Analysis and Comparison for Innovative Prediction Technique of Breast Cancer Tumor using Decision Tree Algorithm over Support Vector Machine Algorithm with Improved Accuracy
Aim: The major goal of this research is to improve the accuracy of the Decision Tree (DT) and Support vector machine (SVM) algorithms and compare their efficiency in detecting breast cancer tumors. Materials and Methods: This work depends on the data obtained from the UCI Machine Learning Repository...
Saved in:
| Published in | Cardiometry no. 25; pp. 872 - 877 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Moscow
Russian New University
01.12.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2304-7232 2304-7232 |
| DOI | 10.18137/cardiometry.2022.25.872877 |
Cover
| Abstract | Aim: The major goal of this research is to improve the accuracy of the Decision Tree (DT) and Support vector machine (SVM) algorithms and compare their efficiency in detecting breast cancer tumors. Materials and Methods: This work depends on the data obtained from the UCI Machine Learning Repository and used to acquire the data sets for the research of Innovative breast cancer prediction using machine learning algorithms. The sample size of breast cancer prediction involves two groups: Decision tree (N=20) and Support vector machine (N=20) according to clincalc.com by keeping 0.05 alpha error-threshold, 95% confidence interval, enrollment ratio as 0:1, and 80% G power. The accuracy, sensitivity, and precision are calculated using MATLAB software. Result: The accuracy of the DT is 83.83% (p<0.001) while the accuracy rate of the Support vector machine is 97.50%. The Decision tree outcomes have a sensitivity and precision rate of 87.46% (p<0.001) and 84.13% (p<0.001) respectively, whereas the Support vector machine sensitivity and the precision rate are 95.83% and 100% respectively. Conclusion: Support vector machine algorithm performed significantly better with improved accuracy of 97.50% for breast cancer prediction. |
|---|---|
| AbstractList | Aim: The major goal of this research is to improve the accuracy of the Decision Tree (DT) and Support vector machine (SVM) algorithms and compare their efficiency in detecting breast cancer tumors. Materials and Methods: This work depends on the data obtained from the UCI Machine Learning Repository and used to acquire the data sets for the research of Innovative breast cancer prediction using machine learning algorithms. The sample size of breast cancer prediction involves two groups: Decision tree (N=20) and Support vector machine (N=20) according to clincalc.com by keeping 0.05 alpha error-threshold, 95% confidence interval, enrollment ratio as 0:1, and 80% G power. The accuracy, sensitivity, and precision are calculated using MATLAB software. Result: The accuracy of the DT is 83.83% (p<0.001) while the accuracy rate of the Support vector machine is 97.50%. The Decision tree outcomes have a sensitivity and precision rate of 87.46% (p<0.001) and 84.13% (p<0.001) respectively, whereas the Support vector machine sensitivity and the precision rate are 95.83% and 100% respectively. Conclusion: Support vector machine algorithm performed significantly better with improved accuracy of 97.50% for breast cancer prediction. |
| Author | Srinivasulureddy, Ch Kumar, Neelam Sanjeev Binu, V S |
| Author_xml | – sequence: 1 givenname: Ch surname: Srinivasulureddy fullname: Srinivasulureddy, Ch – sequence: 2 givenname: Neelam surname: Kumar middlename: Sanjeev fullname: Kumar, Neelam Sanjeev – sequence: 3 givenname: V surname: Binu middlename: S fullname: Binu, V S |
| BookMark | eNpNkM9qGzEQh0VJoWmadxDkbFcaeVda6MV1_8SQ0kKcXsWsVo4VdqWtpHXYh-o7Ro178GVmYL7fMHzvyYUP3hJyw9mSKy7kR4Oxc2GwOc5LYABLqJZKgpLyDbkEwVYLCQIuzuZ35DqlJ8YYB94wUV2Sv2uP_Zxcoug7ugnDiNGl4Ok-RLr1Phwxu6Olv6LtnMmubHbWHLz7M1ka9vRztJgy3aA3NtLdNJTYlJx_pF-scemVj9bSdf8YosuHgYZjAe-ncQwx09_W5JL4gebg_Dn1XCrdDmMseEfXxkwRzfyBvN1jn-z1_35FHr593W1uF3c_v28367uFAa7yAoWt6pXggu8BmZS1AC4rxFapRnS2Zq1dQaeUWZm6bgWAReQN8K5VjTGsFVfk0-nu5Eecn7Hv9RjdgHHWnOlX-_rMvv5nX0OlT_ZL_OYUL-8XTynrpzDFIjppkFIyVTW8Ei-DcY5t |
| ContentType | Journal Article |
| Copyright | 2022. This work is published under http://www.cardiometry.net/issues (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022. This work is published under http://www.cardiometry.net/issues (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 3V. 7RV 7X7 7XB 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. KB0 M0S NAPCQ PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS ADTOC UNPAY |
| DOI | 10.18137/cardiometry.2022.25.872877 |
| DatabaseName | ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Health & Medical Collection Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2304-7232 |
| EndPage | 877 |
| ExternalDocumentID | 10.18137/cardiometry.2022.25.872877 |
| GroupedDBID | 3V. 5VS 7RV 7X7 7XB 8FI 8FJ 8FK ABUWG ADBBV AEGXH AFKRA AHMBA ALMA_UNASSIGNED_HOLDINGS AZQEC BCNDV BENPR BKEYQ BPHCQ BVXVI CCPQU DWQXO FYUFA GX1 HMCUK K9. KQ8 M~E NAPCQ OK1 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS PROAC RNS UKHRP VCL VIT ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c218t-a3e5643131f2a077632175aab8893de60be42d88c4c66b322eaa1921db89cc0b3 |
| IEDL.DBID | BENPR |
| ISSN | 2304-7232 |
| IngestDate | Tue Aug 19 23:20:22 EDT 2025 Tue Oct 07 06:44:17 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 25 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c218t-a3e5643131f2a077632175aab8893de60be42d88c4c66b322eaa1921db89cc0b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/2777085915?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 2777085915 |
| PQPubID | 2045095 |
| PageCount | 6 |
| ParticipantIDs | unpaywall_primary_10_18137_cardiometry_2022_25_872877 proquest_journals_2777085915 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-12-01 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Moscow |
| PublicationPlace_xml | – name: Moscow |
| PublicationTitle | Cardiometry |
| PublicationYear | 2022 |
| Publisher | Russian New University |
| Publisher_xml | – name: Russian New University |
| SSID | ssj0001219035 |
| Score | 2.2048795 |
| Snippet | Aim: The major goal of this research is to improve the accuracy of the Decision Tree (DT) and Support vector machine (SVM) algorithms and compare their... |
| SourceID | unpaywall proquest |
| SourceType | Open Access Repository Aggregation Database |
| StartPage | 872 |
| SubjectTerms | Accuracy Algorithms Breast cancer Decision trees Machine learning Support vector machines |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LjtMwFLWGjjSw4Y0YGNCVYOs0cew8lqUwGpA6GokWDavIdpwi0aRVmwwafoFfgX_k3jxGhSUrtlGsXMc39rnO8TmMvfZDqWykFVeBTrg0JuSJtDkXscjjApd0255Km51HZwv54VJdHrAfw1mYXeiRqTpZ4LQHGkrSP_dxLI3SVgYcy5mcy9D4XIfCce2TwJ3SJGM2dtVy3Ea7G1droXjurCNXDWwtxJh-8nK9Wq6x6P5S8l2zIYDLr9rNcV621EXnbfLiFjuMFAL7ETtcnF9MPrf2dL7kMYKPI_aKppkkCOOxbQmjpaux7_QETygvibECif9Aq7ebaqOvv-nVam_hOr3Hfg5d7vgqX72mxj5__0sN8j95J_fZ3R4gw6TL6AfswFUP2dGspwA8Yr8GGRXQVQ7TGxtFQPQN73uP1ysHF1tqQmkH80GnFtYFvCEWfg1TyvYtzJsSmxH5fwlve7shmGO8MBniBSK5wscuaPjUBg2zLui9u2hDG7otGpfDxNpmq-31Y7Y4fTefnvHec4JbBDs1vkGnEKQFYVAITVJHIdZsSmuTILDLXeQbJ0WeJFbaKDI4GzqtSVIuN0lqrW_CJ2xUrSv3lEFaGOusTrRMI0nqqzg6KQKuNDGICFR0zE6GLMn6iWOXiTiOSXMuUMdM3WROtumkRzIq2Sj5sr3ky2goM6GyLvme_WO75-wOXeioOidsVG8b9wIBV21e9h_Cb8vSLJY priority: 102 providerName: Unpaywall |
| Title | Analysis and Comparison for Innovative Prediction Technique of Breast Cancer Tumor using Decision Tree Algorithm over Support Vector Machine Algorithm with Improved Accuracy |
| URI | https://www.proquest.com/docview/2777085915 https://s3.timeweb.com/cm94660-20b5ac41-549d-43b0-a32e-a074405a8023/eng/issues/no25-december-2022/tree-algorithm-support-vector-machine.pdf |
| UnpaywallVersion | publishedVersion |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2304-7232 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001219035 issn: 2304-7232 databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2304-7232 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001219035 issn: 2304-7232 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2304-7232 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001219035 issn: 2304-7232 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 2304-7232 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001219035 issn: 2304-7232 databaseCode: 7X7 dateStart: 20160101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2304-7232 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001219035 issn: 2304-7232 databaseCode: BENPR dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NbxMxEB21qVS4ID5FS6lGguu2WXu99h4QSkOrgpQoQgkKp5W_0h6STVg2Rf1R_Ec8-1HChdNe7JXWz-t5Ho_fA3jf54mwqRaRiLWKEmN4pBLrIiaZk4sQ0m19K200Tq9nyZe5mO_BuLsLQ2WV3ZpYL9RubSlHfs6klCTGFYuPmx8RuUbR6WpnoaFbawX3oZYY24cDRspYPTi4uBxPvu5kXUIA5OIQ3tFqoWIuz21d97nyVfgEFiLaGRNnSoaNhPyHdD7aFht9_0svlzvx5-opPGmJIw4apJ_Bni-ew-GoPRp_Ab87eRHUhcPhg70gBlaKn1vv0zuPk5K6EBw47fRbcb3AC6pOr3BIs6DE6XYVulFR_A1-am14cFp6j4PlTRiW6naFVPyJ5AoaGDx-q7P_OKprM3dbUaIXm9SFdziwdltqe_8SZleX0-F11HoxRDaQgCrS3ItAXmIeL5gmCSAe9jJCa6MC4XE-7RufMKeUTWyamrBKeK1Jas0ZlVnbN_wV9Ip14V8DZgtjvdVKJ1makCqp5iwLRCRTJkRKkR7BSTfseftD_cz_wn8E4gGKfNNIcuS0lSE08x00c0IzZyJv0Dz-_2vfwGNq31SqnECvKrf-beAblTmFfTmXp-1UCs_ZeDL4_gchONvP |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxELVKK7VcEJ-iUGAk4Lht1h-73kOF0rRVQpuoQinqbbG9Tjkkm7DdUOVH8Rf4bczsRwkXbr2vffCb9Zuxx-8x9qEjpHKRUYEKjQ6ktSLQ0mUBj3kWT5DSXfUqbTiK-pfy85W62mC_27cw1FbZ7onVRp3NHZ2RH_A4jkmMK1SfFj8Cco2i29XWQsM01grZYSUx1jzsOPOrWyzhbg4Hx4j3R85PT8a9ftC4DAQO6a0MjPAKaTkU4YQbErcRmKUrY6xGKs981LFe8kxrJ10UWYx_bwyJiGVWJ851rMB5H7AtKWSCxd_W0cno4svaKQ8SrlDb7D3tTjoU8YGr-kxnvsQl48ig-1zt6xgLl_ifJHdnmS_M6tZMp2t8d_qYPWoSVejWkfWEbfj8KdseNlfxz9ivVs4ETJ5B787OEDALhkHjtfrTw0VBQwh-GLd6sTCfwBF1w5fQo6grYLyc4TBqwr-G48b2B8aF99CdXiMM5fcZULMpkAspVgzwtbptgGHVC7r-FR0sQ31U4jPoOrcsjFs9Z5f3gsoLtpnPc_-SQTKxzjujjUwiSSqoRvAEE59EW2RmFe2yvXbZ0-YHvkn_htsuU3dQpItaAiSl0onQTNfQTAnNlKu0RvPV_6d9x3b64-F5ej4Ynb1mD2ls3SWzxzbLYunfYK5T2rdNQAH7dt8x_Ac7fRV7 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LjtMwFLWGjjSw4Y0YGNCVYOs0cew8lqUwGpA6GokWDavIdpwi0aRVmwwafoFfgX_k3jxGhSUrtlGsXMc39rnO8TmMvfZDqWykFVeBTrg0JuSJtDkXscjjApd0255Km51HZwv54VJdHrAfw1mYXeiRqTpZ4LQHGkrSP_dxLI3SVgYcy5mcy9D4XIfCce2TwJ3SJGM2dtVy3Ea7G1droXjurCNXDWwtxJh-8nK9Wq6x6P5S8l2zIYDLr9rNcV621EXnbfLiFjuMFAL7ETtcnF9MPrf2dL7kMYKPI_aKppkkCOOxbQmjpaux7_QETygvibECif9Aq7ebaqOvv-nVam_hOr3Hfg5d7vgqX72mxj5__0sN8j95J_fZ3R4gw6TL6AfswFUP2dGspwA8Yr8GGRXQVQ7TGxtFQPQN73uP1ysHF1tqQmkH80GnFtYFvCEWfg1TyvYtzJsSmxH5fwlve7shmGO8MBniBSK5wscuaPjUBg2zLui9u2hDG7otGpfDxNpmq-31Y7Y4fTefnvHec4JbBDs1vkGnEKQFYVAITVJHIdZsSmuTILDLXeQbJ0WeJFbaKDI4GzqtSVIuN0lqrW_CJ2xUrSv3lEFaGOusTrRMI0nqqzg6KQKuNDGICFR0zE6GLMn6iWOXiTiOSXMuUMdM3WROtumkRzIq2Sj5sr3ky2goM6GyLvme_WO75-wOXeioOidsVG8b9wIBV21e9h_Cb8vSLJY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+and+Comparison+for+Innovative+Prediction+Technique+of+Breast+Cancer+Tumor+using+Decision+Tree+Algorithm+over+Support+Vector+Machine+Algorithm+with+Improved+Accuracy&rft.jtitle=Cardiometry&rft.au=Srinivasulureddy%2C+Ch&rft.au=Kumar%2C+Neelam+Sanjeev&rft.au=Binu%2C+V+S&rft.date=2022-12-01&rft.pub=Russian+New+University&rft.eissn=2304-7232&rft.issue=25&rft.spage=872&rft.epage=877&rft_id=info:doi/10.18137%2Fcardiometry.2022.25.872877 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2304-7232&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2304-7232&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2304-7232&client=summon |