8k-tlYAiYuNRplKFr7kkVRJRcSWieoLmyHVmD7cGkxbJSMadkGvdxqb_sxrqI6avWgH0Ydkvhjp8ma4NZj6ud24tddKACzh0e1WDLTN9vzeP9CypW_ma2CRPnjWZ8cnh2vAqTLgVRGFLMGoz1i0e9jtCmn26YNfwOLEH4hg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+artificial+neural+network%E2%80%90based+optimization+of+reverse+electrodialysis+power+generating+cells+using+CFD+and+genetic+algorithm&rft.jtitle=International+journal+of+energy+research&rft.au=Faghihi%2C+Parsa&rft.au=Jalali%2C+Alireza&rft.date=2022-12-01&rft.issn=0363-907X&rft.eissn=1099-114X&rft.volume=46&rft.issue=15&rft.spage=21217&rft.epage=21233&rft_id=info:doi/10.1002%2Fer.8379&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_er_8379 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-907X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-907X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-907X&client=summon |