Learning Algorithm with Nonlinear Map Optimization for Neural Network

Recently, machine learning has been attracting attention. Machine learning is mainly realized by the learning of artificial neural networks. Various learning methods have been proposed; however, the learning methods are based on gradient methods. On the other hand, swarm intelligence (SI) algorithms...

Full description

Saved in:
Bibliographic Details
Published inJournal of Signal Processing Vol. 22; no. 4; pp. 153 - 156
Main Authors Jin'no, Kenya, Hoshino, Yuki
Format Journal Article
LanguageEnglish
Published Tokyo Research Institute of Signal Processing, Japan 25.07.2018
Japan Science and Technology Agency
Subjects
Online AccessGet full text
ISSN1342-6230
1880-1013
1880-1013
DOI10.2299/jsp.22.153

Cover

Abstract Recently, machine learning has been attracting attention. Machine learning is mainly realized by the learning of artificial neural networks. Various learning methods have been proposed; however, the learning methods are based on gradient methods. On the other hand, swarm intelligence (SI) algorithms have been attracting attention in the optimization field. Generally speaking, SI algorithms have a large computation cost. Therefore, there are few cases of SI algorithms being applied to machine learning. In this paper, we propose a novel learning algorithm for an artificial neural network which applies our proposed nonlinear map optimization (NMO) method. NMO consists of some simple particles which are driven by a simple nonlinear map. NMO can be classified as an SI algorithm. However, it has only a small computation cost. Therefore, NMO can be applied to a learning algorithm for an artificial neural network. In this paper, we introduce NMO, and a small learning simulation is carried out to confirm the performance of our learning method.
AbstractList Recently, machine learning has been attracting attention. Machine learning is mainly realized by the learning of artificial neural networks. Various learning methods have been proposed; however, the learning methods are based on gradient methods. On the other hand, swarm intelligence (SI) algorithms have been attracting attention in the optimization field. Generally speaking, SI algorithms have a large computation cost. Therefore, there are few cases of SI algorithms being applied to machine learning. In this paper, we propose a novel learning algorithm for an artificial neural network which applies our proposed nonlinear map optimization (NMO) method. NMO consists of some simple particles which are driven by a simple nonlinear map. NMO can be classified as an SI algorithm. However, it has only a small computation cost. Therefore, NMO can be applied to a learning algorithm for an artificial neural network. In this paper, we introduce NMO, and a small learning simulation is carried out to confirm the performance of our learning method.
Author Jin'no, Kenya
Hoshino, Yuki
Author_xml – sequence: 1
  fullname: Jin'no, Kenya
  organization: Tokyo City University
– sequence: 1
  fullname: Hoshino, Yuki
  organization: Graduate School of Nippon Institute of Technology
BookMark eNp9kE9PwzAMxSM0JLbBhU9QiRuoI27aLD1wmKbxRxrbBc6VW6VbSpeUpNU0Pv2COnbkYj_bPz1Zb0QG2mhJyC3QSRSl6WPlGi8mkLALMgQhaAgU2MBrFkchjxi9IiPnKko5nyZsSBZLiVYrvQlm9cZY1W53wd7XYGV0rbQ_Bu_YBOumVTv1g60yOiiNDVays1j71u6N_bomlyXWTt6c-ph8Pi8-5q_hcv3yNp8twyKClIWCJYA0lwVP8zSmEovSz1hSwDIVLC6RC-AxpiCmkcQICgEAScw5zRnLORuTh9630w0e9ljXWWPVDu0hA5r9JpD5BLzIfAKevuvpxprvTro2q0xntX_QEyzhIolh6qn7niqscc7K8n_Lpx6uXIsbeUbRtqqo5R8an_jzvtiizaRmR7GIgIU
Cites_doi 10.1007/978-3-319-50920-4_19
10.7551/mitpress/1290.001.0001
10.1002/9780470612163
10.1093/oso/9780195131581.001.0001
10.1109/ICNN.1995.488968
10.1038/323533a0
10.1109/NABIC.2009.5393690
ContentType Journal Article
Copyright 2018 Research Institute of Signal Processing, Japan
Copyright Japan Science and Technology Agency 2018
Copyright_xml – notice: 2018 Research Institute of Signal Processing, Japan
– notice: Copyright Japan Science and Technology Agency 2018
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.2299/jsp.22.153
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1880-1013
EndPage 156
ExternalDocumentID 10.2299/jsp.22.153
10_2299_jsp_22_153
article_jsp_22_4_22_153_article_char_en
GroupedDBID 2WC
5GY
ALMA_UNASSIGNED_HOLDINGS
CS3
JSF
JSH
KQ8
OK1
RJT
RZJ
AAYXX
CITATION
ADTOC
ARCSS
TKC
UNPAY
ID FETCH-LOGICAL-c2193-8351a0bec69b940eacf1a0af01af9834fa68164a91872ea21c811154660b33b63
IEDL.DBID UNPAY
ISSN 1342-6230
1880-1013
IngestDate Tue Aug 19 20:02:57 EDT 2025
Sun Jun 29 14:45:45 EDT 2025
Tue Jul 01 01:48:35 EDT 2025
Wed Sep 03 06:26:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2193-8351a0bec69b940eacf1a0af01af9834fa68164a91872ea21c811154660b33b63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.jstage.jst.go.jp/article/jsp/22/4/22_153/_pdf
PQID 2235685417
PQPubID 2028978
PageCount 4
ParticipantIDs unpaywall_primary_10_2299_jsp_22_153
proquest_journals_2235685417
crossref_primary_10_2299_jsp_22_153
jstage_primary_article_jsp_22_4_22_153_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018/07/25
PublicationDateYYYYMMDD 2018-07-25
PublicationDate_xml – month: 07
  year: 2018
  text: 2018/07/25
  day: 25
PublicationDecade 2010
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Journal of Signal Processing
PublicationTitleAlternate Journal of Signal Processing
PublicationYear 2018
Publisher Research Institute of Signal Processing, Japan
Japan Science and Technology Agency
Publisher_xml – name: Research Institute of Signal Processing, Japan
– name: Japan Science and Technology Agency
References [5] E. Bonabeau and M. Dorigo and G. Theraulaz: Swarm Intelligence, Oxford University Press, 1999.
[3] M. L. Minsky and S. A. Papert: Perceptrons, MIT Press, 1969.
[8] S. Ishikawa and K. Jin'no: On a nonlinear map optimization, Proc. NCSP2018, pp. 379-382, March 2018.
[15] M. Clerc: Particle Swarm Optimization, Wiley-ISTE, 2006.
[12] X. S. Yang: Nature-Inspired Metaheuristic Algorithms, Luniver Press, 2008.
[14] J. Kennedy and R. Eberhart: Particle swarm optimization, Proc. IEEE 1995 International Conference on Neural Networks, pp. 1942-1948, Nov. 1995.
[2] T. Odaka: Machine Learning and Deep Learning, Ohm-sha, 2016 (in Japanese).
[13] X. S. Yang and S. Deb: Cuckoo search via lévy flights, Proc. World Congress on Nature & Biologically Inspired Computing, Dec. 2009.
[9] D. E. Rumelhart and G. E. Hinton and R. J. Williams: Learning representations by back-propagating errors, Nature 323 (6088), pp. 533-536, 1986.
[4] G. Beni and J. Wang: Swarm intelligence in cellular robotic systems, Proc. NATO Advanced Workshop on Robots and Biological Systems, June 1989.
[7] K. Jin'no: Nonlinear map model optimization, IEICE Tech. Rep. NLP2017-95, January 2018.
[1] K. Saito: Deep Learning to Make from Scratch, O'Reilly Japan, Ohm-sha, 2016 (in Japanese).
[10] M. Dorigo and T. Stützle: Ant Colony Optimization, MIT Press, 2004.
[6] A. Chakraborty and A. K. Kar: Swarm intelligence: A review of algorithms, Nature-Inspired Computing and Optimization, pp. 475-494, 2017.
[11] D. Karaboga: An idea based on honey bee swarm for numerical optimization, Technical Report TR06, Erciyes University, Engineering Faculty, Computer Engineering Department, 2005.
11
12
13
14
15
1
2
3
4
5
6
7
8
9
10
References_xml – reference: [5] E. Bonabeau and M. Dorigo and G. Theraulaz: Swarm Intelligence, Oxford University Press, 1999.
– reference: [1] K. Saito: Deep Learning to Make from Scratch, O'Reilly Japan, Ohm-sha, 2016 (in Japanese).
– reference: [6] A. Chakraborty and A. K. Kar: Swarm intelligence: A review of algorithms, Nature-Inspired Computing and Optimization, pp. 475-494, 2017.
– reference: [13] X. S. Yang and S. Deb: Cuckoo search via lévy flights, Proc. World Congress on Nature & Biologically Inspired Computing, Dec. 2009.
– reference: [15] M. Clerc: Particle Swarm Optimization, Wiley-ISTE, 2006.
– reference: [4] G. Beni and J. Wang: Swarm intelligence in cellular robotic systems, Proc. NATO Advanced Workshop on Robots and Biological Systems, June 1989.
– reference: [7] K. Jin'no: Nonlinear map model optimization, IEICE Tech. Rep. NLP2017-95, January 2018.
– reference: [8] S. Ishikawa and K. Jin'no: On a nonlinear map optimization, Proc. NCSP2018, pp. 379-382, March 2018.
– reference: [9] D. E. Rumelhart and G. E. Hinton and R. J. Williams: Learning representations by back-propagating errors, Nature 323 (6088), pp. 533-536, 1986.
– reference: [12] X. S. Yang: Nature-Inspired Metaheuristic Algorithms, Luniver Press, 2008.
– reference: [3] M. L. Minsky and S. A. Papert: Perceptrons, MIT Press, 1969.
– reference: [14] J. Kennedy and R. Eberhart: Particle swarm optimization, Proc. IEEE 1995 International Conference on Neural Networks, pp. 1942-1948, Nov. 1995.
– reference: [2] T. Odaka: Machine Learning and Deep Learning, Ohm-sha, 2016 (in Japanese).
– reference: [10] M. Dorigo and T. Stützle: Ant Colony Optimization, MIT Press, 2004.
– reference: [11] D. Karaboga: An idea based on honey bee swarm for numerical optimization, Technical Report TR06, Erciyes University, Engineering Faculty, Computer Engineering Department, 2005.
– ident: 2
– ident: 3
– ident: 6
  doi: 10.1007/978-3-319-50920-4_19
– ident: 4
– ident: 1
– ident: 12
– ident: 11
– ident: 10
  doi: 10.7551/mitpress/1290.001.0001
– ident: 15
  doi: 10.1002/9780470612163
– ident: 5
  doi: 10.1093/oso/9780195131581.001.0001
– ident: 14
  doi: 10.1109/ICNN.1995.488968
– ident: 9
  doi: 10.1038/323533a0
– ident: 7
– ident: 8
– ident: 13
  doi: 10.1109/NABIC.2009.5393690
SSID ssj0066753
Score 2.0372667
Snippet Recently, machine learning has been attracting attention. Machine learning is mainly realized by the learning of artificial neural networks. Various learning...
SourceID unpaywall
proquest
crossref
jstage
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 153
SubjectTerms Algorithms
Artificial intelligence
Artificial neural networks
Computation
Computer simulation
Machine learning
Neural networks
Optimization
Swarm intelligence
Teaching methods
Title Learning Algorithm with Nonlinear Map Optimization for Neural Network
URI https://www.jstage.jst.go.jp/article/jsp/22/4/22_153/_article/-char/en
https://www.proquest.com/docview/2235685417
https://www.jstage.jst.go.jp/article/jsp/22/4/22_153/_pdf
UnpaywallVersion publishedVersion
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Signal Processing, 2018/07/25, Vol.22(4), pp.153-156
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1880-1013
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0066753
  issn: 1880-1013
  databaseCode: KQ8
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bSysxEB60Hjj6oOeiWG8s6OtessmmyWMRS1GsHrCgvizZ7aZae1lqi-ivd9KkpfogB1_2xrDZnUlmvgmZLwAnNCs6Oo_NHmGdxGeSCF-xXPq8I0mBIbumZ3sDXrZ4s83Ob5Pbpa2-zLLKHuKibmFOQXcU9MrQKTHsPZdhHIcMDymO1DAtO3oV1niCMLwCa-3Wdf1ulmCx2MewPiuGxP6JroZQS00ao_c1r8GLgCT0QzD6Ydv9ADV_Toelen1R_f5S1Glswf38e-1ik6dgOsmC_O0TleO3fugXbDos6tWt2G9YKYZ_YGOJofAvnDn-1a5X73dH48fJw8AzU7dey1JsqLF3qUrvCh3PwFV0egiDPcP5ga9u2UXm29BunN2cNn2384KfowejPsIyoiI0L5eZZBE6Z433SkdEaSko04oLzLMUmrYWFyomuSCG14fzKKM043QHKsPRsNg1NeGCZ0oqTLs005Jj_sINrZiKdI1LUVTheG6CtLQEGykmJsZQKaontZqpArdKXMg4Fc5lmBNcPDdFazjyq3Awt2bqRuczitKEi4SRWhVOFhb-ovm9_xPbh3XEU8JM_cbJAVQm42lxiJhlkh3B6sU_ceT66Dv2w-wb
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60FdSDb7FaZUGv-8gmm26ORSoiWD1YUC9Ldrup1j6WPhD99U6atFQPIl72xbDZnUlmvgmZLwAXNM3bKgv1HmHtyGWCxK5kmXB5W5AcQ3ZNzfYGvG3y6xa7eYwel7b60ssqu4iLOrk-eZ2h1y18q0S_Oy78MPQZHhIcqX5StNUqlHmEMLwE5Vbzvv40S7BY6GJYnxVDYv9EV0OooSYN0fvq1-CFRyL6LRitmXa_Qc316aCQH--y11uKOlfb8Dz_XrPY5M2bTlIv-_xB5fivH9qBLYtFnboR24WVfLAHm0sMhfvQsPyrHafe6wxHr5OXvqOnbp2modiQI-dWFs4dOp6-reh0EAY7mvMDX900i8wPoHXVeLi8du3OC26GHoy6CMuIDNC8XKSCBeicFd5LFRCpREyZkjzGPEuiaWthLkOSxUTz-nAepJSmnB5CaTAc5Ee6JjzmqRQS0y7FlOCYv3BNKyYDVeMizitwPjdBUhiCjQQTE22oBNWTGM1UgBslLmSsCucyzAounuuiNRz5FajOrZnY0TlGURrxOGKkVoGLhYV_af74b2InsIF4KtZTv2FUhdJkNM1PEbNM0jPbO78Ac5HrJg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+Algorithm+with+Nonlinear+Map+Optimization+for+Neural+Network&rft.jtitle=Journal+of+Signal+Processing&rft.au=Jin%27no%2C+Kenya&rft.au=Hoshino%2C+Yuki&rft.date=2018-07-25&rft.pub=Research+Institute+of+Signal+Processing%2C+Japan&rft.issn=1342-6230&rft.eissn=1880-1013&rft.volume=22&rft.issue=4&rft.spage=153&rft.epage=156&rft_id=info:doi/10.2299%2Fjsp.22.153&rft.externalDocID=article_jsp_22_4_22_153_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1342-6230&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1342-6230&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1342-6230&client=summon