Data Augmentation of Ship Wakes in SAR Images Based on Improved CycleGAN
The study on ship wakes of synthetic aperture radar (SAR) images holds great importance in detecting ship targets in the ocean. In this study, we focus on the issues of low quantity and insufficient diversity in ship wakes of SAR images, and propose a method of data augmentation of ship wakes in SAR...
        Saved in:
      
    
          | Published in | Shanghai jiao tong da xue xue bao Vol. 29; no. 4; pp. 702 - 711 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Shanghai
          Shanghai Jiaotong University Press
    
        01.08.2024
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1007-1172 1995-8188  | 
| DOI | 10.1007/s12204-024-2746-8 | 
Cover
| Abstract | The study on ship wakes of synthetic aperture radar (SAR) images holds great importance in detecting ship targets in the ocean. In this study, we focus on the issues of low quantity and insufficient diversity in ship wakes of SAR images, and propose a method of data augmentation of ship wakes in SAR images based on the improved cycle-consistent generative adversarial network (CycleGAN). The improvement measures mainly include two aspects: First, to enhance the quality of the generated images and guarantee a stable training process of the model, the least-squares loss is employed as the adversarial loss function; Second, the decoder of the generator is augmented with the convolutional block attention module (CBAM) to address the issue of missing details in the generated ship wakes of SAR images at the microscopic level. The experiment findings indicate that the improved CycleGAN model generates clearer ship wakes of SAR images, and outperforms the traditional CycleGAN models in both subjective and objective aspects. | 
    
|---|---|
| AbstractList | TP391.4; The study on ship wakes of synthetic aperture radar(SAR)images holds great importance in detecting ship targets in the ocean.In this study,we focus on the issues of low quantity and insufficient diversity in ship wakes of SAR images,and propose a method of data augmentation of ship wakes in SAR images based on the improved cycle-consistent generative adversarial network(CycleGAN).The improvement measures mainly include two aspects:First,to enhance the quality of the generated images and guarantee a stable training process of the model,the least-squares loss is employed as the adversarial loss function;Second,the decoder of the generator is augmented with the convolutional block attention module(CBAM)to address the issue of missing details in the generated ship wakes of SAR images at the microscopic level.The experiment findings indicate that the improved CycleGAN model generates clearer ship wakes of SAR images,and outperforms the traditional CycleGAN models in both subjective and objective aspects. The study on ship wakes of synthetic aperture radar (SAR) images holds great importance in detecting ship targets in the ocean. In this study, we focus on the issues of low quantity and insufficient diversity in ship wakes of SAR images, and propose a method of data augmentation of ship wakes in SAR images based on the improved cycle-consistent generative adversarial network (CycleGAN). The improvement measures mainly include two aspects: First, to enhance the quality of the generated images and guarantee a stable training process of the model, the least-squares loss is employed as the adversarial loss function; Second, the decoder of the generator is augmented with the convolutional block attention module (CBAM) to address the issue of missing details in the generated ship wakes of SAR images at the microscopic level. The experiment findings indicate that the improved CycleGAN model generates clearer ship wakes of SAR images, and outperforms the traditional CycleGAN models in both subjective and objective aspects.  | 
    
| Author | Cai, Yunze Yan, Congqiang Guo, Zhengyun  | 
    
| Author_xml | – sequence: 1 givenname: Congqiang surname: Yan fullname: Yan, Congqiang organization: Department of Automation, Shanghai Jiao Tong University, Key Laboratory of System Control and Information Processing of Ministry of Education – sequence: 2 givenname: Zhengyun surname: Guo fullname: Guo, Zhengyun organization: China Airborne Missile Academy, National Key Laboratory of Air-Based Information Perception and Fusion – sequence: 3 givenname: Yunze surname: Cai fullname: Cai, Yunze email: yzcai@sjtu.edu.cn organization: Department of Automation, Shanghai Jiao Tong University, Key Laboratory of System Control and Information Processing of Ministry of Education  | 
    
| BookMark | eNp1kFFLwzAUhYMouE1_gG8BHyWapGmaPNap22AoOMXHkLZJ17mms-l0-_dmVNiTT_de-M65954hOHWNMwBcEXxLME7uPKEUM4QpQzRhHIkTMCBSxkgQIU5DHyBESELPwdD7FcYMR5EcgOmD7jRMt2VtXKe7qnGwsXCxrDbwQ38aDysHF-krnNW6DNO99qaAAZrVm7b5Dv14n6_NJH2-AGdWr725_Ksj8P70-DaeovnLZDZO5yinRGIU28xmhhWGGEYLFkUcF1QUseQyt0nCI84LHFNKBOcxt7kwllgdayFimjGRRCNw0_v-aGe1K9Wq2bYubFR-ueqK3S5ThoYYwoMEB_q6p8O1X1vjuyMe4UQKLnlMA0V6Km8b71tj1aatat3uFcHqkJzq41XBVx3iVSJoaK_xgXWlaY_O_4t-AYXke5k | 
    
| Cites_doi | 10.3390/rs13224573 10.1109/APMC46564.2019.9038822 10.1007/978-3-030-01234-2_1 10.1109/TGRS.2019.2900302 10.1016/j.rse.2022.113345 10.1109/LGRS.2016.2565705 10.1109/APUSNCURSINRSM.2018.8609206 10.1016/j.isprsjprs.2021.12.004 10.1145/3072959.3073659 10.1109/CVPR.2018.00418 10.1016/j.rse.2021.112375 10.1016/j.isprsjprs.2022.02.017 10.1145/3422622 10.1109/CVPR.2018.00745 10.3390/rs15041089  | 
    
| ClassificationCodes | TP391.4 | 
    
| ContentType | Journal Article | 
    
| Copyright | Shanghai Jiao Tong University 2024 Shanghai Jiao Tong University 2024. Copyright © Wanfang Data Co. Ltd. All Rights Reserved.  | 
    
| Copyright_xml | – notice: Shanghai Jiao Tong University 2024 – notice: Shanghai Jiao Tong University 2024. – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.  | 
    
| DBID | AAYXX CITATION 7SC 7SP 7SR 7TB 7U5 8BQ 8FD FR3 JG9 JQ2 KR7 L7M L~C L~D 2B. 4A8 92I 93N PSX TCJ  | 
    
| DOI | 10.1007/s12204-024-2746-8 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ)  | 
    
| DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts METADEX Computer and Information Systems Abstracts Professional Engineered Materials Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace  | 
    
| DatabaseTitleList | Materials Research Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Architecture Sciences (General) Computer Science  | 
    
| DocumentTitle_FL | 基于改进CycleGAN的SAR图像舰船尾迹数据增强 | 
    
| EISSN | 1995-8188 | 
    
| EndPage | 711 | 
    
| ExternalDocumentID | shjtdxxb_e202404010 10_1007_s12204_024_2746_8  | 
    
| GroupedDBID | -5B -5G -BR -EM -SC -S~ -Y2 -~C .86 .VR 06D 0R~ 0VY 188 1N0 29~ 2B. 2C0 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VR 5VS 6NX 8RM 8TC 92H 92I 92R 93N 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXDM AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFRAH AFUIB AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD B-. BA0 BDATZ BGNMA CAG CAJEC CCEZO CEKLB CHBEP COF CS3 CSCUP CW9 DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FA0 FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG6 HLICF HMJXF HRMNR HZ~ IJ- IKXTQ IWAJR IXC IXD I~X I~Z J-C JBSCW JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O9J OK1 P9P PF0 PT4 Q-- QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3B SAP SCL SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TCJ TGT TSG TSV TUC U1G U2A U5M UG4 UGNYK UOJIU UTJUX UY8 UZ4 UZXMN VC2 VFIZW W48 WK8 YLTOR Z7R Z7Z Z85 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 7SC 7SP 7SR 7TB 7U5 8BQ 8FD FR3 JG9 JQ2 KR7 L7M L~C L~D 4A8 PSX  | 
    
| ID | FETCH-LOGICAL-c2190-5fbfbe4de1e42d43360d28d5969cf776366d0522186656fc8ef1fa5a8852b4873 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 1007-1172 | 
    
| IngestDate | Thu May 29 03:56:07 EDT 2025 Fri Jul 25 11:07:08 EDT 2025 Wed Oct 01 03:06:01 EDT 2025 Fri Feb 21 02:39:26 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Keywords | 注意力机制 A 合成孔径雷达 (SAR) synthetic aperture radar (SAR) data augmentation attention mechanism 舰船尾迹 数据增强 ship wake TP391.4 cycle-consistent generative adversarial network (CycleGAN) 循环一致性生成对抗网络 (CycleGAN) cycle-consistent generative adversarial network(CycleGAN) synthetic aperture radar(SAR)  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c2190-5fbfbe4de1e42d43360d28d5969cf776366d0522186656fc8ef1fa5a8852b4873 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 3079869652 | 
    
| PQPubID | 2043647 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | wanfang_journals_shjtdxxb_e202404010 proquest_journals_3079869652 crossref_primary_10_1007_s12204_024_2746_8 springer_journals_10_1007_s12204_024_2746_8  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20240800 | 
    
| PublicationDateYYYYMMDD | 2024-08-01 | 
    
| PublicationDate_xml | – month: 8 year: 2024 text: 20240800  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Shanghai | 
    
| PublicationPlace_xml | – name: Shanghai – name: Heidelberg  | 
    
| PublicationTitle | Shanghai jiao tong da xue xue bao | 
    
| PublicationTitleAbbrev | J. Shanghai Jiaotong Univ. (Sci.) | 
    
| PublicationTitle_FL | Journal of Shanghai Jiaotong University(Science) | 
    
| PublicationYear | 2024 | 
    
| Publisher | Shanghai Jiaotong University Press Springer Nature B.V  | 
    
| Publisher_xml | – name: Shanghai Jiaotong University Press – name: Springer Nature B.V  | 
    
| References | Wang, Zhang, Wei (CR14) 2018 He, Zhang, Ren (CR31) 2016 Goodfellow, Pouget-Abadie, Mirza (CR20) 2020; 63 Liu, Zhao, Qin (CR4) 2021; 258 Liu, Lei (CR25) 2018 Liu, Wang, Weng (CR34) 2016; 13 Hu, Shen, Albanie (CR30) 2018 Huang, Zhu, Li (CR10) 2021; 42 Li, Huangfu, Li (CR12) 2023; 57 Wang, Guo, Wei (CR17) 2023; 15 Bao, Pan, Liu (CR9) 2018 Iizuka, Simo-Serra, Ishikawa (CR26) 2017; 36 Zhao, Wang, Niu (CR3) 2020; 54 Rizaev, Karakuş, Hogan (CR13) 2022; 187 Mao, Li, Xie (CR27) 2017 Ronneberger, Fischer, Brox (CR37) 2015 Tang, Zou, Li (CR11) 2022; 56 Li, Qu, Shao (CR36) 2018 Rizaev, Karakuş, Hogan (CR2) 2020 Bai, Yang, Zhang (CR24) 2020; 50 Sun, Wang, Yan (CR33) 2022; 184 Zhu, Park, Isola (CR23) 2017 Woo, Park, Lee (CR28) 2018 Xia, Bai, Ding (CR32) 2018 Zhang, Fan, Li (CR19) 2018 Qi, Zang, Lyu (CR21) 2021; 4 Wang, Liu (CR1) 2018; 52 Lu, Ye (CR22) 2020; 60 Gong, Wang, Cui (CR16) 2018 Hu, Shen, Sun (CR29) 2018 Zhang, Li (CR18) 2019 Zhang, Yuan, Feng (CR35) 2019; 57 Li, Yang, Liu (CR8) 2022; 56 Zhang, Wang (CR15) 2019 Ding, Yang, Lin (CR7) 2023; 284 Del Prete, Graziano, Renga (CR5) 2021 Del Prete, Graziano, Renga (CR6) 2021; 13 J F Wang (2746_CR1) 2018; 52 S Iizuka (2746_CR26) 2017; 36 K M He (2746_CR31) 2016 J Y Zhu (2746_CR23) 2017 J Hu (2746_CR29) 2018 J B Bai (2746_CR24) 2020; 50 I Goodfellow (2746_CR20) 2020; 63 O Ronneberger (2746_CR37) 2015 I Rizaev (2746_CR2) 2020 X Sun (2746_CR33) 2022; 184 K Y Ding (2746_CR7) 2023; 284 L T Wang (2746_CR14) 2018 J J Wang (2746_CR17) 2023; 15 Q L Lu (2746_CR22) 2020; 60 T Zhao (2746_CR3) 2020; 54 S Woo (2746_CR28) 2018 J Hu (2746_CR30) 2018 Q Li (2746_CR12) 2023; 57 Z K Liu (2746_CR34) 2016; 13 Y F Liu (2746_CR4) 2021; 258 G S Xia (2746_CR32) 2018 B Gong (2746_CR16) 2018 M Zhang (2746_CR18) 2019 Z Y Tang (2746_CR11) 2022; 56 Y Li (2746_CR8) 2022; 56 Q N Huang (2746_CR10) 2021; 42 M Zhang (2746_CR15) 2019 X D Mao (2746_CR27) 2017 Y L Zhang (2746_CR35) 2019; 57 J W Li (2746_CR36) 2018 M Zhang (2746_CR19) 2018 I G Rizaev (2746_CR13) 2022; 187 R Del Prete (2746_CR6) 2021; 13 X J Bao (2746_CR9) 2018 L Liu (2746_CR25) 2018 R Del Prete (2746_CR5) 2021 S Y Qi (2746_CR21) 2021; 4  | 
    
| References_xml | – start-page: 1 year: 2018 end-page: 14 ident: CR9 article-title: SAR image simulation by generative adversarial networks [C] publication-title: 5th China High Resolution Earth Observation Conference – volume: 13 start-page: 4573 issue: 22 year: 2021 ident: CR6 article-title: First results on wake detection in SAR images by deep learning [J] publication-title: Remote Sensing doi: 10.3390/rs13224573 – volume: 60 start-page: 121 issue: 1 year: 2020 end-page: 128 ident: CR22 article-title: A survey of generative adversarial network applications for SAR image processing [J] publication-title: Telecommunication Engineering – start-page: 770 year: 2016 end-page: 778 ident: CR31 article-title: Deep residual learning for image recognition [C] publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition – volume: 52 start-page: 1273 issue: 10 year: 2018 end-page: 1279 ident: CR1 article-title: Development in SAR moving-target detection [J] publication-title: Journal of Shanghai Jiao Tong University – start-page: 1352 year: 2019 end-page: 1353 ident: CR15 article-title: A coupled simulation of synthetic aperture radar image of the narrow ship wake [C] publication-title: 2019 IEEE Asia-Pacific Microwave Conference doi: 10.1109/APMC46564.2019.9038822 – volume: 56 start-page: 134 issue: 2 year: 2022 end-page: 142 ident: CR8 article-title: Underwater image enhancement based on generative adversarial networks [J] publication-title: Journal of Shanghai Jiao Tong University – start-page: 2813 year: 2017 end-page: 2821 ident: CR27 article-title: Least squares generative adversarial networks [C] publication-title: 2017 IEEE International Conference on Computer Vision – start-page: 1 year: 2018 end-page: 11 ident: CR30 article-title: Gather-excite: Exploiting feature context in convolutional neural networks [C] publication-title: 32nd Conference on Neural Information Processing Systems – volume: 50 start-page: 1181 issue: 8 year: 2020 end-page: 1186 ident: CR24 article-title: A simulation of the synthetic aperture radar image based on improved CycleGAN [J] publication-title: Journal of University of Science and Technology of China – start-page: 3 year: 2018 end-page: 19 ident: CR28 article-title: CBAM: convolutional block attention module [M] publication-title: Computer vision - ECCV 2018 doi: 10.1007/978-3-030-01234-2_1 – volume: 57 start-page: 5535 issue: 8 year: 2019 end-page: 5548 ident: CR35 article-title: Hierarchical and robust convolutional neural network for very high-resolution remote sensing object detection [J] publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2019.2900302 – volume: 284 start-page: 113345 year: 2023 ident: CR7 article-title: Towards real-time detection of ships and wakes with lightweight deep learning model in Gaofen-3 SAR images [J] publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2022.113345 – start-page: 1 year: 2018 end-page: 2 ident: CR14 article-title: SAR model of the ship internal wake based on CFD simulation [C] publication-title: 2018 IEEE International Conference on Computational Electromagnetics – start-page: 171 year: 2021 end-page: 176 ident: CR5 article-title: RetinaNet: A deep learning architecture to achieve a robust wake detector in SAR images [C] publication-title: 2021 IEEE 6th International Forum on Research and Technology for Society and Industry – volume: 42 start-page: 31 issue: 11 year: 2021 end-page: 38 ident: CR10 article-title: Review on SAR data expansion based on GAN [J] publication-title: Journal of Ordnance Equipment Engineering – start-page: 1 year: 2018 end-page: 6 ident: CR16 article-title: On the ship wake simulation for multi-frequncy and mutli-polarization SAR imaging [C] publication-title: 2018 China International SAR Symposium – volume: 13 start-page: 1074 issue: 8 year: 2016 end-page: 1078 ident: CR34 article-title: Ship rotated bounding box space for ship extraction from high-resolution optical satellite images with complex backgrounds [J] publication-title: IEEE Geoscience and Remote Sensing Letters doi: 10.1109/LGRS.2016.2565705 – start-page: 573 year: 2018 end-page: 574 ident: CR19 article-title: Numerical simulation and analyses of SAR images from moving ships over a sea surface [C] publication-title: 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting doi: 10.1109/APUSNCURSINRSM.2018.8609206 – volume: 56 start-page: 1666 issue: 12 year: 2022 end-page: 1674 ident: CR11 article-title: A few-shots OFDM target augmented identification method based on transfer learning [J] publication-title: Journal of Shanghai Jiao Tong University – start-page: 2242 year: 2017 end-page: 2251 ident: CR23 article-title: Unpaired image-to-image translation using cycle-consistent adversarial networks [C] publication-title: 2017 IEEE International Conference on Computer Vision – volume: 184 start-page: 116 year: 2022 end-page: 130 ident: CR33 article-title: FAIR1M: A benchmark dataset for fine-grained object recognition in high-resolution remote sensing imagery [J] publication-title: ISPRS Journal of Photogrammetry and Remote Sensing doi: 10.1016/j.isprsjprs.2021.12.004 – volume: 54 start-page: 1259 issue: 12 year: 2020 end-page: 1268 ident: CR3 article-title: Detection algorithm of ship wake in SAR images [J] publication-title: Journal of Shanghai Jiao Tong University – start-page: 7019 year: 2018 end-page: 7022 ident: CR25 article-title: Can SAR images and optical images transfer with each other? publication-title: 2018 IEEE International Geoscience and Remote Sensing Symposium – volume: 36 start-page: 107 issue: 4 year: 2017 ident: CR26 article-title: Globally and locally consistent image completion [J] publication-title: ACM Transactions on Graphics doi: 10.1145/3072959.3073659 – volume: 4 start-page: 67 issue: 2 year: 2021 end-page: 73 ident: CR21 article-title: Research on air target image generation algorithm based on generative adversarial networks [J] publication-title: Air & Space Defense – start-page: 3974 year: 2018 end-page: 3983 ident: CR32 article-title: DOTA: A large-scale dataset for object detection in aerial images [C] publication-title: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition doi: 10.1109/CVPR.2018.00418 – volume: 57 start-page: 570 issue: 5 year: 2023 end-page: 581 ident: CR12 article-title: UConvTrans: A dual-flow cardiac image segmentation network by global and local information integration [J] publication-title: Journal of Shanghai Jiao Tong University – volume: 258 start-page: 112375 year: 2021 ident: CR4 article-title: A novel technique for ship wake detection from optical images [J] publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2021.112375 – volume: 187 start-page: 120 year: 2022 end-page: 140 ident: CR13 article-title: Modeling and SAR imaging of the sea surface: A review of the state-of-the-art with simulations [J] publication-title: ISPRS Journal of Photogrammetry and Remote Sensing doi: 10.1016/j.isprsjprs.2022.02.017 – volume: 63 start-page: 139 issue: 11 year: 2020 end-page: 144 ident: CR20 article-title: Generative adversarial networks [J] publication-title: Communications of the ACM doi: 10.1145/3422622 – start-page: 7132 year: 2018 end-page: 7141 ident: CR29 article-title: Squeeze-and-excitation networks [C] publication-title: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition doi: 10.1109/CVPR.2018.00745 – start-page: 3478 year: 2020 end-page: 3482 ident: CR2 article-title: The effect of sea state on ship wake detectability in simulated sar imagery [C] publication-title: 2020 IEEE International Conference on Image Processing – start-page: 1 year: 2019 end-page: 2 ident: CR18 article-title: Numerical simulation and analyses of SAR images from ship wakes [C] publication-title: 2019 International Applied Computational Electromagnetics Society Symposium – volume: 15 start-page: 1089 issue: 4 year: 2023 ident: CR17 article-title: Study on ship kelvin wake detection in numerically simulated SAR images [J] publication-title: Remote Sensing doi: 10.3390/rs15041089 – start-page: 234 year: 2015 end-page: 241 ident: CR37 article-title: U-net: Convolutional networks for biomedical image segmentation [M] publication-title: Medical image computing and computerassisted intervention - MICCAI 2015 – start-page: 1 year: 2018 end-page: 23 ident: CR36 article-title: Dataset and performance analysis of ship detection methods based on deep learning [C] publication-title: 5th China High Resolution Earth Observation Conference – start-page: 1 volume-title: 2018 IEEE International Conference on Computational Electromagnetics year: 2018 ident: 2746_CR14 – start-page: 171 volume-title: 2021 IEEE 6th International Forum on Research and Technology for Society and Industry year: 2021 ident: 2746_CR5 – start-page: 2242 volume-title: 2017 IEEE International Conference on Computer Vision year: 2017 ident: 2746_CR23 – start-page: 573 volume-title: 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting year: 2018 ident: 2746_CR19 doi: 10.1109/APUSNCURSINRSM.2018.8609206 – volume: 4 start-page: 67 issue: 2 year: 2021 ident: 2746_CR21 publication-title: Air & Space Defense – start-page: 7019 volume-title: 2018 IEEE International Geoscience and Remote Sensing Symposium year: 2018 ident: 2746_CR25 – volume: 57 start-page: 5535 issue: 8 year: 2019 ident: 2746_CR35 publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2019.2900302 – volume: 56 start-page: 134 issue: 2 year: 2022 ident: 2746_CR8 publication-title: Journal of Shanghai Jiao Tong University – start-page: 1352 volume-title: 2019 IEEE Asia-Pacific Microwave Conference year: 2019 ident: 2746_CR15 doi: 10.1109/APMC46564.2019.9038822 – volume: 184 start-page: 116 year: 2022 ident: 2746_CR33 publication-title: ISPRS Journal of Photogrammetry and Remote Sensing doi: 10.1016/j.isprsjprs.2021.12.004 – start-page: 2813 volume-title: 2017 IEEE International Conference on Computer Vision year: 2017 ident: 2746_CR27 – start-page: 3 volume-title: Computer vision - ECCV 2018 year: 2018 ident: 2746_CR28 doi: 10.1007/978-3-030-01234-2_1 – start-page: 234 volume-title: Medical image computing and computerassisted intervention - MICCAI 2015 year: 2015 ident: 2746_CR37 – start-page: 3478 volume-title: 2020 IEEE International Conference on Image Processing year: 2020 ident: 2746_CR2 – volume: 187 start-page: 120 year: 2022 ident: 2746_CR13 publication-title: ISPRS Journal of Photogrammetry and Remote Sensing doi: 10.1016/j.isprsjprs.2022.02.017 – volume: 54 start-page: 1259 issue: 12 year: 2020 ident: 2746_CR3 publication-title: Journal of Shanghai Jiao Tong University – volume: 52 start-page: 1273 issue: 10 year: 2018 ident: 2746_CR1 publication-title: Journal of Shanghai Jiao Tong University – start-page: 3974 volume-title: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition year: 2018 ident: 2746_CR32 doi: 10.1109/CVPR.2018.00418 – volume: 57 start-page: 570 issue: 5 year: 2023 ident: 2746_CR12 publication-title: Journal of Shanghai Jiao Tong University – start-page: 1 volume-title: 2019 International Applied Computational Electromagnetics Society Symposium year: 2019 ident: 2746_CR18 – volume: 60 start-page: 121 issue: 1 year: 2020 ident: 2746_CR22 publication-title: Telecommunication Engineering – volume: 63 start-page: 139 issue: 11 year: 2020 ident: 2746_CR20 publication-title: Communications of the ACM doi: 10.1145/3422622 – volume: 56 start-page: 1666 issue: 12 year: 2022 ident: 2746_CR11 publication-title: Journal of Shanghai Jiao Tong University – volume: 42 start-page: 31 issue: 11 year: 2021 ident: 2746_CR10 publication-title: Journal of Ordnance Equipment Engineering – start-page: 1 volume-title: 5th China High Resolution Earth Observation Conference year: 2018 ident: 2746_CR36 – volume: 13 start-page: 1074 issue: 8 year: 2016 ident: 2746_CR34 publication-title: IEEE Geoscience and Remote Sensing Letters doi: 10.1109/LGRS.2016.2565705 – start-page: 1 volume-title: 32nd Conference on Neural Information Processing Systems year: 2018 ident: 2746_CR30 – volume: 15 start-page: 1089 issue: 4 year: 2023 ident: 2746_CR17 publication-title: Remote Sensing doi: 10.3390/rs15041089 – start-page: 770 volume-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition year: 2016 ident: 2746_CR31 – volume: 50 start-page: 1181 issue: 8 year: 2020 ident: 2746_CR24 publication-title: Journal of University of Science and Technology of China – volume: 284 start-page: 113345 year: 2023 ident: 2746_CR7 publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2022.113345 – volume: 13 start-page: 4573 issue: 22 year: 2021 ident: 2746_CR6 publication-title: Remote Sensing doi: 10.3390/rs13224573 – start-page: 1 volume-title: 2018 China International SAR Symposium year: 2018 ident: 2746_CR16 – start-page: 7132 volume-title: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition year: 2018 ident: 2746_CR29 doi: 10.1109/CVPR.2018.00745 – volume: 36 start-page: 107 issue: 4 year: 2017 ident: 2746_CR26 publication-title: ACM Transactions on Graphics doi: 10.1145/3072959.3073659 – volume: 258 start-page: 112375 year: 2021 ident: 2746_CR4 publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2021.112375 – start-page: 1 volume-title: 5th China High Resolution Earth Observation Conference year: 2018 ident: 2746_CR9  | 
    
| SSID | ssj0040339 | 
    
| Score | 2.2964294 | 
    
| Snippet | The study on ship wakes of synthetic aperture radar (SAR) images holds great importance in detecting ship targets in the ocean. In this study, we focus on the... TP391.4; The study on ship wakes of synthetic aperture radar(SAR)images holds great importance in detecting ship targets in the ocean.In this study,we focus on...  | 
    
| SourceID | wanfang proquest crossref springer  | 
    
| SourceType | Aggregation Database Index Database Publisher  | 
    
| StartPage | 702 | 
    
| SubjectTerms | Architecture Computer Science Data augmentation Electrical Engineering Engineering Generative adversarial networks Image enhancement Image quality Life Sciences Materials Science Radar imaging Synthetic aperture radar Target detection  | 
    
| Title | Data Augmentation of Ship Wakes in SAR Images Based on Improved CycleGAN | 
    
| URI | https://link.springer.com/article/10.1007/s12204-024-2746-8 https://www.proquest.com/docview/3079869652 https://d.wanfangdata.com.cn/periodical/shjtdxxb-e202404010  | 
    
| Volume | 29 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1995-8188 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0040339 issn: 1007-1172 databaseCode: AFBBN dateStart: 20080201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1995-8188 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0040339 issn: 1007-1172 databaseCode: AGYKE dateStart: 20080101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1995-8188 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0040339 issn: 1007-1172 databaseCode: U2A dateStart: 20080201 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFH64XFRwGRXHjRw8uFBo0zbTHOs6KnhQB_VUkiYZF6xiR9B_70sntSOI4K20L4-SL3lLkvcFYCuXgTGKW6JbSb2IC9-THcY91REYy3USLWTF9nnBur3o7Da-dXXcZX3avd6SrCx1U-xGqT0xQSMPMylUPg6TsWXzwkHco2ltfiM_rK4Ps228AN1zvZX5m4qfzqiJML83RatSnsKIoj_idY7nYdaFiyQd4rsAY7powUw6svrfgrn6ZgbiJmoLpkdoBluw4N6XZNuxTO8sQvdQDARJ3_vPrvqoIC-GXN0_vJIb8YSyDwW5Si_J6TNanJLso7dTBIWGqxD4fPCJf3SSXixB7_jo-qDruWsVvJzawvHYSCN1pHSgI6qiMGS-oomKOeO56aC9YUz5GJZVVHjM5Ik2gRGxSJKYSsxvwmWYKF4KvQLE0MQ3MhCc5Szyc8ZlbgRmdFqJUDGl27Bb92_2OmTPyBqeZAtGhmBkFowsacN6jUDmJlKZoQniCeMspm3Yq1FpPv-hbMsB1wiX948D9fEhM00tsxtmlv7qv5SuwZRtOTz_tw4Tg7d3vYExyUBuwmR6cnd-tFmNxS9jt9cN | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xONAi8di26vJofeBQiiIlTuKNj-G5vPZQWMHNsmMbaEVAZJHg3zPOOmQrISRuUTIZRf7iediebwA2ChVZq7kjulU0SLgMA9VjPNA9ibFcLzNS1WyfA9YfJkeX6aWv466a0-7NlmRtqdtiN0rdiQmaBJhJofJpmHX8VY4wf0jzxvwmYVy3D3PvBBG652Yr8y0V_zujNsJ83RStS3lKK8urCa-zvwQLPlwk-RjfZZgyZQfm84nV_w4sNp0ZiJ-oHfg8QTPYgWV_vyK_PMv05hfo78qRJPnj1a2vPirJnSVn1zf35EL-Q9mbkpzlf8jhLVqcimyjt9MEhcarEHi984xfdJAPvsJwf-98px_4tgpBQV3heGqVVSbRJjIJ1Ukcs1DTTKec8cL20N4wpkMMy2oqPGaLzNjIylRmWUoV5jfxN5gp70rzHYilWWhVJDkrWBIWjKvCSszojJaxZtp04XczvuJ-zJ4hWp5kB4ZAMIQDQ2RdWGsQEH4iVQJNEM8YZyntwlaDSvv4HWUbHrhWuLr-O9JPT0oY6pjdMLMMVz6k9CfM9c9PT8TJ4eB4FT45LeOzgGswM3p4NOsYn4zUj_p_fAHZHthl | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkRBUKnQp6tICPvTAQ1ETx_HGx7Rl2QJaIcqK3iw7ttuCmq5IKpV_zzhxmkVCSNyixJlE-ex5ZDzfAOyVOnHOCE90q2nEhIojPeEiMhOFvtwkt0q3bJ9zPluwD6fZaehzWve73fuUZFfT4FmaqmZ_adz-UPhGqd89QVmEURU-6C7cY54nASf0gha9KmZx2rYS8_dECZrqPq35NxF_GqbB27xNkLZlPZVT1dmKBZo-ho3gOpKiw3oT7thqBOvFSiZgBI_6Lg0kLNoRPFyhHBzBZjhfk1eBcfr1E5gdqUaR4vrsMlQiVeTKkZPziyX5pn7g2IuKnBRfyPElap-aHKDlMwQHdX8k8PjwF77R-2K-BYvpu6-Hsyi0WIhK6ovIM6edtszYxDJqWJry2NDcZIKL0k1Q93BuYnTRWlo87srcusSpTOV5RjXGOulTWKuuKrsNxNE8djpRgpecxSUXunQKoztrVGq4sWN4039fueyYNOTAmezBkAiG9GDIfAy7PQIyLKpaojoSORc8o2N426MyXP6HsL0A3DC4Pv_emJsbLS31LG8YZcbP_kvoS7j_-WgqPx3PP-7AAy-k2xa4C2vNz2v7HF2VRr9op-NvoTncoQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+Augmentation+of+Ship+Wakes+in+SAR+Images+Based+on+Improved+CycleGAN&rft.jtitle=%E4%B8%8A%E6%B5%B7%E4%BA%A4%E9%80%9A%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=YAN+Congqiang&rft.au=GUO+Zhengyun&rft.au=CAI+Yunze&rft.date=2024-08-01&rft.issn=1007-1172&rft.volume=29&rft.issue=4&rft.spage=702&rft.epage=711&rft_id=info:doi/10.1007%2Fs12204-024-2746-8&rft.externalDocID=shjtdxxb_e202404010 | 
    
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fshjtdxxb-e%2Fshjtdxxb-e.jpg |