Adversarial AutoEncoder-Based Large-Scale Dynamic Multiobjective Evolutionary Algorithm

Dynamic multiobjective optimization problems (DMOPs) are often scaled to large-scale scenarios in real-world applications, which inevitably must face the triple challenges of massive search space, dynamic environmental changes and multiobjective conflicts simultaneously. This article proposes an adv...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on evolutionary computation Vol. 29; no. 4; pp. 1112 - 1126
Main Authors Li, Chenyang, Yen, Gary G., He, Zhenan
Format Journal Article
LanguageEnglish
Published IEEE 01.08.2025
Subjects
Online AccessGet full text
ISSN1089-778X
1941-0026
DOI10.1109/TEVC.2024.3412049

Cover

Abstract Dynamic multiobjective optimization problems (DMOPs) are often scaled to large-scale scenarios in real-world applications, which inevitably must face the triple challenges of massive search space, dynamic environmental changes and multiobjective conflicts simultaneously. This article proposes an adversarial autoencoder-based large-scale dynamic multiobjective evolutionary framework. It integrates deep generative modeling techniques and large-scale multiobjective evolutionary algorithms (LMOEAs) to solve large-scale DMOPs effectively and efficiently. Specifically, an adversarial autoencoder-based deep generative network training architecture is proposed for high-dimensional decision variables in large-scale DMOPs. It can transfer a generative model trained on Pareto-optimal solutions in the current environment to a new environment using only the auxiliary information exhibited through the movement trajectories of historical Pareto-optimal solutions, resulting in the generation of quality initial populations for the new environment. Meanwhile, any proven LMOEA can be integrated into the proposed framework without extensive modifications. Experimental results on a typical dynamic multiobjective test suite with problem settings from 30 to 1000 dimensions demonstrate that the optimization performance of the proposed framework outperforms existing state-of-the-art designs. Especially in large-scale scenarios, the proposed framework is considered superior in terms of solution quality and computational efficiency.
AbstractList Dynamic multiobjective optimization problems (DMOPs) are often scaled to large-scale scenarios in real-world applications, which inevitably must face the triple challenges of massive search space, dynamic environmental changes and multiobjective conflicts simultaneously. This article proposes an adversarial autoencoder-based large-scale dynamic multiobjective evolutionary framework. It integrates deep generative modeling techniques and large-scale multiobjective evolutionary algorithms (LMOEAs) to solve large-scale DMOPs effectively and efficiently. Specifically, an adversarial autoencoder-based deep generative network training architecture is proposed for high-dimensional decision variables in large-scale DMOPs. It can transfer a generative model trained on Pareto-optimal solutions in the current environment to a new environment using only the auxiliary information exhibited through the movement trajectories of historical Pareto-optimal solutions, resulting in the generation of quality initial populations for the new environment. Meanwhile, any proven LMOEA can be integrated into the proposed framework without extensive modifications. Experimental results on a typical dynamic multiobjective test suite with problem settings from 30 to 1000 dimensions demonstrate that the optimization performance of the proposed framework outperforms existing state-of-the-art designs. Especially in large-scale scenarios, the proposed framework is considered superior in terms of solution quality and computational efficiency.
Author He, Zhenan
Yen, Gary G.
Li, Chenyang
Author_xml – sequence: 1
  givenname: Chenyang
  orcidid: 0000-0002-6584-1180
  surname: Li
  fullname: Li, Chenyang
  email: lcy.yang@foxmail.com
  organization: College of Computer Science, Sichuan University, Chengdu, China
– sequence: 2
  givenname: Gary G.
  orcidid: 0000-0001-8851-5348
  surname: Yen
  fullname: Yen, Gary G.
  email: gyen@okstate.edu
  organization: School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, OK, USA
– sequence: 3
  givenname: Zhenan
  orcidid: 0000-0001-6519-7332
  surname: He
  fullname: He, Zhenan
  email: zhenan@scu.edu.cn
  organization: College of Computer Science, Sichuan University, Chengdu, China
BookMark eNpNkMtOwzAQRS0EEm3hA5BY5AdSZvxo7GUo4SEVsaA8dpFrT0uqNEF2Wql_T6p2weqOruaMRmfIzpu2IcZuEMaIYO7mxed0zIHLsZDIQZozNkAjMQXgk_N-Bm3SLNPfl2wY4xoApUIzYF-531GINlS2TvJt1xaNaz2F9N5G8snMhhWl787WlDzsG7upXPK6rbuqXazJddWOkmLX1tu-aGzYJ3m9akPV_Wyu2MXS1pGuTzliH4_FfPqczt6eXqb5LHUcdZcaLZ0BhahAWWNkRogeJoacNlqhEiCMETJbZGidA-89d4qkQC0B_NKLEcPjXRfaGAMty99QbfpXSoTyYKY8mCkPZsqTmZ65PTIVEf3bV4prDuIPw5lhoQ
CODEN ITEVF5
Cites_doi 10.1109/TEVC.2020.2985323
10.1109/TCYB.2020.3017017
10.1145/3524495
10.1109/TEVC.2017.2771451
10.1109/TCYB.2020.3017049
10.1016/j.swevo.2012.05.001
10.1109/TEVC.2020.3004027
10.1109/TEVC.2019.2902626
10.1109/TEVC.2022.3193287
10.1016/j.ins.2020.11.025
10.1109/TEVC.2019.2925722
10.1109/ICETCI55101.2022.9832406
10.1109/TEVC.2021.3115036
10.1007/978-3-540-70928-2_60
10.1145/3422622
10.1145/3528223.3530164
10.1016/j.ejor.2022.07.015
10.1109/TCYB.2020.2989465
10.1016/j.engappai.2010.09.007
10.1515/9781400874651
10.1109/TCYB.2013.2245892
10.1016/j.swevo.2020.100695
10.1007/s10846-019-01112-z
10.1109/TCYB.2020.2985081
10.1007/s00500-013-1154-z
10.1016/j.asoc.2018.12.031
10.1137/0105003
10.1109/TEVC.2022.3231493
10.1109/TEVC.2023.3234113
10.1109/TEVC.2021.3063606
10.1109/CDC40024.2019.9030009
10.1109/TCYB.2015.2490738
10.1007/s00500-016-2207-x
10.1109/TEVC.2022.3144180
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TEVC.2024.3412049
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0026
EndPage 1126
ExternalDocumentID 10_1109_TEVC_2024_3412049
10552820
Genre orig-research
GrantInformation_xml – fundername: CNPC Innovation Found
  grantid: 2021DQ02-0903
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2023YFF1204901
– fundername: Key Research and Development Program of Sichuan Province
  grantid: 2023YFG0116
  funderid: 10.13039/501100018525
– fundername: National Natural Science Foundation of China
  grantid: NSFC-62076172
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
ID FETCH-LOGICAL-c218t-984c90511505a9947e11d069ec89851530399347b71acc0ddd2c5e4318400dfd3
IEDL.DBID RIE
ISSN 1089-778X
IngestDate Wed Oct 01 05:39:07 EDT 2025
Wed Aug 27 01:44:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c218t-984c90511505a9947e11d069ec89851530399347b71acc0ddd2c5e4318400dfd3
ORCID 0000-0001-8851-5348
0000-0001-6519-7332
0000-0002-6584-1180
PageCount 15
ParticipantIDs crossref_primary_10_1109_TEVC_2024_3412049
ieee_primary_10552820
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref34
ref15
Gulrajani (ref20)
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref19
ref18
Jiang (ref22) 2018
ref24
ref23
ref26
ref25
Kingma (ref38) 2017
ref28
Makhzani (ref21) 2016
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Ching (ref35) 2006
References_xml – year: 2017
  ident: ref38
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv:1412.6980
– ident: ref10
  doi: 10.1109/TEVC.2020.2985323
– ident: ref26
  doi: 10.1109/TCYB.2020.3017017
– ident: ref1
  doi: 10.1145/3524495
– ident: ref28
  doi: 10.1109/TEVC.2017.2771451
– volume-title: Markov Chains: Models, Algorithms and Applications
  year: 2006
  ident: ref35
– ident: ref16
  doi: 10.1109/TCYB.2020.3017049
– ident: ref2
  doi: 10.1016/j.swevo.2012.05.001
– ident: ref15
  doi: 10.1109/TEVC.2020.3004027
– ident: ref8
  doi: 10.1109/TEVC.2019.2902626
– ident: ref9
  doi: 10.1109/TEVC.2022.3193287
– ident: ref7
  doi: 10.1016/j.ins.2020.11.025
– ident: ref12
  doi: 10.1109/TEVC.2019.2925722
– ident: ref19
  doi: 10.1109/ICETCI55101.2022.9832406
– year: 2016
  ident: ref21
  article-title: Adversarial autoencoders
  publication-title: arXiv:1511.05644
– ident: ref31
  doi: 10.1109/TEVC.2021.3115036
– ident: ref11
  doi: 10.1007/978-3-540-70928-2_60
– ident: ref18
  doi: 10.1145/3422622
– ident: ref32
  doi: 10.1145/3528223.3530164
– ident: ref6
  doi: 10.1016/j.ejor.2022.07.015
– ident: ref29
  doi: 10.1109/TCYB.2020.2989465
– ident: ref33
  doi: 10.1016/j.engappai.2010.09.007
– ident: ref37
  doi: 10.1515/9781400874651
– ident: ref23
  doi: 10.1109/TCYB.2013.2245892
– ident: ref13
  doi: 10.1016/j.swevo.2020.100695
– volume-title: Benchmark Functions for the cec’2018 Competition on Dynamic Multi-Objective Optimization
  year: 2018
  ident: ref22
– ident: ref4
  doi: 10.1007/s10846-019-01112-z
– ident: ref14
  doi: 10.1109/TCYB.2020.2985081
– ident: ref36
  doi: 10.1007/s00500-013-1154-z
– ident: ref25
  doi: 10.1016/j.asoc.2018.12.031
– ident: ref34
  doi: 10.1137/0105003
– ident: ref17
  doi: 10.1109/TEVC.2022.3231493
– ident: ref27
  doi: 10.1109/TEVC.2023.3234113
– ident: ref39
  doi: 10.1109/TEVC.2021.3063606
– ident: ref5
  doi: 10.1109/CDC40024.2019.9030009
– ident: ref24
  doi: 10.1109/TCYB.2015.2490738
– ident: ref3
  doi: 10.1007/s00500-016-2207-x
– start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref20
  article-title: Improved training of Wasserstein GANs
– ident: ref30
  doi: 10.1109/TEVC.2022.3144180
SSID ssj0014519
Score 2.4795601
Snippet Dynamic multiobjective optimization problems (DMOPs) are often scaled to large-scale scenarios in real-world applications, which inevitably must face the...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 1112
SubjectTerms Adversarial autoencoder (AAE)
Computational modeling
dynamic multiobjective optimization problems (DMOPs)
Evolutionary computation
Heuristic algorithms
large-scale multiobjective optimization problems
multiobjective evolutionary algorithms (MOEAs)
Optimization
Predictive models
Sociology
Training
Title Adversarial AutoEncoder-Based Large-Scale Dynamic Multiobjective Evolutionary Algorithm
URI https://ieeexplore.ieee.org/document/10552820
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagEwwUShHlJQ9MSE6T1nHisZRUFYIutNAtih_hnaCSIsGv5-ykKEJCYouiDJbv7Pu-3OND6FQEijHZ7xNFtU-odCVJfCmIn4oUGAjjwsp0Xk_YeEYv5_68ala3vTBaa1t8ph3zaHP5KpdL86usa8QcgSIAQ18PQlY2a_2kDMyclLKangNkDOdVCtNzeXca3Q6BCvaoA3d2zzVzM2tBqKaqYoPKqIkmq-WUtSTPzrIQjvz6Nanx3-vdRlsVvMSD0h920JrOWqi5km7A1Uluoc3aHMJddGdlmd8T44x4sCzyKDOt7gtyDjFO4StTLU5uwJoaX5QK9tg27ubiqbwvcfRRuXCy-MSDl_t88Vg8vLbRbBRNh2NSKS4QCaG-IDyk0gzsApToJ5zTQHuechnXMuQAzXyId4BnaCACL5HSVUr1pK8BgwBNdFWq-nuokeWZ3kdYCK1oCOwuSSkVqU4oE4L2dRKGvmZMddDZygTxWzlYI7aExOWxsVds7BVX9uqgttnd2oflxh788f4QbfSMTq8t1DtCjWKx1McAHgpxYp3mG1sJwVI
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4YPKgHUcSIzz14MlkoZbftHhEhqMBFUG5N91Hf1GBror_e2W0xxMTEW9P0sNmZ3fm-zuND6FT4yvNkq0UU1YxQ6UgSMSkIi0UMDMTjwsp0Dkdef0KvpmxaNKvbXhittS0-03XzaHP5KpGZ-VXWMGKOQBGAoa8ySinL27V-kgZmUkpeT88BNAbTIonZdHhj3L3tABl0aR1ubdcxkzOXwtCSrooNK70yGi0WlFeTPNezVNTl169Zjf9e8RbaLAAmbucesY1W9KyCygvxBlyc5QraWJpEuIPurDDze2TcEbezNOnOTLP7nJxDlFN4YOrFyQ3YU-OLXMMe29bdRDzlNybufhROHM0_cfvlPpk_pg-vVTTpdcedPik0F4iEYJ8SHlBpRnYBTmQR59TXzaZyPK5lwAGcMYh4gGioL_xmJKWjlHIl04BCgCg6KlatXVSaJTO9h7AQWtEA-F0UUypiHVFPCNrSURAw7Xmqhs4WJgjf8tEaoaUkDg-NvUJjr7CwVw1Vze4ufZhv7P4f70_QWn88HISDy9H1AVp3jWqvLds7RKV0nukjgBKpOLYO9A2obcSf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adversarial+AutoEncoder-Based+Large-Scale+Dynamic+Multiobjective+Evolutionary+Algorithm&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Li%2C+Chenyang&rft.au=Yen%2C+Gary+G.&rft.au=He%2C+Zhenan&rft.date=2025-08-01&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=29&rft.issue=4&rft.spage=1112&rft.epage=1126&rft_id=info:doi/10.1109%2FTEVC.2024.3412049&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2024_3412049
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon