Learning Algorithm with Nonlinear Map Optimization for Neural Network
Recently, machine learning has been attracting attention. Machine learning is mainly realized by the learning of artificial neural networks. Various learning methods have been proposed; however, the learning methods are based on gradient methods. On the other hand, swarm intelligence (SI) algorithms...
        Saved in:
      
    
          | Published in | Journal of Signal Processing Vol. 22; no. 4; pp. 153 - 156 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Tokyo
          Research Institute of Signal Processing, Japan
    
        25.07.2018
     Japan Science and Technology Agency  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1342-6230 1880-1013 1880-1013  | 
| DOI | 10.2299/jsp.22.153 | 
Cover
| Abstract | Recently, machine learning has been attracting attention. Machine learning is mainly realized by the learning of artificial neural networks. Various learning methods have been proposed; however, the learning methods are based on gradient methods. On the other hand, swarm intelligence (SI) algorithms have been attracting attention in the optimization field. Generally speaking, SI algorithms have a large computation cost. Therefore, there are few cases of SI algorithms being applied to machine learning. In this paper, we propose a novel learning algorithm for an artificial neural network which applies our proposed nonlinear map optimization (NMO) method. NMO consists of some simple particles which are driven by a simple nonlinear map. NMO can be classified as an SI algorithm. However, it has only a small computation cost. Therefore, NMO can be applied to a learning algorithm for an artificial neural network. In this paper, we introduce NMO, and a small learning simulation is carried out to confirm the performance of our learning method. | 
    
|---|---|
| AbstractList | Recently, machine learning has been attracting attention. Machine learning is mainly realized by the learning of artificial neural networks. Various learning methods have been proposed; however, the learning methods are based on gradient methods. On the other hand, swarm intelligence (SI) algorithms have been attracting attention in the optimization field. Generally speaking, SI algorithms have a large computation cost. Therefore, there are few cases of SI algorithms being applied to machine learning. In this paper, we propose a novel learning algorithm for an artificial neural network which applies our proposed nonlinear map optimization (NMO) method. NMO consists of some simple particles which are driven by a simple nonlinear map. NMO can be classified as an SI algorithm. However, it has only a small computation cost. Therefore, NMO can be applied to a learning algorithm for an artificial neural network. In this paper, we introduce NMO, and a small learning simulation is carried out to confirm the performance of our learning method. | 
    
| Author | Jin'no, Kenya Hoshino, Yuki  | 
    
| Author_xml | – sequence: 1 fullname: Jin'no, Kenya organization: Tokyo City University – sequence: 1 fullname: Hoshino, Yuki organization: Graduate School of Nippon Institute of Technology  | 
    
| BookMark | eNp9kE9PwzAMxSM0JLbBhU9QiRuoI27aLD1wmKbxRxrbBc6VW6VbSpeUpNU0Pv2COnbkYj_bPz1Zb0QG2mhJyC3QSRSl6WPlGi8mkLALMgQhaAgU2MBrFkchjxi9IiPnKko5nyZsSBZLiVYrvQlm9cZY1W53wd7XYGV0rbQ_Bu_YBOumVTv1g60yOiiNDVays1j71u6N_bomlyXWTt6c-ph8Pi8-5q_hcv3yNp8twyKClIWCJYA0lwVP8zSmEovSz1hSwDIVLC6RC-AxpiCmkcQICgEAScw5zRnLORuTh9630w0e9ljXWWPVDu0hA5r9JpD5BLzIfAKevuvpxprvTro2q0xntX_QEyzhIolh6qn7niqscc7K8n_Lpx6uXIsbeUbRtqqo5R8an_jzvtiizaRmR7GIgIU | 
    
| Cites_doi | 10.1007/978-3-319-50920-4_19 10.7551/mitpress/1290.001.0001 10.1002/9780470612163 10.1093/oso/9780195131581.001.0001 10.1109/ICNN.1995.488968 10.1038/323533a0 10.1109/NABIC.2009.5393690  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2018 Research Institute of Signal Processing, Japan Copyright Japan Science and Technology Agency 2018  | 
    
| Copyright_xml | – notice: 2018 Research Institute of Signal Processing, Japan – notice: Copyright Japan Science and Technology Agency 2018  | 
    
| DBID | AAYXX CITATION ADTOC UNPAY  | 
    
| DOI | 10.2299/jsp.22.153 | 
    
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1880-1013 | 
    
| EndPage | 156 | 
    
| ExternalDocumentID | 10.2299/jsp.22.153 10_2299_jsp_22_153 article_jsp_22_4_22_153_article_char_en  | 
    
| GroupedDBID | 2WC 5GY ALMA_UNASSIGNED_HOLDINGS CS3 JSF JSH KQ8 OK1 RJT RZJ AAYXX CITATION ADTOC ARCSS TKC UNPAY  | 
    
| ID | FETCH-LOGICAL-c2193-8351a0bec69b940eacf1a0af01af9834fa68164a91872ea21c811154660b33b63 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1342-6230 1880-1013  | 
    
| IngestDate | Tue Aug 19 20:02:57 EDT 2025 Sun Jun 29 14:45:45 EDT 2025 Tue Jul 01 01:48:35 EDT 2025 Wed Sep 03 06:26:37 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c2193-8351a0bec69b940eacf1a0af01af9834fa68164a91872ea21c811154660b33b63 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.jstage.jst.go.jp/article/jsp/22/4/22_153/_pdf | 
    
| PQID | 2235685417 | 
    
| PQPubID | 2028978 | 
    
| PageCount | 4 | 
    
| ParticipantIDs | unpaywall_primary_10_2299_jsp_22_153 proquest_journals_2235685417 crossref_primary_10_2299_jsp_22_153 jstage_primary_article_jsp_22_4_22_153_article_char_en  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2018/07/25 | 
    
| PublicationDateYYYYMMDD | 2018-07-25 | 
    
| PublicationDate_xml | – month: 07 year: 2018 text: 2018/07/25 day: 25  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Tokyo | 
    
| PublicationPlace_xml | – name: Tokyo | 
    
| PublicationTitle | Journal of Signal Processing | 
    
| PublicationTitleAlternate | Journal of Signal Processing | 
    
| PublicationYear | 2018 | 
    
| Publisher | Research Institute of Signal Processing, Japan Japan Science and Technology Agency  | 
    
| Publisher_xml | – name: Research Institute of Signal Processing, Japan – name: Japan Science and Technology Agency  | 
    
| References | [5] E. Bonabeau and M. Dorigo and G. Theraulaz: Swarm Intelligence, Oxford University Press, 1999. [3] M. L. Minsky and S. A. Papert: Perceptrons, MIT Press, 1969. [8] S. Ishikawa and K. Jin'no: On a nonlinear map optimization, Proc. NCSP2018, pp. 379-382, March 2018. [15] M. Clerc: Particle Swarm Optimization, Wiley-ISTE, 2006. [12] X. S. Yang: Nature-Inspired Metaheuristic Algorithms, Luniver Press, 2008. [14] J. Kennedy and R. Eberhart: Particle swarm optimization, Proc. IEEE 1995 International Conference on Neural Networks, pp. 1942-1948, Nov. 1995. [2] T. Odaka: Machine Learning and Deep Learning, Ohm-sha, 2016 (in Japanese). [13] X. S. Yang and S. Deb: Cuckoo search via lévy flights, Proc. World Congress on Nature & Biologically Inspired Computing, Dec. 2009. [9] D. E. Rumelhart and G. E. Hinton and R. J. Williams: Learning representations by back-propagating errors, Nature 323 (6088), pp. 533-536, 1986. [4] G. Beni and J. Wang: Swarm intelligence in cellular robotic systems, Proc. NATO Advanced Workshop on Robots and Biological Systems, June 1989. [7] K. Jin'no: Nonlinear map model optimization, IEICE Tech. Rep. NLP2017-95, January 2018. [1] K. Saito: Deep Learning to Make from Scratch, O'Reilly Japan, Ohm-sha, 2016 (in Japanese). [10] M. Dorigo and T. Stützle: Ant Colony Optimization, MIT Press, 2004. [6] A. Chakraborty and A. K. Kar: Swarm intelligence: A review of algorithms, Nature-Inspired Computing and Optimization, pp. 475-494, 2017. [11] D. Karaboga: An idea based on honey bee swarm for numerical optimization, Technical Report TR06, Erciyes University, Engineering Faculty, Computer Engineering Department, 2005. 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10  | 
    
| References_xml | – reference: [5] E. Bonabeau and M. Dorigo and G. Theraulaz: Swarm Intelligence, Oxford University Press, 1999. – reference: [1] K. Saito: Deep Learning to Make from Scratch, O'Reilly Japan, Ohm-sha, 2016 (in Japanese). – reference: [6] A. Chakraborty and A. K. Kar: Swarm intelligence: A review of algorithms, Nature-Inspired Computing and Optimization, pp. 475-494, 2017. – reference: [13] X. S. Yang and S. Deb: Cuckoo search via lévy flights, Proc. World Congress on Nature & Biologically Inspired Computing, Dec. 2009. – reference: [15] M. Clerc: Particle Swarm Optimization, Wiley-ISTE, 2006. – reference: [4] G. Beni and J. Wang: Swarm intelligence in cellular robotic systems, Proc. NATO Advanced Workshop on Robots and Biological Systems, June 1989. – reference: [7] K. Jin'no: Nonlinear map model optimization, IEICE Tech. Rep. NLP2017-95, January 2018. – reference: [8] S. Ishikawa and K. Jin'no: On a nonlinear map optimization, Proc. NCSP2018, pp. 379-382, March 2018. – reference: [9] D. E. Rumelhart and G. E. Hinton and R. J. Williams: Learning representations by back-propagating errors, Nature 323 (6088), pp. 533-536, 1986. – reference: [12] X. S. Yang: Nature-Inspired Metaheuristic Algorithms, Luniver Press, 2008. – reference: [3] M. L. Minsky and S. A. Papert: Perceptrons, MIT Press, 1969. – reference: [14] J. Kennedy and R. Eberhart: Particle swarm optimization, Proc. IEEE 1995 International Conference on Neural Networks, pp. 1942-1948, Nov. 1995. – reference: [2] T. Odaka: Machine Learning and Deep Learning, Ohm-sha, 2016 (in Japanese). – reference: [10] M. Dorigo and T. Stützle: Ant Colony Optimization, MIT Press, 2004. – reference: [11] D. Karaboga: An idea based on honey bee swarm for numerical optimization, Technical Report TR06, Erciyes University, Engineering Faculty, Computer Engineering Department, 2005. – ident: 2 – ident: 3 – ident: 6 doi: 10.1007/978-3-319-50920-4_19 – ident: 4 – ident: 1 – ident: 12 – ident: 11 – ident: 10 doi: 10.7551/mitpress/1290.001.0001 – ident: 15 doi: 10.1002/9780470612163 – ident: 5 doi: 10.1093/oso/9780195131581.001.0001 – ident: 14 doi: 10.1109/ICNN.1995.488968 – ident: 9 doi: 10.1038/323533a0 – ident: 7 – ident: 8 – ident: 13 doi: 10.1109/NABIC.2009.5393690  | 
    
| SSID | ssj0066753 | 
    
| Score | 2.0372667 | 
    
| Snippet | Recently, machine learning has been attracting attention. Machine learning is mainly realized by the learning of artificial neural networks. Various learning... | 
    
| SourceID | unpaywall proquest crossref jstage  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Publisher  | 
    
| StartPage | 153 | 
    
| SubjectTerms | Algorithms Artificial intelligence Artificial neural networks Computation Computer simulation Machine learning Neural networks Optimization Swarm intelligence Teaching methods  | 
    
| Title | Learning Algorithm with Nonlinear Map Optimization for Neural Network | 
    
| URI | https://www.jstage.jst.go.jp/article/jsp/22/4/22_153/_article/-char/en https://www.proquest.com/docview/2235685417 https://www.jstage.jst.go.jp/article/jsp/22/4/22_153/_pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 22 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| ispartofPNX | Journal of Signal Processing, 2018/07/25, Vol.22(4), pp.153-156 | 
    
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1880-1013 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0066753 issn: 1880-1013 databaseCode: KQ8 dateStart: 20040101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bSysxEB60Hjj6oOeiWG8s6OtessmmyWMRS1GsHrCgvizZ7aZae1lqi-ivd9KkpfogB1_2xrDZnUlmvgmZLwAnNCs6Oo_NHmGdxGeSCF-xXPq8I0mBIbumZ3sDXrZ4s83Ob5Pbpa2-zLLKHuKibmFOQXcU9MrQKTHsPZdhHIcMDymO1DAtO3oV1niCMLwCa-3Wdf1ulmCx2MewPiuGxP6JroZQS00ao_c1r8GLgCT0QzD6Ydv9ADV_Toelen1R_f5S1Glswf38e-1ik6dgOsmC_O0TleO3fugXbDos6tWt2G9YKYZ_YGOJofAvnDn-1a5X73dH48fJw8AzU7dey1JsqLF3qUrvCh3PwFV0egiDPcP5ga9u2UXm29BunN2cNn2384KfowejPsIyoiI0L5eZZBE6Z433SkdEaSko04oLzLMUmrYWFyomuSCG14fzKKM043QHKsPRsNg1NeGCZ0oqTLs005Jj_sINrZiKdI1LUVTheG6CtLQEGykmJsZQKaontZqpArdKXMg4Fc5lmBNcPDdFazjyq3Awt2bqRuczitKEi4SRWhVOFhb-ovm9_xPbh3XEU8JM_cbJAVQm42lxiJhlkh3B6sU_ceT66Dv2w-wb | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60FdSDb7FaZUGv-8gmm26ORSoiWD1YUC9Ldrup1j6WPhD99U6atFQPIl72xbDZnUlmvgmZLwAXNM3bKgv1HmHtyGWCxK5kmXB5W5AcQ3ZNzfYGvG3y6xa7eYwel7b60ssqu4iLOrk-eZ2h1y18q0S_Oy78MPQZHhIcqX5StNUqlHmEMLwE5Vbzvv40S7BY6GJYnxVDYv9EV0OooSYN0fvq1-CFRyL6LRitmXa_Qc316aCQH--y11uKOlfb8Dz_XrPY5M2bTlIv-_xB5fivH9qBLYtFnboR24WVfLAHm0sMhfvQsPyrHafe6wxHr5OXvqOnbp2modiQI-dWFs4dOp6-reh0EAY7mvMDX900i8wPoHXVeLi8du3OC26GHoy6CMuIDNC8XKSCBeicFd5LFRCpREyZkjzGPEuiaWthLkOSxUTz-nAepJSmnB5CaTAc5Ee6JjzmqRQS0y7FlOCYv3BNKyYDVeMizitwPjdBUhiCjQQTE22oBNWTGM1UgBslLmSsCucyzAounuuiNRz5FajOrZnY0TlGURrxOGKkVoGLhYV_af74b2InsIF4KtZTv2FUhdJkNM1PEbNM0jPbO78Ac5HrJg | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+Algorithm+with+Nonlinear+Map+Optimization+for+Neural+Network&rft.jtitle=Journal+of+Signal+Processing&rft.au=Jin%27no%2C+Kenya&rft.au=Hoshino%2C+Yuki&rft.date=2018-07-25&rft.pub=Research+Institute+of+Signal+Processing%2C+Japan&rft.issn=1342-6230&rft.eissn=1880-1013&rft.volume=22&rft.issue=4&rft.spage=153&rft.epage=156&rft_id=info:doi/10.2299%2Fjsp.22.153&rft.externalDocID=article_jsp_22_4_22_153_article_char_en | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1342-6230&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1342-6230&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1342-6230&client=summon |