Answering Min-Max Resource-Constrained Shortest Path Queries Over Large Graphs

The constrained shortest path problem is a fundamental and challenging task in applications built on graphs. In this paper, we formalize and study the <inline-formula><tex-math notation="LaTeX">Min</tex-math> <mml:math><mml:mrow><mml:mi>M</mml:mi>&...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on knowledge and data engineering Vol. 37; no. 1; pp. 60 - 74
Main Authors Qian, Haoran, Zheng, Weiguo, Zhang, Zhijie, Fu, Bo
Format Journal Article
LanguageEnglish
Published IEEE 01.01.2025
Subjects
Online AccessGet full text
ISSN1041-4347
1558-2191
DOI10.1109/TKDE.2024.3488095

Cover

Abstract The constrained shortest path problem is a fundamental and challenging task in applications built on graphs. In this paper, we formalize and study the <inline-formula><tex-math notation="LaTeX">Min</tex-math> <mml:math><mml:mrow><mml:mi>M</mml:mi><mml:mi>i</mml:mi><mml:mi>n</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="qian-ieq1-3488095.gif"/> </inline-formula>-<inline-formula><tex-math notation="LaTeX">Max</tex-math> <mml:math><mml:mrow><mml:mi>M</mml:mi><mml:mi>a</mml:mi><mml:mi>x</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="qian-ieq2-3488095.gif"/> </inline-formula> resource-constrained shortest path (<inline-formula><tex-math notation="LaTeX">Min</tex-math> <mml:math><mml:mrow><mml:mi>M</mml:mi><mml:mi>i</mml:mi><mml:mi>n</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="qian-ieq3-3488095.gif"/> </inline-formula>-<inline-formula><tex-math notation="LaTeX">Max</tex-math> <mml:math><mml:mrow><mml:mi>M</mml:mi><mml:mi>a</mml:mi><mml:mi>x</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="qian-ieq4-3488095.gif"/> </inline-formula> RCSP) problem, which generalizes the well-studied <inline-formula><tex-math notation="LaTeX">Max</tex-math> <mml:math><mml:mrow><mml:mi>M</mml:mi><mml:mi>a</mml:mi><mml:mi>x</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="qian-ieq5-3488095.gif"/> </inline-formula> RCSP problem. The objective is to find a simple path of minimum cost between two query nodes, subject to resource constraints between minimum and maximum limits. This problem has wide applications in fields such as delay networks and transportation. However, we theoretically prove that computing the optimal solution is NP-hard. We propose a two-stage approach that involves resource-based graph reduction followed by cost-guided path generation. To reduce the cost of expensive acyclicity checking, we introduce the technique of ancestor checking based on the shortest path tree. Furthermore, we present an even faster incremental search approach that considers both the path cost and resource constraints while avoiding acyclicity checking. Extensive experiments on twenty real graphs consistently demonstrate the superiority of our proposed methods, achieving up to two orders of magnitude improvement in time efficiency over the baseline algorithms while producing high-quality solutions.
AbstractList The constrained shortest path problem is a fundamental and challenging task in applications built on graphs. In this paper, we formalize and study the <inline-formula><tex-math notation="LaTeX">Min</tex-math> <mml:math><mml:mrow><mml:mi>M</mml:mi><mml:mi>i</mml:mi><mml:mi>n</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="qian-ieq1-3488095.gif"/> </inline-formula>-<inline-formula><tex-math notation="LaTeX">Max</tex-math> <mml:math><mml:mrow><mml:mi>M</mml:mi><mml:mi>a</mml:mi><mml:mi>x</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="qian-ieq2-3488095.gif"/> </inline-formula> resource-constrained shortest path (<inline-formula><tex-math notation="LaTeX">Min</tex-math> <mml:math><mml:mrow><mml:mi>M</mml:mi><mml:mi>i</mml:mi><mml:mi>n</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="qian-ieq3-3488095.gif"/> </inline-formula>-<inline-formula><tex-math notation="LaTeX">Max</tex-math> <mml:math><mml:mrow><mml:mi>M</mml:mi><mml:mi>a</mml:mi><mml:mi>x</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="qian-ieq4-3488095.gif"/> </inline-formula> RCSP) problem, which generalizes the well-studied <inline-formula><tex-math notation="LaTeX">Max</tex-math> <mml:math><mml:mrow><mml:mi>M</mml:mi><mml:mi>a</mml:mi><mml:mi>x</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="qian-ieq5-3488095.gif"/> </inline-formula> RCSP problem. The objective is to find a simple path of minimum cost between two query nodes, subject to resource constraints between minimum and maximum limits. This problem has wide applications in fields such as delay networks and transportation. However, we theoretically prove that computing the optimal solution is NP-hard. We propose a two-stage approach that involves resource-based graph reduction followed by cost-guided path generation. To reduce the cost of expensive acyclicity checking, we introduce the technique of ancestor checking based on the shortest path tree. Furthermore, we present an even faster incremental search approach that considers both the path cost and resource constraints while avoiding acyclicity checking. Extensive experiments on twenty real graphs consistently demonstrate the superiority of our proposed methods, achieving up to two orders of magnitude improvement in time efficiency over the baseline algorithms while producing high-quality solutions.
Author Fu, Bo
Qian, Haoran
Zheng, Weiguo
Zhang, Zhijie
Author_xml – sequence: 1
  givenname: Haoran
  orcidid: 0009-0004-5117-6329
  surname: Qian
  fullname: Qian, Haoran
  email: hrqian18@fudan.edu.cn
  organization: School of Data Science, Fudan University, Shanghai, China
– sequence: 2
  givenname: Weiguo
  orcidid: 0000-0003-1200-7368
  surname: Zheng
  fullname: Zheng, Weiguo
  email: zhengweiguo@fudan.edu.cn
  organization: School of Data Science, Fudan University, Shanghai, China
– sequence: 3
  givenname: Zhijie
  orcidid: 0009-0006-9936-776X
  surname: Zhang
  fullname: Zhang, Zhijie
  email: zhijiezhang18@fudan.edu.cn
  organization: School of Data Science, Fudan University, Shanghai, China
– sequence: 4
  givenname: Bo
  orcidid: 0000-0002-3865-323X
  surname: Fu
  fullname: Fu, Bo
  email: fu@fudan.edu.cn
  organization: School of Data Science, Fudan University, Shanghai, China
BookMark eNpNkEtPwkAUhScGEwH9ASYu5g8M3jsPOl0SRDSC-MB1M0xvoUZbMlN8_HtLYOHqnMX5zuLrsU5VV8TYJcIAEdLr5cPNZCBB6oHS1kJqTlgXjbFCYoqdtoNGoZVOzlgvxncAsInFLnscVfGbQlmt-bysxNz98BeK9S54EuO6ik1wZUU5f93UoaHY8CfXbPjzrkUo8sUXBT5zYU18Gtx2E8_ZaeE-Il0cs8_ebifL8Z2YLab349FMeIm2EQUSmhWkSntXgCQljXJ-6DWQlpDL1Br0tqAVOm8s-KGz6OwKtC9yWeRO9Rkefn2oYwxUZNtQfrrwmyFkeyHZXki2F5IdhbTM1YEpiejfPlFWy0T9Ac71XyY
CODEN ITKEEH
Cites_doi 10.1016/j.ejor.2013.08.031
10.1109/ASONAM.2011.67
10.1002/net.3230100403
10.1016/j.cor.2005.01.017
10.1016/j.disopt.2006.05.007
10.1504/EJIE.2012.046669
10.1051/ro/1983170403571
10.1145/1247480.1247573
10.1145/77600.77615
10.1002/net.20212
10.1609/socs.v15i1.21746
10.1002/net.3230190402
10.1109/65.993223
10.1016/j.cor.2011.03.008
10.1002/net.3230130212
10.1016/j.ejor.2006.06.028
10.1016/j.trit.2016.03.011
10.1080/03155986.1988.11732063
10.1609/aaai.v35i14.17450
10.1002/(SICI)1097-0037(199805)31:3<193::AID-NET6>3.0.CO;2-A
10.1002/net.21960
10.1016/j.cor.2010.04.010
10.1016/j.ijpe.2012.06.030
10.1016/B978-1-78242-102-3.00010-1
10.1090/dimacs/040/18
10.1090/dimacs/074
10.1016/j.cor.2012.07.008
10.1016/j.amc.2015.05.109
10.1016/j.orl.2004.11.011
10.1007/0-306-47536-7_13
10.1007/3-540-45253-2_30
10.1002/net.21856
10.1002/net.21511
10.1002/net.20033
10.1016/j.cor.2008.01.003
10.1007/BF01386390
10.1109/ICDM54844.2022.00069
10.1016/j.trb.2006.12.001
10.1109/TITS.2023.3293039
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TKDE.2024.3488095
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Xplore Digital Library
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2191
EndPage 74
ExternalDocumentID 10_1109_TKDE_2024_3488095
10738427
Genre orig-research
GrantInformation_xml – fundername: Key Research and Development Project of the Ministry of Science and Technology of China
  grantid: 2022YFC3600903; 2022YFC3600901
– fundername: National Natural Science Foundation of China
  grantid: U23A20496
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
1OL
29I
4.4
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TAF
TN5
UHB
VH1
AAYXX
CITATION
ID FETCH-LOGICAL-c218t-f1e15b0934caf02e3253ac6c40e420d29851c8feb1ac580c6a81a8b04cfd2fda3
IEDL.DBID RIE
ISSN 1041-4347
IngestDate Wed Oct 01 02:06:33 EDT 2025
Wed Aug 27 02:33:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c218t-f1e15b0934caf02e3253ac6c40e420d29851c8feb1ac580c6a81a8b04cfd2fda3
ORCID 0009-0006-9936-776X
0000-0003-1200-7368
0000-0002-3865-323X
0009-0004-5117-6329
PageCount 15
ParticipantIDs ieee_primary_10738427
crossref_primary_10_1109_TKDE_2024_3488095
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref39
ref38
ref18
Pyrga (ref7)
Goldberg (ref5)
ref24
ref23
ref45
ref26
ref48
ref25
ref47
ref42
ref41
ref22
ref44
ref21
ref28
ref27
ref29
ref8
ref9
ref4
ref6
Magzhan (ref3) 2013; 2
Li (ref43)
ref40
References_xml – ident: ref18
  doi: 10.1016/j.ejor.2013.08.031
– ident: ref8
  doi: 10.1109/ASONAM.2011.67
– ident: ref14
  doi: 10.1002/net.3230100403
– ident: ref13
  doi: 10.1016/j.cor.2005.01.017
– ident: ref15
  doi: 10.1016/j.disopt.2006.05.007
– ident: ref12
  doi: 10.1504/EJIE.2012.046669
– ident: ref38
  doi: 10.1051/ro/1983170403571
– ident: ref45
  doi: 10.1145/1247480.1247573
– ident: ref2
  doi: 10.1145/77600.77615
– ident: ref37
  doi: 10.1002/net.20212
– ident: ref25
  doi: 10.1609/socs.v15i1.21746
– ident: ref28
  doi: 10.1002/net.3230190402
– ident: ref22
  doi: 10.1109/65.993223
– ident: ref31
  doi: 10.1016/j.cor.2011.03.008
– ident: ref27
  doi: 10.1002/net.3230130212
– ident: ref36
  doi: 10.1016/j.ejor.2006.06.028
– ident: ref9
  doi: 10.1016/j.trit.2016.03.011
– ident: ref39
  doi: 10.1080/03155986.1988.11732063
– ident: ref24
  doi: 10.1609/aaai.v35i14.17450
– ident: ref40
  doi: 10.1002/(SICI)1097-0037(199805)31:3<193::AID-NET6>3.0.CO;2-A
– ident: ref23
  doi: 10.1002/net.21960
– ident: ref10
  doi: 10.1016/j.cor.2010.04.010
– ident: ref11
  doi: 10.1016/j.ijpe.2012.06.030
– ident: ref21
  doi: 10.1016/B978-1-78242-102-3.00010-1
– ident: ref41
  doi: 10.1090/dimacs/040/18
– ident: ref4
  doi: 10.1090/dimacs/074
– ident: ref43
  article-title: A bi-directional resource-bounded dynamic programming approach for the traveling salesman problem with time windows
  publication-title: Working Paper
– ident: ref26
  doi: 10.1016/j.cor.2012.07.008
– ident: ref32
  doi: 10.1016/j.amc.2015.05.109
– ident: ref35
  doi: 10.1016/j.orl.2004.11.011
– ident: ref6
  doi: 10.1007/0-306-47536-7_13
– start-page: 88
  volume-title: Proc. 6th Workshop Algorithm Eng. Experiments Soc. Ind. Appl. Math.
  ident: ref7
  article-title: Experimental comparison of shortest path approaches for timetable information
– ident: ref29
  doi: 10.1007/3-540-45253-2_30
– ident: ref33
  doi: 10.1002/net.21856
– start-page: 156
  volume-title: Proc. 16th Annu. ACM-SIAM Symp. Discrete Algorithms
  ident: ref5
  article-title: Computing the shortest path: A search meets graph theory
– ident: ref44
  doi: 10.1002/net.21511
– ident: ref34
  doi: 10.1002/net.20033
– ident: ref42
  doi: 10.1016/j.cor.2008.01.003
– ident: ref1
  doi: 10.1007/BF01386390
– ident: ref47
  doi: 10.1109/ICDM54844.2022.00069
– volume: 2
  start-page: 99
  issue: 6
  year: 2013
  ident: ref3
  article-title: A review and evaluations of shortest path algorithms
  publication-title: Int. J. Sci. Technol. Res.
– ident: ref30
  doi: 10.1016/j.trb.2006.12.001
– ident: ref48
  doi: 10.1109/TITS.2023.3293039
SSID ssj0008781
Score 2.454441
Snippet The constrained shortest path problem is a fundamental and challenging task in applications built on graphs. In this paper, we formalize and study the...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 60
SubjectTerms <named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> Min</tex-math> <mml:math> <mml:mrow> <mml:mi>M</mml:mi> <mml:mi>i</mml:mi> <mml:mi>n</mml:mi> </mml:mrow> </mml:math> <inline-graphic xlink:href="qian-ieq6-3488095.gif" xlink:type="simple"/> </inline-formula> </named-content>-<inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> Max</tex-math> <mml:math> <mml:mrow> <mml:mi>M</mml:mi> <mml:mi>a</mml:mi> <mml:mi>x</mml:mi> </mml:mrow> </mml:math> <inline-graphic xlink:href="qian-ieq7-3488095.gif" xlink:type="simple"/> </inline-formula> constraint
Accuracy
ancestor checking
Correlation
Costs
Delays
graph algorithms
incremental search
Intellectual property
Search problems
Shortest path problem
shortest path query
Time factors
Valves
Vehicle routing
Title Answering Min-Max Resource-Constrained Shortest Path Queries Over Large Graphs
URI https://ieeexplore.ieee.org/document/10738427
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2191
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008781
  issn: 1041-4347
  databaseCode: RIE
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62Jz1YrRXrixw8CalpNrvJHou2FrVVsYXeljxRhK3YLYq_3iS7lSII3kLIIcwj88jMfACcOashpI4tss56IJoahoSIMXLhbSKVcWKd-n7n0TgZTunNLJ5VzeqhF8YYE4rPTMcvw1--nqulT5U5DWcRp4TVQI2xtGzW-nl2OQuIpC68cEFRRFn1hdnF6cXk9qrvQkFCO5GXV48lsWaE1lBVglEZNMB4dZ2yluS1syxkR339mtT47_vugO3KvYS9Uh52wYbJm6Cxgm6AlSY3wdbaHMI9MO7li4-whqOXHI3EJ1yl9ZFH9Aw4EkbDp2dfmrso4IPzG-Hj0g9JXsB7pw3wzleUw2s__nrRAtNBf3I5RBXQAlKOVwWyXdONJU4jqoTFxEQkjoRKFMWGEqxJ6twyxa171oWKOVaJ4F3BJabKamK1iPZBPZ_n5gBALYiWRDLiO2S5llxryrCMubGW2ihpg_MV5bO3cp5GFuIQnGaeTZlnU1axqQ1anqhrB0t6Hv6xfwQ2iYfnDRmSY1Av3pfmxPkMhTwNsvINMEm-RA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB60HtSD9Ylvc_AkpKbZ7G72KL6qtlWxgrclTxRhK3aL4q83yW6lCIK3sOwhzCMzXzIzH8ChixpC6thi66IHZplJsRAxwQ7eJlIZZ9aZ73fu9ZPOI7t-ip_qZvXQC2OMCcVnpuWX4S1fD9XYX5U5D08jzmg6C3OxgxVp1a71c_DyNHCSOoDhYFHE0voRs02y48HN2bkDg5S1Im-xnk1iKgxN8aqEsHLRhP5kQ1U1yWtrXMqW-vo1q_HfO16GpTrBRCeVRazAjClWoTkhb0C1L6_C4tQkwjXonxSjj7BGvZcC98QnmlzsY8_pGZgkjEYPz744d1SiO5c5ovuxH5M8QrfOH1DX15SjSz8Ae7QOjxfng9MOrqkWsHLaKrFtm3YsSRYxJSyhJqJxJFSiGDGMEk0zl5gpbt3BLlTMiUoEbwsuCVNWU6tFtAGNYliYTUBaUC2pTKnvkeVacq1ZSmTMjbXMRskWHE0kn79VEzXygERIlns15V5Nea2mLVj3Qp36sZLn9h_fD2C-M-h18-5V_2YHFqgn6w33JbvQKN_HZs9lEKXcD3bzDV5vwZU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Answering+Min-Max+Resource-Constrained+Shortest+Path+Queries+Over+Large+Graphs&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Qian%2C+Haoran&rft.au=Zheng%2C+Weiguo&rft.au=Zhang%2C+Zhijie&rft.au=Fu%2C+Bo&rft.date=2025-01-01&rft.pub=IEEE&rft.issn=1041-4347&rft.volume=37&rft.issue=1&rft.spage=60&rft.epage=74&rft_id=info:doi/10.1109%2FTKDE.2024.3488095&rft.externalDocID=10738427
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon