Ant colony algorithm based on genetic method for continuous optimization problem
A new algorithm is presented by using the ant colony algorithm based on genetic method (ACG) to solve the continuous optimization problem. Each component has a seed set. The seed in the set has the value of component, trail information and fitness. The ant chooses a seed from the seed set with the p...
Saved in:
| Published in | Journal of Shanghai University Vol. 11; no. 6; pp. 597 - 602 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
01.12.2007
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1007-6417 1863-236X |
| DOI | 10.1007/s11741-007-0614-1 |
Cover
| Abstract | A new algorithm is presented by using the ant colony algorithm based on genetic method (ACG) to solve the continuous optimization problem. Each component has a seed set. The seed in the set has the value of component, trail information and fitness. The ant chooses a seed from the seed set with the possibility determined by trail information and fitness of the seed. The genetic method is used to form new solutions from the solutions got by the ants. Best solutions are selected to update the seeds in the sets and trail information of the seeds. In updating the trail information, a diffusion function is used to achieve the diffuseness of trail information. The new algorithm is tested with 8 different benchmark functions. |
|---|---|
| AbstractList | A new algorithm is presented by using the ant colony algorithm based on genetic method (ACG) to solve the continuous optimization problem. Each component has a seed set. The seed in the set has the value of component, trail information and fitness. The ant chooses a seed from the seed set with the possibility determined by trail information and fitness of the seed. The genetic method is used to form new solutions from the solutions got by the ants. Best solutions are selected to update the seeds in the sets and trail information of the seeds. In updating the trail information, a diffusion function is used to achieve the diffuseness of trail information. The new algorithm is tested with 8 different benchmark functions. A new algorithm is presented by using the ant colony algorithm based on genetic method (ACG) to solve the continuous optimization problem. Each component has a seed set. The seed in the set has the value of component, trail information and fitness. The ant chooses a seed from the seed set with the possibility determined by trail information and fitness of the seed. The genetic method is used to form new solutions from the solutions got by the ants. Best solutions are selected to update the seeds in the sets and trail information of the seeds. In updating the trail information, a diffusion function is used to achieve the diffuseness of trail information. The new algorithm is tested with 8 different benchmark functions. |
| Author | 朱经纬 蒙陪生 王乘 |
| AuthorAffiliation | Department of Mechanics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China |
| Author_xml | – sequence: 1 fullname: 朱经纬 蒙陪生 王乘 |
| BookMark | eNp9kDtPwzAUhS0EEm3hB7BFDGwBXzuJ7bGqeEmVYACJzXJcuzUkdhu7Q_n1uLQTA9M90v3OfZwxOvXBG4SuAN8CxuwuArAKyixL3EBVwgkaAW9oSWjzcZr1vtNUwM7ROMZPjClgTkfodepToUMX_K5Q3TIMLq36olXRLIrgi6XxJjld9CatwqKwYciwT85vwzYWYZ1c775VchldD6HtTH-Bzqzqork81gl6f7h_mz2V85fH59l0XmoCPJUt00xDAwJr1VJtSbvARJCWW1GLpiJ2wXita8wwq4morBKmEpXiVlPGGt7SCbo5zM17N1sTk-xd1KbrlDf5NkmB5jmcZBAOoB5CjIOxcj24Xg07CVjuY5GH7ORe7rOTkD3sj0e79PtmGpTr_nVeH52r4Jcb55eyVfrLus5IUgtOK9HQHzqRgX0 |
| CitedBy_id | crossref_primary_10_1007_s11741_010_0679_2 |
| Cites_doi | 10.1016/S0377-2217(02)00489-7 10.1109/3477.484436 10.1109/4235.771163 10.1109/4235.585892 10.1016/S0167-739X(00)00046-7 10.1016/S0166-3615(03)00123-4 |
| ContentType | Journal Article |
| DBID | 2RA 92L CQIGP W92 ~WA AAYXX CITATION 7SC 7SP 7SR 7TB 7U5 8BQ 8FD FR3 JG9 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1007/s11741-007-0614-1 |
| DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts METADEX Computer and Information Systems Abstracts Professional Engineered Materials Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| DocumentTitleAlternate | Ant colony algorithm based on genetic method for continuous optimization problem |
| EISSN | 1863-236X |
| EndPage | 602 |
| ExternalDocumentID | 10_1007_s11741_007_0614_1 25983496 |
| GroupedDBID | -5D -5G -BR -Y2 .86 0R~ 188 29L 2B. 2C- 2JY 2RA 4.4 5GY 5VS 6NX 8RM 8UJ 92D 92I 92L 93E 93N AAIAL ABMNI ABTEG ADKPE ADRFC AFLOW AGJBK AHSBF AINHJ ALMA_UNASSIGNED_HOLDINGS AMKLP BA0 BAPOH CAG COF CQIGP CS3 CSCUP CW9 DU5 EBS EJD H13 HF~ HG6 HLICF HZ~ I~X J9A KOV O9- QOS R9I ROL RPX RSV S1Z S27 SDH SMT SOJ T13 TCJ TGH U2A UGNYK UZ4 VC2 W92 WK8 Z85 ~WA AAYXX AAYZH ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP CITATION 7SC 7SP 7SR 7TB 7U5 8BQ 8FD FR3 JG9 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c218t-b7c7c16190cab3cf2bd0292b8f959642fd785c507075294fa9e494a8fc37768b3 |
| ISSN | 1007-6417 |
| IngestDate | Thu Sep 04 16:01:32 EDT 2025 Wed Oct 01 03:09:58 EDT 2025 Thu Apr 24 23:00:56 EDT 2025 Thu Nov 24 20:29:25 EST 2022 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | http://www.springer.com/tdm |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c218t-b7c7c16190cab3cf2bd0292b8f959642fd785c507075294fa9e494a8fc37768b3 |
| Notes | ant colony algorithm, genetic method, diffusion function, continuous optimization problem. TP301.6 31-1735/N ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PQID | 31396482 |
| PQPubID | 23500 |
| PageCount | 6 |
| ParticipantIDs | proquest_miscellaneous_31396482 crossref_primary_10_1007_s11741_007_0614_1 crossref_citationtrail_10_1007_s11741_007_0614_1 chongqing_backfile_25983496 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2007-12-00 |
| PublicationDateYYYYMMDD | 2007-12-01 |
| PublicationDate_xml | – month: 12 year: 2007 text: 2007-12-00 |
| PublicationDecade | 2000 |
| PublicationTitle | Journal of Shanghai University |
| PublicationTitleAlternate | Journal of Shanghai University(English Edition) |
| PublicationYear | 2007 |
| References | X.-w. Shao (614_CR8) 2004; 19 V. P. Hadeli (614_CR4) 2004; 53 M. Dortgo (614_CR1) 1996; 26 M. Dortgo (614_CR2) 1997; 1 V. Maniezzo (614_CR3) 2000; 16 Y. Xin (614_CR10) 1999; 3 L. Chen (614_CR9) 2002; 13 J.-f. Jiang (614_CR7) 2004; 25 J.-l. Ding (614_CR6) 2003; 40 J. Eggers (614_CR5) 2003; 148 |
| References_xml | – volume: 148 start-page: 672 issue: 3 year: 2003 ident: 614_CR5 publication-title: European Journal of Operational Research doi: 10.1016/S0377-2217(02)00489-7 – volume: 26 start-page: 29 issue: 1 year: 1996 ident: 614_CR1 publication-title: IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics doi: 10.1109/3477.484436 – volume: 13 start-page: 2317 issue: 12 year: 2002 ident: 614_CR9 publication-title: Journal of Software – volume: 25 start-page: 89 issue: 8 year: 2004 ident: 614_CR7 publication-title: Journal of China Institute of Communications – volume: 3 start-page: 82 issue: 2 year: 1999 ident: 614_CR10 publication-title: IEEE Transations on Evolutionary Computation doi: 10.1109/4235.771163 – volume: 1 start-page: 53 issue: 1 year: 1997 ident: 614_CR2 publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.585892 – volume: 16 start-page: 927 year: 2000 ident: 614_CR3 publication-title: Future Generation Computer Systems doi: 10.1016/S0167-739X(00)00046-7 – volume: 19 start-page: 1187 issue: 10 year: 2004 ident: 614_CR8 publication-title: Control and Decision – volume: 53 start-page: 75 issue: 1 year: 2004 ident: 614_CR4 publication-title: Computers in Industry doi: 10.1016/S0166-3615(03)00123-4 – volume: 40 start-page: 1351 issue: 9 year: 2003 ident: 614_CR6 publication-title: Journal of Computer Research and Development |
| SSID | ssj0031083 ssib011849603 ssib004208268 ssib001427449 ssib006702986 ssib022315846 |
| Score | 1.6796029 |
| Snippet | A new algorithm is presented by using the ant colony algorithm based on genetic method (ACG) to solve the continuous optimization problem. Each component has... A new algorithm is presented by using the ant colony algorithm based on genetic method (ACG) to solve the continuous optimization problem. Each component has a... |
| SourceID | proquest crossref chongqing |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 597 |
| SubjectTerms | 蚁群算法 连续优化 遗传机制 |
| Title | Ant colony algorithm based on genetic method for continuous optimization problem |
| URI | http://lib.cqvip.com/qk/85172X/20076/25983496.html https://www.proquest.com/docview/31396482 |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1863-236X dateEnd: 99991231 omitProxy: false ssIdentifier: ssib011849603 issn: 1007-6417 databaseCode: AFBBN dateStart: 19970601 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1863-236X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0031083 issn: 1007-6417 databaseCode: U2A dateStart: 19970601 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW9sIFUR5iKRQfsAREQXk4iX1CySqrCokKia7UW-Q4SbeiTWjJHuDXM5M42SyPCrhYlvNQNN-X8Yw9MybkZahcYImq7FBU3OYKf6kqKmzBhVMIVfi6W7r4cBIer_j7s-BsNns3iVratPlb_f23eSX_gyqMAa6YJfsPyI4vhQHoA77QAsLQ_hXGcd1aWHW6_mapy_MG_Pz1lYXzUoF7APAYZiiaQ6K7eEIMTL-oNxj22oCuuDJJmJY5VuYPluonXFReq4tJFMeAE0tDJhcscVkasSRhYtl1YhYvLJYKJj0mJUsltnGM1yRncmlhT6RMJCzlLIHLYmf5IZqEcvQaE8dC3idgjirVnVBnqh-DPhjXTLVhl2z9qxZ3TFYzeEuu3cfnudx2t1PWGEgIzpvAkvd3yL4Hah3P7lh58TAVg-kq-gwL843DtnaXO_nT27G4xrqpz6_BZNg1Unbn6M7wOL1P7hkcaNzDf0BmZf2AHBid_JW-MoXDXz8kH4EPtOcDHflAOz7QpqaGD7TnAwU-0C0f6JQP1PDhEVkt09PFsW1OzLA1mGqtnUc60mDDS0er3NeVlxeOJ71cVDKQ4GlWRSQCHWCJp8CTvFKy5JIrUWk_Ar8z9x-TvbqpyyeEukEJprJTgj9dccEDlYtCa1dzv_C8KlBzcjiKCywu_RnriGUDHnPiDALMtCk2j2eeXGbbMtko_wy7KP_MnZM34yNf-kort938YkAlA32Im1yqLkFamQ8uTciF9_TW7zskd7dkfkb22ptN-RysyzY_IvvxMklOjjom_QDofXDe |
| linkProvider | Springer Nature |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ant+colony+algorithm+based+on+genetic+method+for+continuous+optimization+problem&rft.jtitle=Journal+of+Shanghai+University&rft.au=%E6%9C%B1%E7%BB%8F%E7%BA%AC+%E8%92%99%E9%99%AA%E7%94%9F+%E7%8E%8B%E4%B9%98&rft.date=2007-12-01&rft.issn=1007-6417&rft.volume=11&rft.issue=6&rft.spage=597&rft.epage=602&rft_id=info:doi/10.1007%2Fs11741-007-0614-1&rft.externalDocID=25983496 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85172X%2F85172X.jpg |