Analysis and Comparison for Innovative Prediction Technique of Breast Cancer Tumor using Decision Tree Algorithm over Support Vector Machine Algorithm with Improved Accuracy

Aim: The major goal of this research is to improve the accuracy of the Decision Tree (DT) and Support vector machine (SVM) algorithms and compare their efficiency in detecting breast cancer tumors. Materials and Methods: This work depends on the data obtained from the UCI Machine Learning Repository...

Full description

Saved in:
Bibliographic Details
Published inCardiometry no. 25; pp. 872 - 877
Main Authors Srinivasulureddy, Ch, Kumar, Neelam Sanjeev, Binu, V S
Format Journal Article
LanguageEnglish
Published Moscow Russian New University 01.12.2022
Subjects
Online AccessGet full text
ISSN2304-7232
2304-7232
DOI10.18137/cardiometry.2022.25.872877

Cover

Abstract Aim: The major goal of this research is to improve the accuracy of the Decision Tree (DT) and Support vector machine (SVM) algorithms and compare their efficiency in detecting breast cancer tumors. Materials and Methods: This work depends on the data obtained from the UCI Machine Learning Repository and used to acquire the data sets for the research of Innovative breast cancer prediction using machine learning algorithms. The sample size of breast cancer prediction involves two groups: Decision tree (N=20) and Support vector machine (N=20) according to clincalc.com by keeping 0.05 alpha error-threshold, 95% confidence interval, enrollment ratio as 0:1, and 80% G power. The accuracy, sensitivity, and precision are calculated using MATLAB software. Result: The accuracy of the DT is 83.83% (p<0.001) while the accuracy rate of the Support vector machine is 97.50%. The Decision tree outcomes have a sensitivity and precision rate of 87.46% (p<0.001) and 84.13% (p<0.001) respectively, whereas the Support vector machine sensitivity and the precision rate are 95.83% and 100% respectively. Conclusion: Support vector machine algorithm performed significantly better with improved accuracy of 97.50% for breast cancer prediction.
AbstractList Aim: The major goal of this research is to improve the accuracy of the Decision Tree (DT) and Support vector machine (SVM) algorithms and compare their efficiency in detecting breast cancer tumors. Materials and Methods: This work depends on the data obtained from the UCI Machine Learning Repository and used to acquire the data sets for the research of Innovative breast cancer prediction using machine learning algorithms. The sample size of breast cancer prediction involves two groups: Decision tree (N=20) and Support vector machine (N=20) according to clincalc.com by keeping 0.05 alpha error-threshold, 95% confidence interval, enrollment ratio as 0:1, and 80% G power. The accuracy, sensitivity, and precision are calculated using MATLAB software. Result: The accuracy of the DT is 83.83% (p<0.001) while the accuracy rate of the Support vector machine is 97.50%. The Decision tree outcomes have a sensitivity and precision rate of 87.46% (p<0.001) and 84.13% (p<0.001) respectively, whereas the Support vector machine sensitivity and the precision rate are 95.83% and 100% respectively. Conclusion: Support vector machine algorithm performed significantly better with improved accuracy of 97.50% for breast cancer prediction.
Author Srinivasulureddy, Ch
Kumar, Neelam Sanjeev
Binu, V S
Author_xml – sequence: 1
  givenname: Ch
  surname: Srinivasulureddy
  fullname: Srinivasulureddy, Ch
– sequence: 2
  givenname: Neelam
  surname: Kumar
  middlename: Sanjeev
  fullname: Kumar, Neelam Sanjeev
– sequence: 3
  givenname: V
  surname: Binu
  middlename: S
  fullname: Binu, V S
BookMark eNpNkM9qGzEQh0VJoWmadxDkbFcaeVda6MV1_8SQ0kKcXsWsVo4VdqWtpHXYh-o7Ro178GVmYL7fMHzvyYUP3hJyw9mSKy7kR4Oxc2GwOc5LYABLqJZKgpLyDbkEwVYLCQIuzuZ35DqlJ8YYB94wUV2Sv2uP_Zxcoug7ugnDiNGl4Ok-RLr1Phwxu6Olv6LtnMmubHbWHLz7M1ka9vRztJgy3aA3NtLdNJTYlJx_pF-scemVj9bSdf8YosuHgYZjAe-ncQwx09_W5JL4gebg_Dn1XCrdDmMseEfXxkwRzfyBvN1jn-z1_35FHr593W1uF3c_v28367uFAa7yAoWt6pXggu8BmZS1AC4rxFapRnS2Zq1dQaeUWZm6bgWAReQN8K5VjTGsFVfk0-nu5Eecn7Hv9RjdgHHWnOlX-_rMvv5nX0OlT_ZL_OYUL-8XTynrpzDFIjppkFIyVTW8Ei-DcY5t
ContentType Journal Article
Copyright 2022. This work is published under http://www.cardiometry.net/issues (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is published under http://www.cardiometry.net/issues (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 3V.
7RV
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
KB0
M0S
NAPCQ
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOI 10.18137/cardiometry.2022.25.872877
DatabaseName ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Health & Medical Collection
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2304-7232
EndPage 877
ExternalDocumentID 10.18137/cardiometry.2022.25.872877
GroupedDBID 3V.
5VS
7RV
7X7
7XB
8FI
8FJ
8FK
ABUWG
ADBBV
AEGXH
AFKRA
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BCNDV
BENPR
BKEYQ
BPHCQ
BVXVI
CCPQU
DWQXO
FYUFA
GX1
HMCUK
K9.
KQ8
M~E
NAPCQ
OK1
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
PROAC
RNS
UKHRP
VCL
VIT
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c218t-a3e5643131f2a077632175aab8893de60be42d88c4c66b322eaa1921db89cc0b3
IEDL.DBID BENPR
ISSN 2304-7232
IngestDate Tue Aug 19 23:20:22 EDT 2025
Tue Oct 07 06:44:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 25
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c218t-a3e5643131f2a077632175aab8893de60be42d88c4c66b322eaa1921db89cc0b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2777085915?pq-origsite=%requestingapplication%&accountid=15518
PQID 2777085915
PQPubID 2045095
PageCount 6
ParticipantIDs unpaywall_primary_10_18137_cardiometry_2022_25_872877
proquest_journals_2777085915
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
PublicationTitle Cardiometry
PublicationYear 2022
Publisher Russian New University
Publisher_xml – name: Russian New University
SSID ssj0001219035
Score 2.2048795
Snippet Aim: The major goal of this research is to improve the accuracy of the Decision Tree (DT) and Support vector machine (SVM) algorithms and compare their...
SourceID unpaywall
proquest
SourceType Open Access Repository
Aggregation Database
StartPage 872
SubjectTerms Accuracy
Algorithms
Breast cancer
Decision trees
Machine learning
Support vector machines
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LjtMwFLWGjjSw4Y0YGNCVYOs0cew8lqUwGpA6GokWDavIdpwi0aRVmwwafoFfgX_k3jxGhSUrtlGsXMc39rnO8TmMvfZDqWykFVeBTrg0JuSJtDkXscjjApd0255Km51HZwv54VJdHrAfw1mYXeiRqTpZ4LQHGkrSP_dxLI3SVgYcy5mcy9D4XIfCce2TwJ3SJGM2dtVy3Ea7G1droXjurCNXDWwtxJh-8nK9Wq6x6P5S8l2zIYDLr9rNcV621EXnbfLiFjuMFAL7ETtcnF9MPrf2dL7kMYKPI_aKppkkCOOxbQmjpaux7_QETygvibECif9Aq7ebaqOvv-nVam_hOr3Hfg5d7vgqX72mxj5__0sN8j95J_fZ3R4gw6TL6AfswFUP2dGspwA8Yr8GGRXQVQ7TGxtFQPQN73uP1ysHF1tqQmkH80GnFtYFvCEWfg1TyvYtzJsSmxH5fwlve7shmGO8MBniBSK5wscuaPjUBg2zLui9u2hDG7otGpfDxNpmq-31Y7Y4fTefnvHec4JbBDs1vkGnEKQFYVAITVJHIdZsSmuTILDLXeQbJ0WeJFbaKDI4GzqtSVIuN0lqrW_CJ2xUrSv3lEFaGOusTrRMI0nqqzg6KQKuNDGICFR0zE6GLMn6iWOXiTiOSXMuUMdM3WROtumkRzIq2Sj5sr3ky2goM6GyLvme_WO75-wOXeioOidsVG8b9wIBV21e9h_Cb8vSLJY
  priority: 102
  providerName: Unpaywall
Title Analysis and Comparison for Innovative Prediction Technique of Breast Cancer Tumor using Decision Tree Algorithm over Support Vector Machine Algorithm with Improved Accuracy
URI https://www.proquest.com/docview/2777085915
https://s3.timeweb.com/cm94660-20b5ac41-549d-43b0-a32e-a074405a8023/eng/issues/no25-december-2022/tree-algorithm-support-vector-machine.pdf
UnpaywallVersion publishedVersion
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2304-7232
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001219035
  issn: 2304-7232
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2304-7232
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001219035
  issn: 2304-7232
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2304-7232
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001219035
  issn: 2304-7232
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 2304-7232
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001219035
  issn: 2304-7232
  databaseCode: 7X7
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2304-7232
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001219035
  issn: 2304-7232
  databaseCode: BENPR
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NbxMxEB21qVS4ID5FS6lGguu2WXu99h4QSkOrgpQoQgkKp5W_0h6STVg2Rf1R_Ec8-1HChdNe7JXWz-t5Ho_fA3jf54mwqRaRiLWKEmN4pBLrIiaZk4sQ0m19K200Tq9nyZe5mO_BuLsLQ2WV3ZpYL9RubSlHfs6klCTGFYuPmx8RuUbR6WpnoaFbawX3oZYY24cDRspYPTi4uBxPvu5kXUIA5OIQ3tFqoWIuz21d97nyVfgEFiLaGRNnSoaNhPyHdD7aFht9_0svlzvx5-opPGmJIw4apJ_Bni-ew-GoPRp_Ab87eRHUhcPhg70gBlaKn1vv0zuPk5K6EBw47fRbcb3AC6pOr3BIs6DE6XYVulFR_A1-am14cFp6j4PlTRiW6naFVPyJ5AoaGDx-q7P_OKprM3dbUaIXm9SFdziwdltqe_8SZleX0-F11HoxRDaQgCrS3ItAXmIeL5gmCSAe9jJCa6MC4XE-7RufMKeUTWyamrBKeK1Jas0ZlVnbN_wV9Ip14V8DZgtjvdVKJ1makCqp5iwLRCRTJkRKkR7BSTfseftD_cz_wn8E4gGKfNNIcuS0lSE08x00c0IzZyJv0Dz-_2vfwGNq31SqnECvKrf-beAblTmFfTmXp-1UCs_ZeDL4_gchONvP
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxELVKK7VcEJ-iUGAk4Lht1h-73kOF0rRVQpuoQinqbbG9Tjkkm7DdUOVH8Rf4bczsRwkXbr2vffCb9Zuxx-8x9qEjpHKRUYEKjQ6ktSLQ0mUBj3kWT5DSXfUqbTiK-pfy85W62mC_27cw1FbZ7onVRp3NHZ2RH_A4jkmMK1SfFj8Cco2i29XWQsM01grZYSUx1jzsOPOrWyzhbg4Hx4j3R85PT8a9ftC4DAQO6a0MjPAKaTkU4YQbErcRmKUrY6xGKs981LFe8kxrJ10UWYx_bwyJiGVWJ851rMB5H7AtKWSCxd_W0cno4svaKQ8SrlDb7D3tTjoU8YGr-kxnvsQl48ig-1zt6xgLl_ifJHdnmS_M6tZMp2t8d_qYPWoSVejWkfWEbfj8KdseNlfxz9ivVs4ETJ5B787OEDALhkHjtfrTw0VBQwh-GLd6sTCfwBF1w5fQo6grYLyc4TBqwr-G48b2B8aF99CdXiMM5fcZULMpkAspVgzwtbptgGHVC7r-FR0sQ31U4jPoOrcsjFs9Z5f3gsoLtpnPc_-SQTKxzjujjUwiSSqoRvAEE59EW2RmFe2yvXbZ0-YHvkn_htsuU3dQpItaAiSl0onQTNfQTAnNlKu0RvPV_6d9x3b64-F5ej4Ynb1mD2ls3SWzxzbLYunfYK5T2rdNQAH7dt8x_Ac7fRV7
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LjtMwFLWGjjSw4Y0YGNCVYOs0cew8lqUwGpA6GokWDavIdpwi0aRVmwwafoFfgX_k3jxGhSUrtlGsXMc39rnO8TmMvfZDqWykFVeBTrg0JuSJtDkXscjjApd0255Km51HZwv54VJdHrAfw1mYXeiRqTpZ4LQHGkrSP_dxLI3SVgYcy5mcy9D4XIfCce2TwJ3SJGM2dtVy3Ea7G1droXjurCNXDWwtxJh-8nK9Wq6x6P5S8l2zIYDLr9rNcV621EXnbfLiFjuMFAL7ETtcnF9MPrf2dL7kMYKPI_aKppkkCOOxbQmjpaux7_QETygvibECif9Aq7ebaqOvv-nVam_hOr3Hfg5d7vgqX72mxj5__0sN8j95J_fZ3R4gw6TL6AfswFUP2dGspwA8Yr8GGRXQVQ7TGxtFQPQN73uP1ysHF1tqQmkH80GnFtYFvCEWfg1TyvYtzJsSmxH5fwlve7shmGO8MBniBSK5wscuaPjUBg2zLui9u2hDG7otGpfDxNpmq-31Y7Y4fTefnvHec4JbBDs1vkGnEKQFYVAITVJHIdZsSmuTILDLXeQbJ0WeJFbaKDI4GzqtSVIuN0lqrW_CJ2xUrSv3lEFaGOusTrRMI0nqqzg6KQKuNDGICFR0zE6GLMn6iWOXiTiOSXMuUMdM3WROtumkRzIq2Sj5sr3ky2goM6GyLvme_WO75-wOXeioOidsVG8b9wIBV21e9h_Cb8vSLJY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+and+Comparison+for+Innovative+Prediction+Technique+of+Breast+Cancer+Tumor+using+Decision+Tree+Algorithm+over+Support+Vector+Machine+Algorithm+with+Improved+Accuracy&rft.jtitle=Cardiometry&rft.au=Srinivasulureddy%2C+Ch&rft.au=Kumar%2C+Neelam+Sanjeev&rft.au=Binu%2C+V+S&rft.date=2022-12-01&rft.pub=Russian+New+University&rft.eissn=2304-7232&rft.issue=25&rft.spage=872&rft.epage=877&rft_id=info:doi/10.18137%2Fcardiometry.2022.25.872877
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2304-7232&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2304-7232&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2304-7232&client=summon