Ant colony algorithm based on genetic method for continuous optimization problem

A new algorithm is presented by using the ant colony algorithm based on genetic method (ACG) to solve the continuous optimization problem. Each component has a seed set. The seed in the set has the value of component, trail information and fitness. The ant chooses a seed from the seed set with the p...

Full description

Saved in:
Bibliographic Details
Published inJournal of Shanghai University Vol. 11; no. 6; pp. 597 - 602
Main Author 朱经纬 蒙陪生 王乘
Format Journal Article
LanguageEnglish
Published 01.12.2007
Subjects
Online AccessGet full text
ISSN1007-6417
1863-236X
DOI10.1007/s11741-007-0614-1

Cover

Abstract A new algorithm is presented by using the ant colony algorithm based on genetic method (ACG) to solve the continuous optimization problem. Each component has a seed set. The seed in the set has the value of component, trail information and fitness. The ant chooses a seed from the seed set with the possibility determined by trail information and fitness of the seed. The genetic method is used to form new solutions from the solutions got by the ants. Best solutions are selected to update the seeds in the sets and trail information of the seeds. In updating the trail information, a diffusion function is used to achieve the diffuseness of trail information. The new algorithm is tested with 8 different benchmark functions.
AbstractList A new algorithm is presented by using the ant colony algorithm based on genetic method (ACG) to solve the continuous optimization problem. Each component has a seed set. The seed in the set has the value of component, trail information and fitness. The ant chooses a seed from the seed set with the possibility determined by trail information and fitness of the seed. The genetic method is used to form new solutions from the solutions got by the ants. Best solutions are selected to update the seeds in the sets and trail information of the seeds. In updating the trail information, a diffusion function is used to achieve the diffuseness of trail information. The new algorithm is tested with 8 different benchmark functions.
A new algorithm is presented by using the ant colony algorithm based on genetic method (ACG) to solve the continuous optimization problem. Each component has a seed set. The seed in the set has the value of component, trail information and fitness. The ant chooses a seed from the seed set with the possibility determined by trail information and fitness of the seed. The genetic method is used to form new solutions from the solutions got by the ants. Best solutions are selected to update the seeds in the sets and trail information of the seeds. In updating the trail information, a diffusion function is used to achieve the diffuseness of trail information. The new algorithm is tested with 8 different benchmark functions.
Author 朱经纬 蒙陪生 王乘
AuthorAffiliation Department of Mechanics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
Author_xml – sequence: 1
  fullname: 朱经纬 蒙陪生 王乘
BookMark eNp9kDtPwzAUhS0EEm3hB7BFDGwBXzuJ7bGqeEmVYACJzXJcuzUkdhu7Q_n1uLQTA9M90v3OfZwxOvXBG4SuAN8CxuwuArAKyixL3EBVwgkaAW9oSWjzcZr1vtNUwM7ROMZPjClgTkfodepToUMX_K5Q3TIMLq36olXRLIrgi6XxJjld9CatwqKwYciwT85vwzYWYZ1c775VchldD6HtTH-Bzqzqork81gl6f7h_mz2V85fH59l0XmoCPJUt00xDAwJr1VJtSbvARJCWW1GLpiJ2wXita8wwq4morBKmEpXiVlPGGt7SCbo5zM17N1sTk-xd1KbrlDf5NkmB5jmcZBAOoB5CjIOxcj24Xg07CVjuY5GH7ORe7rOTkD3sj0e79PtmGpTr_nVeH52r4Jcb55eyVfrLus5IUgtOK9HQHzqRgX0
CitedBy_id crossref_primary_10_1007_s11741_010_0679_2
Cites_doi 10.1016/S0377-2217(02)00489-7
10.1109/3477.484436
10.1109/4235.771163
10.1109/4235.585892
10.1016/S0167-739X(00)00046-7
10.1016/S0166-3615(03)00123-4
ContentType Journal Article
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
7SC
7SP
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
JQ2
KR7
L7M
L~C
L~D
DOI 10.1007/s11741-007-0614-1
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
METADEX
Computer and Information Systems Abstracts Professional
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Ant colony algorithm based on genetic method for continuous optimization problem
EISSN 1863-236X
EndPage 602
ExternalDocumentID 10_1007_s11741_007_0614_1
25983496
GroupedDBID -5D
-5G
-BR
-Y2
.86
0R~
188
29L
2B.
2C-
2JY
2RA
4.4
5GY
5VS
6NX
8RM
8UJ
92D
92I
92L
93E
93N
AAIAL
ABMNI
ABTEG
ADKPE
ADRFC
AFLOW
AGJBK
AHSBF
AINHJ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
BA0
BAPOH
CAG
COF
CQIGP
CS3
CSCUP
CW9
DU5
EBS
EJD
H13
HF~
HG6
HLICF
HZ~
I~X
J9A
KOV
O9-
QOS
R9I
ROL
RPX
RSV
S1Z
S27
SDH
SMT
SOJ
T13
TCJ
TGH
U2A
UGNYK
UZ4
VC2
W92
WK8
Z85
~WA
AAYXX
AAYZH
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
CITATION
7SC
7SP
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c218t-b7c7c16190cab3cf2bd0292b8f959642fd785c507075294fa9e494a8fc37768b3
ISSN 1007-6417
IngestDate Thu Sep 04 16:01:32 EDT 2025
Wed Oct 01 03:09:58 EDT 2025
Thu Apr 24 23:00:56 EDT 2025
Thu Nov 24 20:29:25 EST 2022
IsPeerReviewed false
IsScholarly true
Issue 6
Language English
License http://www.springer.com/tdm
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c218t-b7c7c16190cab3cf2bd0292b8f959642fd785c507075294fa9e494a8fc37768b3
Notes ant colony algorithm, genetic method, diffusion function, continuous optimization problem.
TP301.6
31-1735/N
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 31396482
PQPubID 23500
PageCount 6
ParticipantIDs proquest_miscellaneous_31396482
crossref_primary_10_1007_s11741_007_0614_1
crossref_citationtrail_10_1007_s11741_007_0614_1
chongqing_backfile_25983496
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-12-00
PublicationDateYYYYMMDD 2007-12-01
PublicationDate_xml – month: 12
  year: 2007
  text: 2007-12-00
PublicationDecade 2000
PublicationTitle Journal of Shanghai University
PublicationTitleAlternate Journal of Shanghai University(English Edition)
PublicationYear 2007
References X.-w. Shao (614_CR8) 2004; 19
V. P. Hadeli (614_CR4) 2004; 53
M. Dortgo (614_CR1) 1996; 26
M. Dortgo (614_CR2) 1997; 1
V. Maniezzo (614_CR3) 2000; 16
Y. Xin (614_CR10) 1999; 3
L. Chen (614_CR9) 2002; 13
J.-f. Jiang (614_CR7) 2004; 25
J.-l. Ding (614_CR6) 2003; 40
J. Eggers (614_CR5) 2003; 148
References_xml – volume: 148
  start-page: 672
  issue: 3
  year: 2003
  ident: 614_CR5
  publication-title: European Journal of Operational Research
  doi: 10.1016/S0377-2217(02)00489-7
– volume: 26
  start-page: 29
  issue: 1
  year: 1996
  ident: 614_CR1
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics
  doi: 10.1109/3477.484436
– volume: 13
  start-page: 2317
  issue: 12
  year: 2002
  ident: 614_CR9
  publication-title: Journal of Software
– volume: 25
  start-page: 89
  issue: 8
  year: 2004
  ident: 614_CR7
  publication-title: Journal of China Institute of Communications
– volume: 3
  start-page: 82
  issue: 2
  year: 1999
  ident: 614_CR10
  publication-title: IEEE Transations on Evolutionary Computation
  doi: 10.1109/4235.771163
– volume: 1
  start-page: 53
  issue: 1
  year: 1997
  ident: 614_CR2
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.585892
– volume: 16
  start-page: 927
  year: 2000
  ident: 614_CR3
  publication-title: Future Generation Computer Systems
  doi: 10.1016/S0167-739X(00)00046-7
– volume: 19
  start-page: 1187
  issue: 10
  year: 2004
  ident: 614_CR8
  publication-title: Control and Decision
– volume: 53
  start-page: 75
  issue: 1
  year: 2004
  ident: 614_CR4
  publication-title: Computers in Industry
  doi: 10.1016/S0166-3615(03)00123-4
– volume: 40
  start-page: 1351
  issue: 9
  year: 2003
  ident: 614_CR6
  publication-title: Journal of Computer Research and Development
SSID ssj0031083
ssib011849603
ssib004208268
ssib001427449
ssib006702986
ssib022315846
Score 1.6796029
Snippet A new algorithm is presented by using the ant colony algorithm based on genetic method (ACG) to solve the continuous optimization problem. Each component has...
A new algorithm is presented by using the ant colony algorithm based on genetic method (ACG) to solve the continuous optimization problem. Each component has a...
SourceID proquest
crossref
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 597
SubjectTerms 蚁群算法
连续优化
遗传机制
Title Ant colony algorithm based on genetic method for continuous optimization problem
URI http://lib.cqvip.com/qk/85172X/20076/25983496.html
https://www.proquest.com/docview/31396482
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1863-236X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib011849603
  issn: 1007-6417
  databaseCode: AFBBN
  dateStart: 19970601
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1863-236X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0031083
  issn: 1007-6417
  databaseCode: U2A
  dateStart: 19970601
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW9sIFUR5iKRQfsAREQXk4iX1CySqrCokKia7UW-Q4SbeiTWjJHuDXM5M42SyPCrhYlvNQNN-X8Yw9MybkZahcYImq7FBU3OYKf6kqKmzBhVMIVfi6W7r4cBIer_j7s-BsNns3iVratPlb_f23eSX_gyqMAa6YJfsPyI4vhQHoA77QAsLQ_hXGcd1aWHW6_mapy_MG_Pz1lYXzUoF7APAYZiiaQ6K7eEIMTL-oNxj22oCuuDJJmJY5VuYPluonXFReq4tJFMeAE0tDJhcscVkasSRhYtl1YhYvLJYKJj0mJUsltnGM1yRncmlhT6RMJCzlLIHLYmf5IZqEcvQaE8dC3idgjirVnVBnqh-DPhjXTLVhl2z9qxZ3TFYzeEuu3cfnudx2t1PWGEgIzpvAkvd3yL4Hah3P7lh58TAVg-kq-gwL843DtnaXO_nT27G4xrqpz6_BZNg1Unbn6M7wOL1P7hkcaNzDf0BmZf2AHBid_JW-MoXDXz8kH4EPtOcDHflAOz7QpqaGD7TnAwU-0C0f6JQP1PDhEVkt09PFsW1OzLA1mGqtnUc60mDDS0er3NeVlxeOJ71cVDKQ4GlWRSQCHWCJp8CTvFKy5JIrUWk_Ar8z9x-TvbqpyyeEukEJprJTgj9dccEDlYtCa1dzv_C8KlBzcjiKCywu_RnriGUDHnPiDALMtCk2j2eeXGbbMtko_wy7KP_MnZM34yNf-kort938YkAlA32Im1yqLkFamQ8uTciF9_TW7zskd7dkfkb22ptN-RysyzY_IvvxMklOjjom_QDofXDe
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ant+colony+algorithm+based+on+genetic+method+for+continuous+optimization+problem&rft.jtitle=Journal+of+Shanghai+University&rft.au=%E6%9C%B1%E7%BB%8F%E7%BA%AC+%E8%92%99%E9%99%AA%E7%94%9F+%E7%8E%8B%E4%B9%98&rft.date=2007-12-01&rft.issn=1007-6417&rft.volume=11&rft.issue=6&rft.spage=597&rft.epage=602&rft_id=info:doi/10.1007%2Fs11741-007-0614-1&rft.externalDocID=25983496
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85172X%2F85172X.jpg