A Prediction and Weak Coevolution-Based Dynamic Constrained Multiobjective Optimization

Dynamic multiobjective evolutionary algorithms (DMOEAs) have gained great popularity in dealing with the dynamic multiobjective optimization problems (DMOPs). However, the existing studies have difficulties in tackling DMOPs subject to (dynamic) constraints. In this article, we propose a prediction...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on evolutionary computation Vol. 29; no. 4; pp. 1328 - 1342
Main Authors Gong, Dunwei, Rong, Miao, Hu, Na, Wang, Yan, Pedrycz, Witold, Yang, Shengxiang
Format Journal Article
LanguageEnglish
Published IEEE 01.08.2025
Subjects
Online AccessGet full text
ISSN1089-778X
1941-0026
DOI10.1109/TEVC.2024.3418470

Cover

Abstract Dynamic multiobjective evolutionary algorithms (DMOEAs) have gained great popularity in dealing with the dynamic multiobjective optimization problems (DMOPs). However, the existing studies have difficulties in tackling DMOPs subject to (dynamic) constraints. In this article, we propose a prediction and weak coevolutionary multiobjective optimization algorithm (PWDCMO) to handle the dynamic constrained multiobjective optimization problems (DCMOPs), where a prediction strategy is employed to forecast potential optimal regions under the new environment, with a weak coevolutionary constrained multiobjective optimization (CCMO) as the optimizer aiming at balancing exploration and convergence. The proposed method is compared with the four popular dynamic constrained multiobjective evolutionary algorithms (DCMOEAs) on six test instances from two various test suites with their convergence and the overall performance being discussed. Furthermore, the performance of the proposed prediction strategy is also investigated to observe its impact on the final results. Additionally, the PWDCMO is employed in the optimization of an integrated coal mine energy system (ICMES) to validate the proficiency in addressing real world problems. Experimental results demonstrate the superiority of PWDCMO.
AbstractList Dynamic multiobjective evolutionary algorithms (DMOEAs) have gained great popularity in dealing with the dynamic multiobjective optimization problems (DMOPs). However, the existing studies have difficulties in tackling DMOPs subject to (dynamic) constraints. In this article, we propose a prediction and weak coevolutionary multiobjective optimization algorithm (PWDCMO) to handle the dynamic constrained multiobjective optimization problems (DCMOPs), where a prediction strategy is employed to forecast potential optimal regions under the new environment, with a weak coevolutionary constrained multiobjective optimization (CCMO) as the optimizer aiming at balancing exploration and convergence. The proposed method is compared with the four popular dynamic constrained multiobjective evolutionary algorithms (DCMOEAs) on six test instances from two various test suites with their convergence and the overall performance being discussed. Furthermore, the performance of the proposed prediction strategy is also investigated to observe its impact on the final results. Additionally, the PWDCMO is employed in the optimization of an integrated coal mine energy system (ICMES) to validate the proficiency in addressing real world problems. Experimental results demonstrate the superiority of PWDCMO.
Author Pedrycz, Witold
Yang, Shengxiang
Gong, Dunwei
Rong, Miao
Hu, Na
Wang, Yan
Author_xml – sequence: 1
  givenname: Dunwei
  orcidid: 0000-0003-2838-4301
  surname: Gong
  fullname: Gong, Dunwei
  organization: College of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, China
– sequence: 2
  givenname: Miao
  orcidid: 0000-0003-4273-9367
  surname: Rong
  fullname: Rong, Miao
  email: rongmiao307@163.com
  organization: School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
– sequence: 3
  givenname: Na
  surname: Hu
  fullname: Hu, Na
  organization: School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
– sequence: 4
  givenname: Yan
  orcidid: 0000-0002-2809-581X
  surname: Wang
  fullname: Wang, Yan
  organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
– sequence: 5
  givenname: Witold
  orcidid: 0000-0002-9335-9930
  surname: Pedrycz
  fullname: Pedrycz, Witold
  organization: Electrical and Computer Engineering Department, University of Alberta, Edmonton, AB, Canada
– sequence: 6
  givenname: Shengxiang
  orcidid: 0000-0001-7222-4917
  surname: Yang
  fullname: Yang, Shengxiang
  organization: School of Computer Science and Informatics, De Montfort University, Leicester, U.K
BookMark eNpNkE1PwkAQhjcGExH9ASYe-geKM7vbdveIFT8SDB5QvDXLdposwpZ0Cwn-etvAwdM7mXmfOTzXbOBrT4zdIYwRQT8spl_5mAOXYyFRyQwu2BC1xBiAp4NuBqXjLFPfV-w6hDUAygT1kC0n0UdDpbOtq31kfBktyfxEeU2HerPvl_GjCVRGT0dvts52Fx_axjjf7d73m66xWlNHHyia71q3db-mp27YZWU2gW7POWKfz9NF_hrP5i9v-WQWW46qjasyVaK0KNIVWGOk4ii4wJQrWUKSKSKoUtLEuxRSUKpNhdICZRoBiIsRw9Nf29QhNFQVu8ZtTXMsEIreTNGbKXozxdlMx9yfGEdE__pJBlwl4g8IgWJB
CODEN ITEVF5
Cites_doi 10.1016/j.apenergy.2022.120106
10.1109/ICCIAS.2006.294139
10.1109/TCYB.2017.2669334
10.1109/TEVC.2023.3241762
10.1109/TCYB.2015.2490738
10.1109/TEVC.2005.857073
10.1007/s10514-020-09926-9
10.1109/TCYB.2015.2510698
10.1109/TCYB.2017.2647742
10.1109/TCYB.2017.2718037
10.1109/TCYB.2016.2519450
10.1016/j.swevo.2023.101254
10.1109/4235.996017
10.1007/978-3-540-70928-2_60
10.1109/TEVC.2019.2896967
10.1109/TEVC.2019.2925358
10.1109/tevc.2023.3313689
10.1145/2739480.2754708
10.1109/TEVC.2020.3004012
10.1109/TEVC.2018.2855411
10.1109/TEVC.2019.2958075
10.1109/TCYB.2014.2335744
10.1109/CDC.2005.1582366
10.1109/TCYB.2013.2245892
10.1109/TEVC.2017.2671462
10.1109/TCYB.2014.2359985
10.1109/TEVC.2017.2749263
10.1111/1467-999X.00050
10.1109/CEC.2016.7744320
10.1109/TCYB.2017.2728120
10.1016/B978-0-444-63965-3.50368-8
10.1109/TEVC.2004.831456
10.1109/TCYB.2018.2819208
10.1109/TEVC.2016.2574621
10.1109/TEVC.2016.2555315
10.1109/TCYB.2018.2842158
10.1109/TSG.2012.2233766
10.1109/CEC.2016.7744267
10.1162/evco.1996.4.1.1
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TEVC.2024.3418470
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Computer Science
EISSN 1941-0026
EndPage 1342
ExternalDocumentID 10_1109_TEVC_2024_3418470
10570285
Genre orig-research
GrantInformation_xml – fundername: High-End Foreign Experts Recruitment Plan of China
  grantid: G2023013073L
  funderid: 10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 62103255; 62133015
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
ID FETCH-LOGICAL-c218t-fd683dc136b0caa482132316284d0578ee0f6e9e2e0f343e69af14c0e79100e23
IEDL.DBID RIE
ISSN 1089-778X
IngestDate Wed Oct 01 05:40:31 EDT 2025
Wed Aug 27 01:44:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c218t-fd683dc136b0caa482132316284d0578ee0f6e9e2e0f343e69af14c0e79100e23
ORCID 0000-0003-2838-4301
0000-0002-2809-581X
0000-0002-9335-9930
0000-0003-4273-9367
0000-0001-7222-4917
PageCount 15
ParticipantIDs ieee_primary_10570285
crossref_primary_10_1109_TEVC_2024_3418470
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
Deb (ref40) 1996; 26
ref24
ref23
ref26
ref25
ref20
ref42
Zhang (ref29) 2021; 47
ref41
ref22
ref21
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref41
  doi: 10.1016/j.apenergy.2022.120106
– ident: ref19
  doi: 10.1109/ICCIAS.2006.294139
– ident: ref20
  doi: 10.1109/TCYB.2017.2669334
– ident: ref33
  doi: 10.1109/TEVC.2023.3241762
– ident: ref34
  doi: 10.1109/TCYB.2015.2490738
– ident: ref42
  doi: 10.1109/TEVC.2005.857073
– ident: ref4
  doi: 10.1007/s10514-020-09926-9
– ident: ref36
  doi: 10.1109/TCYB.2015.2510698
– ident: ref26
  doi: 10.1109/TCYB.2017.2647742
– ident: ref21
  doi: 10.1109/TCYB.2017.2718037
– ident: ref7
  doi: 10.1109/TCYB.2016.2519450
– ident: ref32
  doi: 10.1016/j.swevo.2023.101254
– ident: ref38
  doi: 10.1109/4235.996017
– ident: ref25
  doi: 10.1007/978-3-540-70928-2_60
– ident: ref5
  doi: 10.1109/TEVC.2019.2896967
– ident: ref35
  doi: 10.1109/TEVC.2019.2925358
– ident: ref27
  doi: 10.1109/tevc.2023.3313689
– ident: ref14
  doi: 10.1145/2739480.2754708
– ident: ref15
  doi: 10.1109/TEVC.2020.3004012
– ident: ref9
  doi: 10.1109/TEVC.2018.2855411
– ident: ref30
  doi: 10.1109/TEVC.2019.2958075
– ident: ref23
  doi: 10.1109/TCYB.2014.2335744
– ident: ref3
  doi: 10.1109/CDC.2005.1582366
– ident: ref12
  doi: 10.1109/TCYB.2013.2245892
– volume: 47
  start-page: 652
  issue: 3
  year: 2021
  ident: ref29
  article-title: Evolutionary optimization framework based on transfer learning of similar historical information
  publication-title: Acta Automatica Sinica
– ident: ref11
  doi: 10.1109/TEVC.2017.2671462
– ident: ref17
  doi: 10.1109/TCYB.2014.2359985
– ident: ref6
  doi: 10.1109/TEVC.2017.2749263
– volume: 26
  start-page: 30
  issue: 4
  year: 1996
  ident: ref40
  article-title: A combined genetic adaptive search (GeneAS) for engineering design
  publication-title: J. Comput. Sci. Informat.
– ident: ref2
  doi: 10.1111/1467-999X.00050
– ident: ref13
  doi: 10.1109/CEC.2016.7744320
– ident: ref18
  doi: 10.1109/TCYB.2017.2728120
– ident: ref24
  doi: 10.1016/B978-0-444-63965-3.50368-8
– ident: ref28
  doi: 10.1109/TEVC.2004.831456
– ident: ref10
  doi: 10.1109/TCYB.2018.2819208
– ident: ref8
  doi: 10.1109/TEVC.2016.2574621
– ident: ref22
  doi: 10.1109/TEVC.2016.2555315
– ident: ref37
  doi: 10.1109/TCYB.2018.2842158
– ident: ref1
  doi: 10.1109/TSG.2012.2233766
– ident: ref31
  doi: 10.1109/CEC.2016.7744267
– ident: ref39
  doi: 10.1109/TEVC.2004.831456
– ident: ref16
  doi: 10.1162/evco.1996.4.1.1
SSID ssj0014519
Score 2.4846413
Snippet Dynamic multiobjective evolutionary algorithms (DMOEAs) have gained great popularity in dealing with the dynamic multiobjective optimization problems (DMOPs)....
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 1328
SubjectTerms Constraint
Convergence
dynamic multiobjective optimization
Evolutionary computation
exploration and exploitation
Heuristic algorithms
Optimization
Power system dynamics
prediction
Sociology
Statistics
weak coevolution
Title A Prediction and Weak Coevolution-Based Dynamic Constrained Multiobjective Optimization
URI https://ieeexplore.ieee.org/document/10570285
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4oJzyIIkZ8ZQ-eTArb7rJtj4gQYiJ6AOHWtN3pQSIYAh789c7uFoMmJp7abHrY7kznm-k8PoAbX6apDnP0Ci3Qk1pxLyVk8kQRSoVakw6ZRuHHkRpO5MOsMyub1W0vDCLa4jNsmVuby9fLfGN-lbUNJy3hYWcf9sNIuWat75SBmZPiquljchmjWZnC9HncHvdfehQKBrJFNpvMMf8BQjusKhZUBjUYbbfjaknmrc06a-WfvyY1_nu_R3BYupes6_ThGPZwUYfalrqBlV9yHQ525hDWoWpcTjex-QSmXfa8MukbIzKWLjSbYjpnvSV-lGrq3RH0aXbvyOyZ4fy0TBO0Zvt5l9mrM6PsiQzSW9np2YDJoD_uDb2SfsHLCffXJD0VCZ37QmU8T1MZBRS5Cl8RoGl6sQiRFwpjDOgqpEAVp4Uvc44huSAcA3EKlcVygWfACpULzVWQBSKTmHVirTIdoqDoEztcyibcbuWRvLspG4mNTnicGOElRnhJKbwmNMxR7zzoTvn8j_ULqAaGtNdW7V1CZb3a4BV5Euvs2mrQF37AxaM
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BGSgDhQLijQcmpLRO7LjNWApVeRWGAt2iJL4MVLQIpQz8es52igoSElMiK4Pju9x3l3t8AKe-TBLdytDLtUBPasW9hJDJE3lLKtSadMg0Ct8NVP9RXo_CUdmsbnthENEWn2HD3Npcvp5mM_OrrGk4aQkPw2VYCaWUoWvX-k4amEkprp4-IqexPSqTmD6PmsPLpy4Fg4FskNUmg8x_wNACr4qFlV4NBvMNuWqScWNWpI3s89esxn_veAPWSweTdZxGbMISTupQm5M3sPJbrsPawiTCOlSN0-lmNm_Bc4c9vJsEjhEaSyaaPWMyZt0pfpSK6p0T-Gl24ejsmWH9tFwTtGY7eqfpizOk7J5M0mvZ67kNj73LYbfvlQQMXkbIX5D8VFvozBcq5VmSyHZAsavwFUGaphdrI_JcYYQBXYUUqKIk92XGsUVOCMdA7EBlMp3gLrBcZUJzFaSBSCWmYaRVqlsoKP7EkEu5B2dzecRvbs5GbOMTHsVGeLERXlwKbw-2zVEvPOhOef-P9RNY7Q_vbuPbq8HNAVQDQ-Fra_gOoVK8z_CI_IoiPbba9AUFbsjw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Prediction+and+Weak+Coevolution-Based+Dynamic+Constrained+Multiobjective+Optimization&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Gong%2C+Dunwei&rft.au=Rong%2C+Miao&rft.au=Hu%2C+Na&rft.au=Wang%2C+Yan&rft.date=2025-08-01&rft.pub=IEEE&rft.issn=1089-778X&rft.volume=29&rft.issue=4&rft.spage=1328&rft.epage=1342&rft_id=info:doi/10.1109%2FTEVC.2024.3418470&rft.externalDocID=10570285
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon