Adversarial AutoEncoder-Based Large-Scale Dynamic Multiobjective Evolutionary Algorithm
Dynamic multiobjective optimization problems (DMOPs) are often scaled to large-scale scenarios in real-world applications, which inevitably must face the triple challenges of massive search space, dynamic environmental changes and multiobjective conflicts simultaneously. This article proposes an adv...
Saved in:
| Published in | IEEE transactions on evolutionary computation Vol. 29; no. 4; pp. 1112 - 1126 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
IEEE
01.08.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1089-778X 1941-0026 |
| DOI | 10.1109/TEVC.2024.3412049 |
Cover
| Abstract | Dynamic multiobjective optimization problems (DMOPs) are often scaled to large-scale scenarios in real-world applications, which inevitably must face the triple challenges of massive search space, dynamic environmental changes and multiobjective conflicts simultaneously. This article proposes an adversarial autoencoder-based large-scale dynamic multiobjective evolutionary framework. It integrates deep generative modeling techniques and large-scale multiobjective evolutionary algorithms (LMOEAs) to solve large-scale DMOPs effectively and efficiently. Specifically, an adversarial autoencoder-based deep generative network training architecture is proposed for high-dimensional decision variables in large-scale DMOPs. It can transfer a generative model trained on Pareto-optimal solutions in the current environment to a new environment using only the auxiliary information exhibited through the movement trajectories of historical Pareto-optimal solutions, resulting in the generation of quality initial populations for the new environment. Meanwhile, any proven LMOEA can be integrated into the proposed framework without extensive modifications. Experimental results on a typical dynamic multiobjective test suite with problem settings from 30 to 1000 dimensions demonstrate that the optimization performance of the proposed framework outperforms existing state-of-the-art designs. Especially in large-scale scenarios, the proposed framework is considered superior in terms of solution quality and computational efficiency. |
|---|---|
| AbstractList | Dynamic multiobjective optimization problems (DMOPs) are often scaled to large-scale scenarios in real-world applications, which inevitably must face the triple challenges of massive search space, dynamic environmental changes and multiobjective conflicts simultaneously. This article proposes an adversarial autoencoder-based large-scale dynamic multiobjective evolutionary framework. It integrates deep generative modeling techniques and large-scale multiobjective evolutionary algorithms (LMOEAs) to solve large-scale DMOPs effectively and efficiently. Specifically, an adversarial autoencoder-based deep generative network training architecture is proposed for high-dimensional decision variables in large-scale DMOPs. It can transfer a generative model trained on Pareto-optimal solutions in the current environment to a new environment using only the auxiliary information exhibited through the movement trajectories of historical Pareto-optimal solutions, resulting in the generation of quality initial populations for the new environment. Meanwhile, any proven LMOEA can be integrated into the proposed framework without extensive modifications. Experimental results on a typical dynamic multiobjective test suite with problem settings from 30 to 1000 dimensions demonstrate that the optimization performance of the proposed framework outperforms existing state-of-the-art designs. Especially in large-scale scenarios, the proposed framework is considered superior in terms of solution quality and computational efficiency. |
| Author | He, Zhenan Yen, Gary G. Li, Chenyang |
| Author_xml | – sequence: 1 givenname: Chenyang orcidid: 0000-0002-6584-1180 surname: Li fullname: Li, Chenyang email: lcy.yang@foxmail.com organization: College of Computer Science, Sichuan University, Chengdu, China – sequence: 2 givenname: Gary G. orcidid: 0000-0001-8851-5348 surname: Yen fullname: Yen, Gary G. email: gyen@okstate.edu organization: School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, OK, USA – sequence: 3 givenname: Zhenan orcidid: 0000-0001-6519-7332 surname: He fullname: He, Zhenan email: zhenan@scu.edu.cn organization: College of Computer Science, Sichuan University, Chengdu, China |
| BookMark | eNpNkMtOwzAQRS0EEm3hA5BY5AdSZvxo7GUo4SEVsaA8dpFrT0uqNEF2Wql_T6p2weqOruaMRmfIzpu2IcZuEMaIYO7mxed0zIHLsZDIQZozNkAjMQXgk_N-Bm3SLNPfl2wY4xoApUIzYF-531GINlS2TvJt1xaNaz2F9N5G8snMhhWl787WlDzsG7upXPK6rbuqXazJddWOkmLX1tu-aGzYJ3m9akPV_Wyu2MXS1pGuTzliH4_FfPqczt6eXqb5LHUcdZcaLZ0BhahAWWNkRogeJoacNlqhEiCMETJbZGidA-89d4qkQC0B_NKLEcPjXRfaGAMty99QbfpXSoTyYKY8mCkPZsqTmZ65PTIVEf3bV4prDuIPw5lhoQ |
| CODEN | ITEVF5 |
| Cites_doi | 10.1109/TEVC.2020.2985323 10.1109/TCYB.2020.3017017 10.1145/3524495 10.1109/TEVC.2017.2771451 10.1109/TCYB.2020.3017049 10.1016/j.swevo.2012.05.001 10.1109/TEVC.2020.3004027 10.1109/TEVC.2019.2902626 10.1109/TEVC.2022.3193287 10.1016/j.ins.2020.11.025 10.1109/TEVC.2019.2925722 10.1109/ICETCI55101.2022.9832406 10.1109/TEVC.2021.3115036 10.1007/978-3-540-70928-2_60 10.1145/3422622 10.1145/3528223.3530164 10.1016/j.ejor.2022.07.015 10.1109/TCYB.2020.2989465 10.1016/j.engappai.2010.09.007 10.1515/9781400874651 10.1109/TCYB.2013.2245892 10.1016/j.swevo.2020.100695 10.1007/s10846-019-01112-z 10.1109/TCYB.2020.2985081 10.1007/s00500-013-1154-z 10.1016/j.asoc.2018.12.031 10.1137/0105003 10.1109/TEVC.2022.3231493 10.1109/TEVC.2023.3234113 10.1109/TEVC.2021.3063606 10.1109/CDC40024.2019.9030009 10.1109/TCYB.2015.2490738 10.1007/s00500-016-2207-x 10.1109/TEVC.2022.3144180 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TEVC.2024.3412049 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1941-0026 |
| EndPage | 1126 |
| ExternalDocumentID | 10_1109_TEVC_2024_3412049 10552820 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: CNPC Innovation Found grantid: 2021DQ02-0903 funderid: 10.13039/501100001809 – fundername: National Key Research and Development Program of China grantid: 2023YFF1204901 – fundername: Key Research and Development Program of Sichuan Province grantid: 2023YFG0116 funderid: 10.13039/501100018525 – fundername: National Natural Science Foundation of China grantid: NSFC-62076172 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS EJD HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 AAYXX CITATION |
| ID | FETCH-LOGICAL-c218t-984c90511505a9947e11d069ec89851530399347b71acc0ddd2c5e4318400dfd3 |
| IEDL.DBID | RIE |
| ISSN | 1089-778X |
| IngestDate | Wed Oct 01 05:39:07 EDT 2025 Wed Aug 27 01:44:39 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c218t-984c90511505a9947e11d069ec89851530399347b71acc0ddd2c5e4318400dfd3 |
| ORCID | 0000-0001-8851-5348 0000-0001-6519-7332 0000-0002-6584-1180 |
| PageCount | 15 |
| ParticipantIDs | crossref_primary_10_1109_TEVC_2024_3412049 ieee_primary_10552820 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-08-01 |
| PublicationDateYYYYMMDD | 2025-08-01 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on evolutionary computation |
| PublicationTitleAbbrev | TEVC |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref12 ref34 ref15 Gulrajani (ref20) ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref19 ref18 Jiang (ref22) 2018 ref24 ref23 ref26 ref25 Kingma (ref38) 2017 ref28 Makhzani (ref21) 2016 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Ching (ref35) 2006 |
| References_xml | – year: 2017 ident: ref38 article-title: Adam: A method for stochastic optimization publication-title: arXiv:1412.6980 – ident: ref10 doi: 10.1109/TEVC.2020.2985323 – ident: ref26 doi: 10.1109/TCYB.2020.3017017 – ident: ref1 doi: 10.1145/3524495 – ident: ref28 doi: 10.1109/TEVC.2017.2771451 – volume-title: Markov Chains: Models, Algorithms and Applications year: 2006 ident: ref35 – ident: ref16 doi: 10.1109/TCYB.2020.3017049 – ident: ref2 doi: 10.1016/j.swevo.2012.05.001 – ident: ref15 doi: 10.1109/TEVC.2020.3004027 – ident: ref8 doi: 10.1109/TEVC.2019.2902626 – ident: ref9 doi: 10.1109/TEVC.2022.3193287 – ident: ref7 doi: 10.1016/j.ins.2020.11.025 – ident: ref12 doi: 10.1109/TEVC.2019.2925722 – ident: ref19 doi: 10.1109/ICETCI55101.2022.9832406 – year: 2016 ident: ref21 article-title: Adversarial autoencoders publication-title: arXiv:1511.05644 – ident: ref31 doi: 10.1109/TEVC.2021.3115036 – ident: ref11 doi: 10.1007/978-3-540-70928-2_60 – ident: ref18 doi: 10.1145/3422622 – ident: ref32 doi: 10.1145/3528223.3530164 – ident: ref6 doi: 10.1016/j.ejor.2022.07.015 – ident: ref29 doi: 10.1109/TCYB.2020.2989465 – ident: ref33 doi: 10.1016/j.engappai.2010.09.007 – ident: ref37 doi: 10.1515/9781400874651 – ident: ref23 doi: 10.1109/TCYB.2013.2245892 – ident: ref13 doi: 10.1016/j.swevo.2020.100695 – volume-title: Benchmark Functions for the cec’2018 Competition on Dynamic Multi-Objective Optimization year: 2018 ident: ref22 – ident: ref4 doi: 10.1007/s10846-019-01112-z – ident: ref14 doi: 10.1109/TCYB.2020.2985081 – ident: ref36 doi: 10.1007/s00500-013-1154-z – ident: ref25 doi: 10.1016/j.asoc.2018.12.031 – ident: ref34 doi: 10.1137/0105003 – ident: ref17 doi: 10.1109/TEVC.2022.3231493 – ident: ref27 doi: 10.1109/TEVC.2023.3234113 – ident: ref39 doi: 10.1109/TEVC.2021.3063606 – ident: ref5 doi: 10.1109/CDC40024.2019.9030009 – ident: ref24 doi: 10.1109/TCYB.2015.2490738 – ident: ref3 doi: 10.1007/s00500-016-2207-x – start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref20 article-title: Improved training of Wasserstein GANs – ident: ref30 doi: 10.1109/TEVC.2022.3144180 |
| SSID | ssj0014519 |
| Score | 2.4795601 |
| Snippet | Dynamic multiobjective optimization problems (DMOPs) are often scaled to large-scale scenarios in real-world applications, which inevitably must face the... |
| SourceID | crossref ieee |
| SourceType | Index Database Publisher |
| StartPage | 1112 |
| SubjectTerms | Adversarial autoencoder (AAE) Computational modeling dynamic multiobjective optimization problems (DMOPs) Evolutionary computation Heuristic algorithms large-scale multiobjective optimization problems multiobjective evolutionary algorithms (MOEAs) Optimization Predictive models Sociology Training |
| Title | Adversarial AutoEncoder-Based Large-Scale Dynamic Multiobjective Evolutionary Algorithm |
| URI | https://ieeexplore.ieee.org/document/10552820 |
| Volume | 29 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014519 issn: 1089-778X databaseCode: RIE dateStart: 19970101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagEwwUShHlJQ9MSE6T1nHisZRUFYIutNAtih_hnaCSIsGv5-ykKEJCYouiDJbv7Pu-3OND6FQEijHZ7xNFtU-odCVJfCmIn4oUGAjjwsp0Xk_YeEYv5_68ala3vTBaa1t8ph3zaHP5KpdL86usa8QcgSIAQ18PQlY2a_2kDMyclLKangNkDOdVCtNzeXca3Q6BCvaoA3d2zzVzM2tBqKaqYoPKqIkmq-WUtSTPzrIQjvz6Nanx3-vdRlsVvMSD0h920JrOWqi5km7A1Uluoc3aHMJddGdlmd8T44x4sCzyKDOt7gtyDjFO4StTLU5uwJoaX5QK9tg27ubiqbwvcfRRuXCy-MSDl_t88Vg8vLbRbBRNh2NSKS4QCaG-IDyk0gzsApToJ5zTQHuechnXMuQAzXyId4BnaCACL5HSVUr1pK8BgwBNdFWq-nuokeWZ3kdYCK1oCOwuSSkVqU4oE4L2dRKGvmZMddDZygTxWzlYI7aExOWxsVds7BVX9uqgttnd2oflxh788f4QbfSMTq8t1DtCjWKx1McAHgpxYp3mG1sJwVI |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4YPKgHUcSIzz14MlkoZbftHhEhqMBFUG5N91Hf1GBror_e2W0xxMTEW9P0sNmZ3fm-zuND6FT4yvNkq0UU1YxQ6UgSMSkIi0UMDMTjwsp0Dkdef0KvpmxaNKvbXhittS0-03XzaHP5KpGZ-VXWMGKOQBGAoa8ySinL27V-kgZmUkpeT88BNAbTIonZdHhj3L3tABl0aR1ubdcxkzOXwtCSrooNK70yGi0WlFeTPNezVNTl169Zjf9e8RbaLAAmbucesY1W9KyCygvxBlyc5QraWJpEuIPurDDze2TcEbezNOnOTLP7nJxDlFN4YOrFyQ3YU-OLXMMe29bdRDzlNybufhROHM0_cfvlPpk_pg-vVTTpdcedPik0F4iEYJ8SHlBpRnYBTmQR59TXzaZyPK5lwAGcMYh4gGioL_xmJKWjlHIl04BCgCg6KlatXVSaJTO9h7AQWtEA-F0UUypiHVFPCNrSURAw7Xmqhs4WJgjf8tEaoaUkDg-NvUJjr7CwVw1Vze4ufZhv7P4f70_QWn88HISDy9H1AVp3jWqvLds7RKV0nukjgBKpOLYO9A2obcSf |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adversarial+AutoEncoder-Based+Large-Scale+Dynamic+Multiobjective+Evolutionary+Algorithm&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Li%2C+Chenyang&rft.au=Yen%2C+Gary+G.&rft.au=He%2C+Zhenan&rft.date=2025-08-01&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=29&rft.issue=4&rft.spage=1112&rft.epage=1126&rft_id=info:doi/10.1109%2FTEVC.2024.3412049&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2024_3412049 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |