Minimize pressure drop and maximize heat transfer coefficient by the new proposed multi-objective optimization/statistical model composed of “ANN + Genetic Algorithm” based on empirical data of CuO/paraffin nanofluid in a pipe
A new multi-objective optimization model composed of the artificial neural network (ANN) and the genetic algorithm (GA) methods based on the empirical thermo-physical characteristics of CuO/liquid paraffin nanofluid flow in a pipe is presented for the first time. It means a new optimization /statist...
Saved in:
| Published in | Physica A Vol. 527; p. 121056 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.08.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0378-4371 1873-2119 |
| DOI | 10.1016/j.physa.2019.121056 |
Cover
| Abstract | A new multi-objective optimization model composed of the artificial neural network (ANN) and the genetic algorithm (GA) methods based on the empirical thermo-physical characteristics of CuO/liquid paraffin nanofluid flow in a pipe is presented for the first time. It means a new optimization /statistical approach is achieved based on ANN together with GA; so that at first ANN is employed to predict the nanofluid thermo-physical properties and then the heat transfer coefficient and the pressure drop ratios of the nanofluid to the basefluid, are optimized as well as to minimize the pressure drop ratio and maximize the heat transfer coefficient ratio by using the multi-objective optimization approach of GA. The results of the multi-objective optimization via the GA show that the Pareto optimal front quantifies the trade-offs in satisfying the two fitness function of heat transfer coefficient and the pressure drop ratios.
•Minimize pressure drop and maximize heat transfer coefficient.•New proposed multi-objective optimization/statistical model.•ANN plus Genetic Algorithm based on empirical data. |
|---|---|
| AbstractList | A new multi-objective optimization model composed of the artificial neural network (ANN) and the genetic algorithm (GA) methods based on the empirical thermo-physical characteristics of CuO/liquid paraffin nanofluid flow in a pipe is presented for the first time. It means a new optimization /statistical approach is achieved based on ANN together with GA; so that at first ANN is employed to predict the nanofluid thermo-physical properties and then the heat transfer coefficient and the pressure drop ratios of the nanofluid to the basefluid, are optimized as well as to minimize the pressure drop ratio and maximize the heat transfer coefficient ratio by using the multi-objective optimization approach of GA. The results of the multi-objective optimization via the GA show that the Pareto optimal front quantifies the trade-offs in satisfying the two fitness function of heat transfer coefficient and the pressure drop ratios.
•Minimize pressure drop and maximize heat transfer coefficient.•New proposed multi-objective optimization/statistical model.•ANN plus Genetic Algorithm based on empirical data. |
| ArticleNumber | 121056 |
| Author | Bagherzadeh, Seyed Amin Karimipour, Arash Bahrami, Mehrdad Nikkhah, Vahid Sulgani, Mohsen Tahmasebi Jiang, Yu |
| Author_xml | – sequence: 1 givenname: Seyed Amin surname: Bagherzadeh fullname: Bagherzadeh, Seyed Amin organization: Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran – sequence: 2 givenname: Mohsen Tahmasebi surname: Sulgani fullname: Sulgani, Mohsen Tahmasebi organization: Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran – sequence: 3 givenname: Vahid surname: Nikkhah fullname: Nikkhah, Vahid organization: School of chemical, gas and oil Engineering, Semnan University, Semnan, Iran – sequence: 4 givenname: Mehrdad surname: Bahrami fullname: Bahrami, Mehrdad organization: Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran – sequence: 5 givenname: Arash surname: Karimipour fullname: Karimipour, Arash organization: Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran – sequence: 6 givenname: Yu surname: Jiang fullname: Jiang, Yu email: jiangyu@cumt.edu.cn organization: School of Mechatronics Engineering, China University of Mining and Technology, Xuzhou 211006, China |
| BookMark | eNqFkc9u1DAQhy1UJLaFJ-DiO8quHeePc-CwWkFBKu0FztHEGbNeJXZkewvbUx8EXq4HngNnw4kDnEbWzPfTeL5LcmGdRUJec7bmjFebw3ranwKsc8abNc85K6tnZMVlLbKc8-aCrJioZVaImr8glyEcGGO8FvmK_PpkrBnNA9LJYwhHj7T3bqJgezrC96W1R4g0erBBo6fKodZGGbSRdica90gtfku8m1zAhB2HaDLXHVBFc4_UTXGOgWic3YSYaohGwUBH1-OQ4saFc5o-Pf7Y3t7SN_QaLaYhuh2-Om_ifnx6_Ek7OI9ZiuNk_DmihwgzuDvebSbwkBaz1IJ1ejianqYH0MlM-JI81zAEfPWnXpEv79993n3Ibu6uP-62N5nKuYxZJQvRFZJ3UmusmMorURYsF6rqAHoJZd_nSnLdNFAKqeoairzRRSdVibIpmLgiYslV3oXgUbeTNyP4U8tZO6tqD-1ZVTurahdViWr-opSJ53ulo5vhP-zbhcX0rXuDvg2zGoW98UlA2zvzT_43FO27BQ |
| CitedBy_id | crossref_primary_10_1016_j_asoc_2021_107328 crossref_primary_10_1016_j_physa_2019_123950 crossref_primary_10_1002_apj_2500 crossref_primary_10_1007_s11356_022_22462_6 crossref_primary_10_1016_j_physa_2019_124124 crossref_primary_10_1016_j_est_2022_105266 crossref_primary_10_3390_pr8060693 crossref_primary_10_1016_j_physa_2019_122409 crossref_primary_10_1007_s10973_019_09189_2 crossref_primary_10_1038_s41598_022_16463_1 crossref_primary_10_1007_s10973_020_09989_x crossref_primary_10_1007_s10973_022_11822_6 crossref_primary_10_1007_s10973_020_09541_x crossref_primary_10_1016_j_susmat_2025_e01348 crossref_primary_10_1155_2021_9632277 crossref_primary_10_1515_zna_2021_0163 crossref_primary_10_1021_acsomega_3c06432 crossref_primary_10_1007_s10973_024_13023_9 crossref_primary_10_1016_j_physa_2019_122637 crossref_primary_10_1016_j_engappai_2021_104314 crossref_primary_10_1007_s11356_021_14126_8 crossref_primary_10_1007_s10973_020_10212_0 crossref_primary_10_1002_htj_21970 crossref_primary_10_1007_s10973_019_08789_2 crossref_primary_10_1134_S1810232824010107 crossref_primary_10_1108_AEAT_06_2019_0129 crossref_primary_10_3390_sym12010120 crossref_primary_10_1016_j_enganabound_2022_08_014 |
| Cites_doi | 10.1016/j.spmi.2012.01.002 10.1007/s00231-017-2065-9 10.1615/HeatTransRes.2014007271 10.1016/0893-6080(89)90020-8 10.1016/j.ijheatmasstransfer.2018.07.123 10.1016/j.applthermaleng.2017.06.110 10.1016/j.ijheatmasstransfer.2017.06.061 10.1016/j.icheatmasstransfer.2018.02.002 10.1016/j.applthermaleng.2017.04.083 10.1016/j.physe.2016.10.015 10.1016/j.ijthermalsci.2015.01.015 10.3311/PPch.9324 10.1063/1.2093936 10.1016/j.jmmm.2017.01.016 10.1016/j.physe.2016.07.013 10.1016/j.ijheatmasstransfer.2017.11.125 10.1016/j.ijheatmasstransfer.2015.06.059 10.1063/1.1700493 10.12693/APhysPolA.124.665 10.1016/j.applthermaleng.2017.07.100 10.1016/j.icheatmasstransfer.2016.02.008 10.1016/j.jtice.2017.12.029 10.1016/j.ijheatmasstransfer.2018.11.069 10.1016/j.jtice.2018.01.014 10.1016/j.physe.2017.11.008 10.1016/j.molliq.2018.11.057 10.1016/j.molliq.2018.05.026 10.1016/j.jmmm.2016.06.063 10.1016/j.icheatmasstransfer.2015.09.001 10.1016/j.ijnonlinmec.2011.07.013 10.1016/j.powtec.2017.06.023 10.1177/1687814016641016 10.1016/j.molliq.2018.01.012 10.1016/j.apt.2016.08.002 10.3233/JAE-130097 10.1016/j.molliq.2017.01.043 10.1007/s00231-016-1823-4 10.1007/s10973-015-4565-5 10.1016/j.euromechflu.2016.09.014 10.1016/j.ijthermalsci.2016.02.006 10.1016/j.applthermaleng.2016.04.002 10.1016/j.physe.2016.10.013 10.1016/j.powtec.2018.09.052 10.1016/j.ijheatmasstransfer.2018.08.112 10.1016/j.expthermflusci.2017.11.007 10.1016/j.physe.2016.11.021 10.1016/j.physa.2018.06.031 10.1016/j.icheatmasstransfer.2015.05.014 10.1016/j.physa.2014.01.057 10.1016/j.physb.2018.02.022 10.1007/s10973-017-6213-8 10.1007/s00231-015-1743-8 10.1016/j.icheatmasstransfer.2016.05.029 10.1615/HeatTransRes.2013006880 10.15255/CABEQ.2014.2069 10.1155/2014/761745 10.1007/s00231-017-2201-6 10.1162/neco.1992.4.3.415 10.1016/j.enconman.2017.08.007 10.1134/S0021894415030141 10.1016/0893-6080(91)90009-T 10.1016/j.icheatmasstransfer.2016.07.008 10.1016/j.expthermflusci.2016.03.010 10.1016/j.applthermaleng.2015.11.071 10.1007/s10973-017-6688-3 10.1115/1.1532008 10.1016/j.molliq.2017.03.020 10.1016/j.euromechflu.2014.08.004 10.1016/j.physe.2016.06.015 10.1016/j.icheatmasstransfer.2017.05.017 10.15255/CABEQ.2015.2203 10.1016/j.tca.2015.08.025 10.1016/j.expthermflusci.2016.07.015 10.1016/j.physa.2019.01.035 10.1016/j.physa.2018.12.031 10.1016/j.physa.2018.06.034 10.3311/PPch.2206 10.1007/s12206-018-0748-x 10.1007/s12206-016-0135-4 10.1016/j.icheatmasstransfer.2015.01.001 10.1016/j.physa.2018.06.013 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier B.V. |
| Copyright_xml | – notice: 2019 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.physa.2019.121056 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1873-2119 |
| ExternalDocumentID | 10_1016_j_physa_2019_121056 S0378437119306454 |
| GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 7-5 71M 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAPFB AAXUO ABAOU ABMAC ABNEU ABYKQ ACAZW ACDAQ ACFVG ACGFS ACNCT ACRLP ADBBV ADEZE ADFHU ADGUI AEBSH AEKER AEYQN AFFNX AFKWA AFTJW AGHFR AGTHC AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIIAU AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR AXLSJ BKOJK BLXMC EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IXIXF J1W K-O KOM M38 M41 MHUIS MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSB SSF SSQ SSW SSZ T5K TN5 TWZ WH7 XPP YNT ZMT ~02 ~G- 29O 5VS 6TJ AAFFL AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABJNI ABWVN ABXDB ACLOT ACNNM ACROA ACRPL ADMUD ADNMO ADVLN AEIPS AFJKZ AFODL AGQPQ AIIUN AJWLA ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BEHZQ BEZPJ BGSCR BNTGB BPUDD BULVW BZJEE CITATION EFKBS FEDTE FGOYB HMV HVGLF HZ~ MVM NDZJH R2- SEW SPG VOH WUQ XJT XOL YYP ZY4 ~HD |
| ID | FETCH-LOGICAL-c218t-6843b481b8ffe60c26354023c6baad8a5dd2c81f99a538c77a429f4b8c5e89403 |
| IEDL.DBID | .~1 |
| ISSN | 0378-4371 |
| IngestDate | Thu Apr 24 22:52:47 EDT 2025 Wed Oct 01 02:17:40 EDT 2025 Fri Feb 23 02:33:06 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Empirical results CuO/liquid paraffin nanofluid Multi-objective optimization Artificial neural network Genetic algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c218t-6843b481b8ffe60c26354023c6baad8a5dd2c81f99a538c77a429f4b8c5e89403 |
| ParticipantIDs | crossref_primary_10_1016_j_physa_2019_121056 crossref_citationtrail_10_1016_j_physa_2019_121056 elsevier_sciencedirect_doi_10_1016_j_physa_2019_121056 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-08-01 2019-08-00 |
| PublicationDateYYYYMMDD | 2019-08-01 |
| PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Physica A |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Jiji, Jiji (b74) 2006 Alipour, Karimipour, Safaei, Semiromi, Akbari (b43) 2017; 88 Shahsavar, Saghafian, Salimpour, Shafii (b58) 2016; 76 Shahsavar, Bahiraei (b48) 2017; 318 Chon, Kihm, Lee, Choi (b12) 2005; 87 Hornik (b49) 1991; 4 Alrashed, Akbari, Heydari, Toghraie, Zarringhalam, Shabani, Seifi, Goodarzi (b59) 2018; 537 Sarafraz, Nikkhah, Nakhjavani, Arya (b86) 2018; 91 Zadkhast, Toghraie, Karimipour (b16) 2017; 129 Nadooshan, Esfe, Afrand (b21) 2018; 131 Karimipour, Taghipour, Malvandi (b7) 2016; 419 Esfe, Yan, Akbari, Karimipour, Hassani (b11) 2015; 68 Akbari, Toghraie, Karimipour (b47) 2016; 8 Cristianini, Shawe-Taylor (b52) 2000 Soltani, Akbari (b34) 2016; 84 Sarafraz, Hormozi, Peyghambarzadeh, Vaeli (b87) 2015; 8 Xuan, Li (b10) 2003; 125 Esfe, Esforjani, Akbari, Karimiopour (b36) 2014; 45 Hornik, Stinchcombe, White (b55) 1989; 2 Esfe, Bahiraei, Hajmohammad, Afrand (b26) 2017; 86 Shahsavar, Saghafian, Salimpour, Shafii (b93) 2016; 52 Karimipour (b4) 2015; 91 Esfe, Saedodin, Naderi, Alirezaie, Karimipour, Wongwises, Goodarzi, bin Dahari (b13) 2015; 63 Mahmoodi, Esfe, Akbari, Karimipour, Afrand (b33) 2015; 47 Arya, Sarafraz, Pourmehran, Arjomandi (b76) 2019 Basak, Pal, Patranabis (b54) 2007; 11 Esfe, Naderi, Akbari, Afrand, Karimipour (b18) 2015; 121 Karimipour, Nezhad, D’Orazio, Esfe, Safaei, Shirani (b8) 2015; 49 Shahsavar, Moradi, Bahiraei (b22) 2018; 84 Shahsavar, Rahimi, Bahiraei (b32) 2017; 150 Hagan, Demuth, Beale, De Jesús (b51) 2014 Shahsavar, Salimpour, Saghafian, Shafii (b94) 2015; 617 Salari, Peyghambarzadeh, Sarafraz, Hormozi, Nikkhah (b80) 2017; 53 Esfe, Niazi, Esforjani, Akbari (b41) 2014; 45 Hosseini, Safaei, Goodarzi, Alrashed, Nguyen (b9) 2017; 114 Drucker, Burges, Kaufman, Smola, Vapnik (b53) 1997 Afrand, Nadooshan, Hassani, Yarmand, Dahari (b27) 2016; 77 Shahsavar, Khanmohammadi, Karimipour, Goodarzi (b91) 2019; 131 Alipour, Toghraie, Karimipour, Hajian (b92) 2019; 275 Bahrami, Akbari, Karimipour, Afrand (b6) 2016; 79 Monfared, Shahsavar, Bahrebar (b17) 2018 Sarafraz, Nikkhah, Madani, Jafarian, Hormozi (b83) 2017; 121 Nakhjavani, Nikkhah, Sarafraz, Shoja, Sarafraz (b77) 2017; 53 Karimipour, D’Orazio, Shadloo (b67) 2017; 86 Mahyari, Karimipour, Afrand (b89) 2019; 521 Alrashed, Karimipour, Bagherzadeh, Safaei, Afrand (b20) 2018; 127 Zareie, Akbari (b44) 2017; 230 Arya, Sarafraz, Arjomandi (b79) 2018; 32 Shahsavar, Salimpour, Saghafian, Shafii (b60) 2016; 30 Salari, Peyghambarzadeh, Sarafraz, Hormozi (b78) 2016; 60 Afrand, Najafabadi, Akbari (b24) 2016; 102 Karimipour, Bagherzadeh, Goodarzi, Alnaqi, Bahiraei, Safaei, Shadloo (b56) 2018; 127 Nojoomizadeh, D’Orazio, Karimipour, Afrand, Goodarzi (b25) 2018; 97 Akbari, Afrand, Arshi, Karimipour (b37) 2017; 233 Goodarzi, Safaei, Oztop, Karimipour, Sadeghinezhad, Dahari, Kazi, Jomhari (b57) 2014; 2014 Esfe, Arani, Karimiopour, Esforjani (b66) 2014; 45 Akbari, Safaei, Goodarzi, Akbar, Zarringhalam, Shabani, Dahari (b45) 2016; 27 Fox, McDonald, Pritchard (b73) 1985 Esfe, Wongwises, Naderi, Asadi, Safaei, Rostamian, Dahari, Karimipour (b15) 2015; 66 Karimipour, Ghasemi, Darvanjooghi, Abdollahi (b71) 2018; 92 Afrand, Rostami, Akbari, Wongwises, Esfe, Karimipour (b39) 2015; 90 Goodarzi, D’Orazio, Keshavarzi, Mousavi, Karimipour (b65) 2018; 509 Baratpour, Karimipour, Afrand, Wongwises (b5) 2016; 74 Esfe, Ghadi, Esforjania, Akbari (b38) 2013; 124 Harandi, Karimipour, Afrand, Akbari, D’Orazio (b14) 2016; 76 Bahiraei, Godini, Shahsavar (b23) 2018; 84 Sarafraz, Hormozi, Silakhori, Peyghambarzadeh (b81) 2016; 95 Bahrami, Akbari, Bagherzadeh, Karimipour, Afrand, Goodarzi (b90) 2019; 519 Bahiraei, Berahmand, Shahsavar (b46) 2017; 125 Nadooshan, Eshgarf, Afrand (b72) 2018; 253 Nojoomizadeh, Karimipour, Firouzi, Afrand (b62) 2018; 119 Nikkhah, Sarafraz, Hormozi (b85) 2015; 29 Sajadifar, Karimipour, Toghraie (b31) 2017; 61 Abu-Nada, Oztop, Pop (b69) 2012; 51 Akbari, Toghraie, Karimipour, Marzban, Ahmadi (b30) 2017; 86 Afrand, Karimipour, Nadooshan, Akbari (b35) 2016; 84 Arya, Sarafraz, Shahmiri, Madani, Nikkhah, Nakhjavani (b84) 2018; 54 Brinkman (b1) 1952; 20 Afrand, Toghraie, Karimipour, Wongwises (b29) 2017; 430 Esfandiary, Mehmandoust, Karimipour, Pakravan (b68) 2016; 105 Haji-Sheikh, Eftekhar, Lou (b70) 1982 Shahsavar, Ansarian, Bahiraei (b19) 2018; 340 Akbari, Toghraie, Karimipour, Safaei, Goodarzi, Alipour, Dahari (b42) 2016; 290 Safaei, Karimipour, Abdollahi, Nguyen (b2) 2018; 509 Aminossadati, Raisi, Ghasemi (b3) 2011; 46 Karimipour, D’Orazio, Goodarzi (b64) 2018; 509 Sarafraz, Arya, Nikkhah, Hormozi (b82) 2017; 30 Goodarzi, Safaei, Karimipour, Hooman, Dahari, Kazi, Sadeghinezhad (b61) 2014 Sarafraz, Hormozi (b88) 2014; 58 Ranjbarzadeh, Isfahani, Afrand, Karimipour, Hojaji (b28) 2017; 125 Sarafraz, Arya, Arjomandi (b75) 2018; 263 MacKay (b50) 1992; 4 Esfe, Akbari, Karimipour (b40) 2015; 56 Karimipour, Esfe, Safaei, Semiromi, Jafari, Kazi (b63) 2014; 402 Safaei (10.1016/j.physa.2019.121056_b2) 2018; 509 Chon (10.1016/j.physa.2019.121056_b12) 2005; 87 Esfandiary (10.1016/j.physa.2019.121056_b68) 2016; 105 Shahsavar (10.1016/j.physa.2019.121056_b19) 2018; 340 Shahsavar (10.1016/j.physa.2019.121056_b22) 2018; 84 Karimipour (10.1016/j.physa.2019.121056_b56) 2018; 127 Sarafraz (10.1016/j.physa.2019.121056_b81) 2016; 95 Monfared (10.1016/j.physa.2019.121056_b17) 2018 Jiji (10.1016/j.physa.2019.121056_b74) 2006 Mahyari (10.1016/j.physa.2019.121056_b89) 2019; 521 Alrashed (10.1016/j.physa.2019.121056_b59) 2018; 537 Goodarzi (10.1016/j.physa.2019.121056_b57) 2014; 2014 Esfe (10.1016/j.physa.2019.121056_b41) 2014; 45 Karimipour (10.1016/j.physa.2019.121056_b71) 2018; 92 Shahsavar (10.1016/j.physa.2019.121056_b48) 2017; 318 Akbari (10.1016/j.physa.2019.121056_b37) 2017; 233 Sajadifar (10.1016/j.physa.2019.121056_b31) 2017; 61 Shahsavar (10.1016/j.physa.2019.121056_b32) 2017; 150 Akbari (10.1016/j.physa.2019.121056_b45) 2016; 27 Salari (10.1016/j.physa.2019.121056_b78) 2016; 60 Esfe (10.1016/j.physa.2019.121056_b18) 2015; 121 Fox (10.1016/j.physa.2019.121056_b73) 1985 Sarafraz (10.1016/j.physa.2019.121056_b82) 2017; 30 Esfe (10.1016/j.physa.2019.121056_b15) 2015; 66 Haji-Sheikh (10.1016/j.physa.2019.121056_b70) 1982 Mahmoodi (10.1016/j.physa.2019.121056_b33) 2015; 47 Harandi (10.1016/j.physa.2019.121056_b14) 2016; 76 Nikkhah (10.1016/j.physa.2019.121056_b85) 2015; 29 Akbari (10.1016/j.physa.2019.121056_b47) 2016; 8 Goodarzi (10.1016/j.physa.2019.121056_b61) 2014 Esfe (10.1016/j.physa.2019.121056_b36) 2014; 45 Afrand (10.1016/j.physa.2019.121056_b39) 2015; 90 Akbari (10.1016/j.physa.2019.121056_b42) 2016; 290 Karimipour (10.1016/j.physa.2019.121056_b64) 2018; 509 Esfe (10.1016/j.physa.2019.121056_b11) 2015; 68 Nojoomizadeh (10.1016/j.physa.2019.121056_b25) 2018; 97 Abu-Nada (10.1016/j.physa.2019.121056_b69) 2012; 51 Nadooshan (10.1016/j.physa.2019.121056_b72) 2018; 253 Nojoomizadeh (10.1016/j.physa.2019.121056_b62) 2018; 119 Bahrami (10.1016/j.physa.2019.121056_b90) 2019; 519 Shahsavar (10.1016/j.physa.2019.121056_b91) 2019; 131 Esfe (10.1016/j.physa.2019.121056_b40) 2015; 56 Sarafraz (10.1016/j.physa.2019.121056_b86) 2018; 91 Arya (10.1016/j.physa.2019.121056_b76) 2019 Cristianini (10.1016/j.physa.2019.121056_b52) 2000 Bahrami (10.1016/j.physa.2019.121056_b6) 2016; 79 Afrand (10.1016/j.physa.2019.121056_b27) 2016; 77 Sarafraz (10.1016/j.physa.2019.121056_b83) 2017; 121 Nakhjavani (10.1016/j.physa.2019.121056_b77) 2017; 53 Shahsavar (10.1016/j.physa.2019.121056_b94) 2015; 617 Sarafraz (10.1016/j.physa.2019.121056_b87) 2015; 8 Goodarzi (10.1016/j.physa.2019.121056_b65) 2018; 509 Arya (10.1016/j.physa.2019.121056_b84) 2018; 54 Baratpour (10.1016/j.physa.2019.121056_b5) 2016; 74 MacKay (10.1016/j.physa.2019.121056_b50) 1992; 4 Esfe (10.1016/j.physa.2019.121056_b26) 2017; 86 Karimipour (10.1016/j.physa.2019.121056_b63) 2014; 402 Brinkman (10.1016/j.physa.2019.121056_b1) 1952; 20 Shahsavar (10.1016/j.physa.2019.121056_b58) 2016; 76 Afrand (10.1016/j.physa.2019.121056_b24) 2016; 102 Zareie (10.1016/j.physa.2019.121056_b44) 2017; 230 Drucker (10.1016/j.physa.2019.121056_b53) 1997 Shahsavar (10.1016/j.physa.2019.121056_b93) 2016; 52 Afrand (10.1016/j.physa.2019.121056_b35) 2016; 84 Bahiraei (10.1016/j.physa.2019.121056_b46) 2017; 125 Akbari (10.1016/j.physa.2019.121056_b30) 2017; 86 Sarafraz (10.1016/j.physa.2019.121056_b88) 2014; 58 Soltani (10.1016/j.physa.2019.121056_b34) 2016; 84 Afrand (10.1016/j.physa.2019.121056_b29) 2017; 430 Alipour (10.1016/j.physa.2019.121056_b92) 2019; 275 Hornik (10.1016/j.physa.2019.121056_b55) 1989; 2 Esfe (10.1016/j.physa.2019.121056_b66) 2014; 45 Xuan (10.1016/j.physa.2019.121056_b10) 2003; 125 Arya (10.1016/j.physa.2019.121056_b79) 2018; 32 Karimipour (10.1016/j.physa.2019.121056_b4) 2015; 91 Hornik (10.1016/j.physa.2019.121056_b49) 1991; 4 Basak (10.1016/j.physa.2019.121056_b54) 2007; 11 Karimipour (10.1016/j.physa.2019.121056_b67) 2017; 86 Alrashed (10.1016/j.physa.2019.121056_b20) 2018; 127 Esfe (10.1016/j.physa.2019.121056_b13) 2015; 63 Sarafraz (10.1016/j.physa.2019.121056_b75) 2018; 263 Hosseini (10.1016/j.physa.2019.121056_b9) 2017; 114 Aminossadati (10.1016/j.physa.2019.121056_b3) 2011; 46 Bahiraei (10.1016/j.physa.2019.121056_b23) 2018; 84 Nadooshan (10.1016/j.physa.2019.121056_b21) 2018; 131 Hagan (10.1016/j.physa.2019.121056_b51) 2014 Alipour (10.1016/j.physa.2019.121056_b43) 2017; 88 Salari (10.1016/j.physa.2019.121056_b80) 2017; 53 Zadkhast (10.1016/j.physa.2019.121056_b16) 2017; 129 Shahsavar (10.1016/j.physa.2019.121056_b60) 2016; 30 Ranjbarzadeh (10.1016/j.physa.2019.121056_b28) 2017; 125 Karimipour (10.1016/j.physa.2019.121056_b8) 2015; 49 Karimipour (10.1016/j.physa.2019.121056_b7) 2016; 419 Esfe (10.1016/j.physa.2019.121056_b38) 2013; 124 |
| References_xml | – volume: 49 start-page: 89 year: 2015 end-page: 99 ident: b8 article-title: Simulation of copper–water nanofluid in a microchannel in slip flow regime using the lattice Boltzmann method publication-title: Eur. J. Mech. B Fluids – start-page: 155 year: 1997 end-page: 161 ident: b53 article-title: Support vector regression machines publication-title: Advances in Neural Information Processing Systems – volume: 419 start-page: 420 year: 2016 end-page: 428 ident: b7 article-title: Developing the laminar MHD forced convection flow of water/FMWNT carbon nanotubes in a microchannel imposed the uniform heat flux publication-title: J. Magn. Magn. Mater. – volume: 45 start-page: 279 year: 2014 end-page: 292 ident: b66 article-title: Numerical simulation of natural convection around an obstacle placed in an enclosure filled with different types of nanofluids publication-title: Heat Transfer Res. – volume: 131 start-page: 432 year: 2019 end-page: 441 ident: b91 article-title: A novel comprehensive experimental study concerned synthesizes and prepare liquid paraffin-Fe3O4 mixture to develop models for both thermal conductivity & viscosity: A new approach of GMDH type of neural network publication-title: Int. J. Heat Mass Transfer – volume: 92 start-page: 90 year: 2018 end-page: 99 ident: b71 article-title: A new correlation for estimating the thermal conductivity and dynamic viscosity of CuO/liquid paraffin nanofluid using neural network method publication-title: Int. Commun. Heat Mass Transfer – volume: 509 start-page: 729 year: 2018 end-page: 745 ident: b64 article-title: Develop the lattice Boltzmann method to simulate the slip velocity and temperature domain of buoyancy forces of FMWCNT nano particles in water through a micro flow imposed to the specified heat flux publication-title: Physica A – volume: 86 start-page: 68 year: 2017 end-page: 75 ident: b30 article-title: The effect of velocity and dimension of solid nanoparticles on heat transfer in non-Newtonian nanofluid publication-title: Physica E – volume: 121 start-page: 1273 year: 2015 end-page: 1278 ident: b18 article-title: Evaluation of thermal conductivity of COOH-functionalized MWCNTs/water via temperature and solid volume fraction by using experimental data and ANN methods publication-title: J. Therm. Anal. Calorimetry – volume: 47 start-page: 21 year: 2015 end-page: 32 ident: b33 article-title: Magneto-natural convection in square cavities with a source–sink pair on different walls publication-title: Int. J. Appl. Electromagn. Mech. – volume: 617 start-page: 102 year: 2015 end-page: 110 ident: b94 article-title: An experimental study on the effect of ultrasonication on thermal conductivity of ferrofluid loaded with carbon nanotubes publication-title: Thermochim. Acta – volume: 86 start-page: 146 year: 2017 end-page: 153 ident: b67 article-title: The effects of different nano particles of Al2O3 and Ag on the MHD nano fluid flow and heat transfer in a microchannel including slip velocity and temperature jump publication-title: Physica E – volume: 91 start-page: 146 year: 2015 end-page: 156 ident: b4 article-title: New correlation for Nusselt number of nanofluid with Ag/Al2O3/Cu nanoparticles in a microchannel considering slip velocity and temperature jump by using lattice Boltzmann method publication-title: Int. J. Therm. Sci. – volume: 114 start-page: 207 year: 2017 end-page: 210 ident: b9 article-title: New temperature, interfacial shell dependent dimensionless model for thermal conductivity of nanofluids publication-title: Int. J. Heat Mass Transfer – volume: 56 start-page: 443 year: 2015 end-page: 453 ident: b40 article-title: Mixed convection in a lid-driven cavity with an inside hot obstacle filled by an Al2O3–water nanofluid publication-title: J. Appl. Mech. Tech. Phys. – volume: 66 start-page: 100 year: 2015 end-page: 104 ident: b15 article-title: Thermal conductivity of Cu/TiO2–water/EG hybrid nanofluid: Experimental data and modeling using artificial neural network and correlation publication-title: Int. Commun. Heat Mass Transfer – volume: 32 start-page: 3975 year: 2018 end-page: 3982 ident: b79 article-title: Heat transfer and fluid flow of MgO/ethylene glycol in a corrugated heat exchanger publication-title: J. Mech. Sci. Technol. – volume: 84 start-page: 564 year: 2016 end-page: 570 ident: b34 article-title: Effects of temperature and particles concentration on the dynamic viscosity of MgO-MWCNT/ethylene glycol hybrid nanofluid: experimental study publication-title: Physica E: Low-dimensional Systems and Nanostructures – volume: 60 start-page: 252 year: 2016 end-page: 258 ident: b78 article-title: Boiling heat transfer of alumina nano-fluids: role of nanoparticle deposition on the boiling heat transfer coefficient publication-title: Period. Polytech. Chem. Eng. – year: 2000 ident: b52 article-title: An Introduction to Support Vector Machines – volume: 275 start-page: 192 year: 2019 end-page: 203 ident: b92 article-title: Molecular dynamics simulation of fluid flow passing through a nanochannel: Effects of geometric shape of roughnesses publication-title: J. Molecular Liquids – volume: 11 start-page: 203 year: 2007 end-page: 224 ident: b54 article-title: Support vector regression publication-title: Neural Inf. Process.-Lett. Rev. – volume: 46 start-page: 1373 year: 2011 end-page: 1382 ident: b3 article-title: Effects of magnetic field on nanofluid forced convection in a partially heated microchannel publication-title: Int. J. Non-Linear Mech. – volume: 84 start-page: 149 year: 2018 end-page: 161 ident: b23 article-title: Thermal and hydraulic characteristics of a minichannel heat exchanger operated with a non-Newtonian hybrid nanofluid publication-title: J. Taiwan Inst. Chem. Eng. – start-page: 846 year: 1982 ident: b70 article-title: Some thermophysical properties of paraffin wax as a thermal storage medium publication-title: 3rd Joint Thermophysics, Fluids, Plasma and Heat Transfer Conference – volume: 125 start-page: 151 year: 2003 end-page: 155 ident: b10 article-title: Investigation on convective heat transfer and flow features of nanofluids publication-title: J. Heat Transfer – start-page: 1 year: 2018 end-page: 12 ident: b17 article-title: Second law analysis of turbulent convection flow of boehmite alumina nanofluid inside a double-pipe heat exchanger considering various shapes for nanoparticle publication-title: J. Therm. Anal. Calorimetry – volume: 102 start-page: 45 year: 2016 end-page: 54 ident: b24 article-title: Effects of temperature and solid volume fraction on viscosity of SiO2-MWCNTs/SAE40 hybrid nanofluid as a coolant and lubricant in heat engines publication-title: Appl. Therm. Eng. – volume: 54 start-page: 985 year: 2018 end-page: 997 ident: b84 article-title: Thermal performance analysis of a flat heat pipe working with carbon nanotube-water nanofluid for cooling of a high heat flux heater publication-title: Heat Mass Transf. – volume: 53 start-page: 265 year: 2017 end-page: 275 ident: b80 article-title: Thermal behavior of aqueous iron oxide nano-fluid as a coolant on a flat disc heater under the pool boiling condition publication-title: Heat Mass Transf. – volume: 29 start-page: 405 year: 2015 end-page: 415 ident: b85 article-title: Application of spherical copper oxide (II) water nano-fluid as a potential coolant in a boiling annular heat exchanger publication-title: Chem. Biochem. Engi. Q. – volume: 509 start-page: 210 year: 2018 end-page: 233 ident: b65 article-title: Develop the nano scale method of lattice Boltzmann to predict the fluid flow and heat transfer of air in the inclined lid driven cavity with a large heat source inside, two case studies: Pure natural convection & mixed convection publication-title: Physica A – volume: 2 start-page: 359 year: 1989 end-page: 366 ident: b55 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Netw. – year: 2014 ident: b51 article-title: Neural Network Design – year: 1985 ident: b73 article-title: Introduction to Fluid Mechanics – volume: 233 start-page: 352 year: 2017 end-page: 357 ident: b37 article-title: An experimental study on rheological behavior of ethylene glycol based nanofluid: proposing a new correlation as a function of silica concentration and temperature publication-title: J. Molecular Liquids – volume: 61 start-page: 25 year: 2017 end-page: 32 ident: b31 article-title: Fluid flow and heat transfer of non-Newtonian nanofluid in a microtube considering slip velocity and temperature jump boundary conditions publication-title: Eur. J. Mech. B Fluids – volume: 30 start-page: 809 year: 2016 end-page: 815 ident: b60 article-title: Effect of magnetic field on thermal conductivity and viscosity of a magnetic nanofluid loaded with carbon nanotubes publication-title: J. Mech. Sci. Technol. – volume: 340 start-page: 370 year: 2018 end-page: 379 ident: b19 article-title: Effect of line dipole magnetic field on entropy generation of Mn-Zn ferrite ferrofluid flowing through a minichannel using two-phase mixture model publication-title: Powder Technol. – volume: 318 start-page: 441 year: 2017 end-page: 450 ident: b48 article-title: Experimental investigation and modeling of thermal conductivity and viscosity for non-Newtonian hybrid nanofluid containing coated CNT/Fe3O4 nanoparticles publication-title: Powder Technol. – volume: 91 start-page: 509 year: 2018 end-page: 519 ident: b86 article-title: Thermal performance of a heat sink microchannel working with biologically produced silver-water nanofluid: experimental assessment publication-title: Exp. Therm Fluid Sci. – volume: 20 year: 1952 ident: b1 article-title: The viscosity of concentrated suspensions and solutions publication-title: J. Chem. Phys. – volume: 131 start-page: 2741 year: 2018 end-page: 2748 ident: b21 article-title: Prediction of rheological behavior of SiO 2-MWCNTs/10W40 hybrid nanolubricant by designing neural network publication-title: J. Therm. Anal. Calorimetry – volume: 290 start-page: 135 year: 2016 end-page: 153 ident: b42 article-title: Investigation of rib’s height effect on heat transfer and flow parameters of laminar water–Al2O3 nanofluid in a rib-microchannel publication-title: Appl. Math. Comput. – volume: 84 start-page: 474 year: 2016 end-page: 481 ident: b35 article-title: The variations of heat transfer and slip velocity of FMWNT-water nano-fluid along the micro-channel in the lack and presence of a magnetic field publication-title: Physica E – volume: 97 start-page: 226 year: 2018 end-page: 238 ident: b25 article-title: Investigation of permeability effect on slip velocity and temperature jump boundary conditions for FMWNT/Water nanofluid flow and heat transfer inside a microchannel filled by a porous media publication-title: Physica E – volume: 52 start-page: 2293 year: 2016 end-page: 2301 ident: b93 article-title: Effect of temperature and concentration on thermal conductivity and viscosity of ferrofluid loaded with carbon nanotubes publication-title: Heat Mass Transf. – volume: 2014 year: 2014 ident: b57 article-title: Numerical study of entropy generation due to coupled laminar and turbulent mixed convection and thermal radiation in an enclosure filled with a semitransparent medium publication-title: Sci. World J. – volume: 263 start-page: 382 year: 2018 end-page: 389 ident: b75 article-title: Thermal and hydraulic analysis of a rectangular microchannel with gallium-copper oxide nano-suspension publication-title: J. Molecular Liquids – start-page: 762184 year: 2014 ident: b61 article-title: Comparison of the finite volume and lattice Boltzmann methods for solving natural convection heat transfer problems inside cavities and enclosures publication-title: Abstract and Applied Analysis, Vol. 2014 – volume: 105 start-page: 137 year: 2016 end-page: 158 ident: b68 article-title: Natural convection of Al2O3–water nanofluid in an inclined enclosure with the effects of slip velocity mechanisms: Brownian motion and thermophoresis phenomenon publication-title: Int. J. Therm. Sci. – volume: 58 start-page: 37 year: 2014 end-page: 46 ident: b88 article-title: Forced convective and nucleate flow boiling heat transfer to alumnia nanofluids publication-title: Period. Polytechn. Chem. Eng. – volume: 521 start-page: 98 year: 2019 end-page: 112 ident: b89 article-title: Effects of dispersed added Graphene Oxide-Silicon Carbide nanoparticles to present a statistical formulation for the mixture thermal properties publication-title: Physica A – volume: 51 start-page: 381 year: 2012 end-page: 395 ident: b69 article-title: Buoyancy induced flow in a nanofluid filled enclosure partially exposed to forced convection publication-title: Superlattices Microstruct. – volume: 88 start-page: 60 year: 2017 end-page: 76 ident: b43 article-title: Influence of T-semi attached rib on turbulent flow and heat transfer parameters of a silver-water nanofluid with different volume fractions in a three-dimensional trapezoidal microchannel publication-title: Physica E – volume: 230 start-page: 408 year: 2017 end-page: 414 ident: b44 article-title: Hybrid nanoparticles effects on rheological behavior of water-EG coolant under different temperatures: An experimental study publication-title: J. Molecular Liquids – volume: 95 start-page: 433 year: 2016 end-page: 444 ident: b81 article-title: On the fouling formation of functionalized and non-functionalized carbon nanotube nano-fluids under pool boiling condition publication-title: Appl. Therm. Eng. – volume: 30 start-page: 489 year: 2017 end-page: 500 ident: b82 article-title: Thermal performance and viscosity of biologically produced silver/coconut oil Nanofluids publication-title: Chem. Biochem. Eng. Q. – volume: 76 start-page: 1 year: 2016 end-page: 11 ident: b58 article-title: Experimental investigation on laminar forced convective heat transfer of ferrofluid loaded with carbon nanotubes under constant and alternating magnetic fields publication-title: Exp. Therm Fluid Sci. – volume: 76 start-page: 171 year: 2016 end-page: 177 ident: b14 article-title: An experimental study on thermal conductivity of F-MWCNTs–Fe3O4/EG hybrid nanofluid: effects of temperature and concentration publication-title: Int. Commun. Heat Mass Transfer – volume: 125 start-page: 69 year: 2017 end-page: 79 ident: b28 article-title: An experimental study on heat transfer and pressure drop of water/graphene oxide nanofluid in a copper tube under air cross-flow: applicable as a heat exchanger publication-title: Appl. Therm. Eng. – volume: 121 start-page: 388 year: 2017 end-page: 399 ident: b83 article-title: Low-frequency vibration for fouling mitigation and intensification of thermal performance of a plate heat exchanger working with CuO/water nanofluid publication-title: Appl. Therm. Eng. – volume: 537 start-page: 176 year: 2018 end-page: 183 ident: b59 article-title: The numerical modeling of water/FMWCNT nanofluid flow and heat transfer in a backward-facing contracting channel publication-title: Physica B – volume: 519 start-page: 159 year: 2019 end-page: 168 ident: b90 article-title: Develop 24 dissimilar ANNs by suitable architectures & training algorithms via sensitivity analysis to better statistical presentation: Measure MSEs between targets & ANN for Fe–CuO/Eg–Water nanofluid publication-title: Physica A – volume: 86 start-page: 245 year: 2017 end-page: 252 ident: b26 article-title: Rheological characteristics of mgo/oil nanolubricants: Experimental study and neural network modeling publication-title: Int. Commun. Heat Mass Transfer – volume: 8 year: 2015 ident: b87 article-title: Upward flow boiling to DI-water and cuo nanofluids inside the concentric annuli publication-title: J. Appl. Fluid Mech. – volume: 68 start-page: 248 year: 2015 end-page: 251 ident: b11 article-title: Experimental study on thermal conductivity of DWCNT-ZnO/water-EG nanofluids publication-title: Int. Commun. Heat Mass Transfer – volume: 4 start-page: 251 year: 1991 end-page: 257 ident: b49 article-title: Approximation capabilities of multilayer feedforward networks publication-title: Neural Netw. – volume: 79 start-page: 231 year: 2016 end-page: 237 ident: b6 article-title: An experimental study on rheological behavior of hybrid nanofluids made of iron and copper oxide in a binary mixture of water and ethylene glycol: non-Newtonian behavior publication-title: Exp. Therm Fluid Sci. – volume: 430 start-page: 22 year: 2017 end-page: 28 ident: b29 article-title: A numerical study of natural convection in a vertical annulus filled with gallium in the presence of magnetic field publication-title: J. Magn. Magn. Mater. – volume: 90 start-page: 418 year: 2015 end-page: 426 ident: b39 article-title: Effect of induced electric field on magneto-natural convection in a vertical cylindrical annulus filled with liquid potassium publication-title: Int. J. Heat Mass Transfer – volume: 129 start-page: 859 year: 2017 end-page: 867 ident: b16 article-title: Developing a new correlation to estimate the thermal conductivity of MWCNT-CuO/water hybrid nanofluid via an experimental investigation publication-title: J. Therm. Anal. Calorimetry – volume: 77 start-page: 49 year: 2016 end-page: 53 ident: b27 article-title: Predicting the viscosity of multi-walled carbon nanotubes/water nanofluid by developing an optimal artificial neural network based on experimental data publication-title: Int. Commun. Heat Mass Transfer – volume: 127 start-page: 925 year: 2018 end-page: 935 ident: b20 article-title: Electro-and thermophysical properties of water-based nanofluids containing copper ferrite nanoparticles coated with silica: Experimental data, modeling through enhanced ANN and curve fitting publication-title: Int. J. Heat Mass Transfer – volume: 45 start-page: 563 year: 2014 end-page: 578 ident: b36 article-title: Mixed-convection flow in a lid-driven square cavity filled with a nanofluid with variable properties: effect of the nanoparticle diameter and of the position of a hot obstacle publication-title: Heat Transfer Res. – volume: 119 start-page: 891 year: 2018 end-page: 906 ident: b62 article-title: Investigation of permeability and porosity effects on the slip velocity and convection heat transfer rate of Fe 3 O 4/water nanofluid flow in a microchannel while its lower half filled by a porous medium publication-title: Int. J. Heat Mass Transfer – volume: 124 start-page: 665 year: 2013 end-page: 672 ident: b38 article-title: Combined convection in a lid-driven cavity with an inside obstacle subjected to Al 2 O 3-Water nanofluid: Effect of solid volume fraction and nanofluid variable properties publication-title: Acta Phys. Pol. A. – start-page: 275 year: 2006 ident: b74 article-title: Heat Convection – volume: 8 year: 2016 ident: b47 article-title: Numerical simulation of heat transfer and turbulent flow of water nanofluids copper oxide in rectangular microchannel with semi-attached rib publication-title: Adv. Mech. Eng. – volume: 74 start-page: 108 year: 2016 end-page: 113 ident: b5 article-title: Effects of temperature and concentration on the viscosity of nanofluids made of single-wall carbon nanotubes in ethylene glycol publication-title: Int. Commun. Heat Mass Transfer – volume: 150 start-page: 37 year: 2017 end-page: 47 ident: b32 article-title: Optimization of irreversibility and thermal characteristics of a mini heat exchanger operated with a new hybrid nanofluid containing carbon nanotubes decorated with magnetic nanoparticles publication-title: Energy Convers. Manage. – volume: 509 start-page: 515 year: 2018 end-page: 535 ident: b2 article-title: The investigation of thermal radiation and free convection heat transfer mechanisms of nanofluid inside a shallow cavity by lattice Boltzmann method publication-title: Physica A – volume: 127 start-page: 1169 year: 2018 end-page: 1179 ident: b56 article-title: Synthesized CuFe2O4/SiO2 nanocomposites added to water/EG: Evaluation of the thermophysical properties beside sensitivity analysis & EANN publication-title: Int. J. Heat Mass Transfer – volume: 53 start-page: 3201 year: 2017 end-page: 3209 ident: b77 article-title: Green synthesis of silver nanoparticles using green tea leaves: Experimental study on the morphological, rheological and antibacterial behaviour publication-title: Heat Mass Transf. – volume: 125 start-page: 1083 year: 2017 end-page: 1093 ident: b46 article-title: Irreversibility analysis for flow of a non-Newtonian hybrid nanofluid containing coated CNT/Fe3O4 nanoparticles in a minichannel heat exchanger publication-title: Appl. Therm. Eng. – volume: 253 start-page: 169 year: 2018 end-page: 177 ident: b72 article-title: Measuring the viscosity of Fe3O4-MWCNTs/EG hybrid nanofluid for evaluation of thermal efficiency: Newtonian and non-Newtonian behavior publication-title: J. Molecular Liquids – volume: 84 start-page: 28 year: 2018 end-page: 40 ident: b22 article-title: Heat transfer and entropy generation optimization for flow of a non-Newtonian hybrid nanofluid containing coated CNT/Fe3O4 nanoparticles in a concentric annulus publication-title: J. Taiwan Inst. Chem. Eng. – volume: 27 start-page: 2175 year: 2016 end-page: 2185 ident: b45 article-title: A modified two-phase mixture model of nanofluid flow and heat transfer in a 3-D curved microtube publication-title: Adv. Powder Technol. – start-page: 1 year: 2019 end-page: 13 ident: b76 article-title: Heat transfer and pressure drop characteristics of mgo nanofluid in a double pipe heat exchanger publication-title: Heat Mass Transf. – volume: 63 start-page: 35 year: 2015 end-page: 40 ident: b13 article-title: Modeling of thermal conductivity of ZnO-EG using experimental data and ANN methods publication-title: Int. Commun. Heat Mass Transfer – volume: 45 start-page: 309 year: 2014 end-page: 338 ident: b41 article-title: Mixed convection flow and heat transfer in a ventilated inclined cavity containing hot obstacles subjected to a nanofluid publication-title: Heat Transfer Res. – volume: 4 start-page: 415 year: 1992 end-page: 447 ident: b50 article-title: Bayesian interpolation publication-title: Neural Comput. – volume: 402 start-page: 150 year: 2014 end-page: 168 ident: b63 article-title: Mixed convection of copper–water nanofluid in a shallow inclined lid driven cavity using the lattice Boltzmann method publication-title: Physica A – volume: 87 year: 2005 ident: b12 article-title: Empirical correlation finding the role of temperature and particle size for nanofluid (Al 2 O 3) thermal conductivity enhancement publication-title: Appl. Phys. Lett. – volume: 51 start-page: 381 issue: 3 year: 2012 ident: 10.1016/j.physa.2019.121056_b69 article-title: Buoyancy induced flow in a nanofluid filled enclosure partially exposed to forced convection publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2012.01.002 – year: 1985 ident: 10.1016/j.physa.2019.121056_b73 – year: 2014 ident: 10.1016/j.physa.2019.121056_b51 – volume: 53 start-page: 3201 issue: 10 year: 2017 ident: 10.1016/j.physa.2019.121056_b77 article-title: Green synthesis of silver nanoparticles using green tea leaves: Experimental study on the morphological, rheological and antibacterial behaviour publication-title: Heat Mass Transf. doi: 10.1007/s00231-017-2065-9 – volume: 45 start-page: 563 issue: 6 year: 2014 ident: 10.1016/j.physa.2019.121056_b36 article-title: Mixed-convection flow in a lid-driven square cavity filled with a nanofluid with variable properties: effect of the nanoparticle diameter and of the position of a hot obstacle publication-title: Heat Transfer Res. doi: 10.1615/HeatTransRes.2014007271 – volume: 2 start-page: 359 issue: 5 year: 1989 ident: 10.1016/j.physa.2019.121056_b55 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Netw. doi: 10.1016/0893-6080(89)90020-8 – volume: 127 start-page: 925 year: 2018 ident: 10.1016/j.physa.2019.121056_b20 article-title: Electro-and thermophysical properties of water-based nanofluids containing copper ferrite nanoparticles coated with silica: Experimental data, modeling through enhanced ANN and curve fitting publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2018.07.123 – volume: 125 start-page: 69 year: 2017 ident: 10.1016/j.physa.2019.121056_b28 article-title: An experimental study on heat transfer and pressure drop of water/graphene oxide nanofluid in a copper tube under air cross-flow: applicable as a heat exchanger publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.06.110 – volume: 114 start-page: 207 year: 2017 ident: 10.1016/j.physa.2019.121056_b9 article-title: New temperature, interfacial shell dependent dimensionless model for thermal conductivity of nanofluids publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2017.06.061 – volume: 92 start-page: 90 year: 2018 ident: 10.1016/j.physa.2019.121056_b71 article-title: A new correlation for estimating the thermal conductivity and dynamic viscosity of CuO/liquid paraffin nanofluid using neural network method publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2018.02.002 – volume: 121 start-page: 388 year: 2017 ident: 10.1016/j.physa.2019.121056_b83 article-title: Low-frequency vibration for fouling mitigation and intensification of thermal performance of a plate heat exchanger working with CuO/water nanofluid publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.04.083 – volume: 86 start-page: 146 year: 2017 ident: 10.1016/j.physa.2019.121056_b67 article-title: The effects of different nano particles of Al2O3 and Ag on the MHD nano fluid flow and heat transfer in a microchannel including slip velocity and temperature jump publication-title: Physica E doi: 10.1016/j.physe.2016.10.015 – volume: 91 start-page: 146 year: 2015 ident: 10.1016/j.physa.2019.121056_b4 article-title: New correlation for Nusselt number of nanofluid with Ag/Al2O3/Cu nanoparticles in a microchannel considering slip velocity and temperature jump by using lattice Boltzmann method publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2015.01.015 – volume: 60 start-page: 252 issue: 4 year: 2016 ident: 10.1016/j.physa.2019.121056_b78 article-title: Boiling heat transfer of alumina nano-fluids: role of nanoparticle deposition on the boiling heat transfer coefficient publication-title: Period. Polytech. Chem. Eng. doi: 10.3311/PPch.9324 – volume: 87 issue: 15 year: 2005 ident: 10.1016/j.physa.2019.121056_b12 article-title: Empirical correlation finding the role of temperature and particle size for nanofluid (Al 2 O 3) thermal conductivity enhancement publication-title: Appl. Phys. Lett. doi: 10.1063/1.2093936 – volume: 430 start-page: 22 year: 2017 ident: 10.1016/j.physa.2019.121056_b29 article-title: A numerical study of natural convection in a vertical annulus filled with gallium in the presence of magnetic field publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2017.01.016 – volume: 45 start-page: 279 issue: 3 year: 2014 ident: 10.1016/j.physa.2019.121056_b66 article-title: Numerical simulation of natural convection around an obstacle placed in an enclosure filled with different types of nanofluids publication-title: Heat Transfer Res. – start-page: 846 year: 1982 ident: 10.1016/j.physa.2019.121056_b70 article-title: Some thermophysical properties of paraffin wax as a thermal storage medium – volume: 84 start-page: 474 year: 2016 ident: 10.1016/j.physa.2019.121056_b35 article-title: The variations of heat transfer and slip velocity of FMWNT-water nano-fluid along the micro-channel in the lack and presence of a magnetic field publication-title: Physica E doi: 10.1016/j.physe.2016.07.013 – volume: 119 start-page: 891 year: 2018 ident: 10.1016/j.physa.2019.121056_b62 article-title: Investigation of permeability and porosity effects on the slip velocity and convection heat transfer rate of Fe 3 O 4/water nanofluid flow in a microchannel while its lower half filled by a porous medium publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2017.11.125 – start-page: 762184 year: 2014 ident: 10.1016/j.physa.2019.121056_b61 article-title: Comparison of the finite volume and lattice Boltzmann methods for solving natural convection heat transfer problems inside cavities and enclosures – volume: 90 start-page: 418 year: 2015 ident: 10.1016/j.physa.2019.121056_b39 article-title: Effect of induced electric field on magneto-natural convection in a vertical cylindrical annulus filled with liquid potassium publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2015.06.059 – volume: 8 issue: 4 year: 2015 ident: 10.1016/j.physa.2019.121056_b87 article-title: Upward flow boiling to DI-water and cuo nanofluids inside the concentric annuli publication-title: J. Appl. Fluid Mech. – volume: 20 issue: 4 year: 1952 ident: 10.1016/j.physa.2019.121056_b1 article-title: The viscosity of concentrated suspensions and solutions publication-title: J. Chem. Phys. doi: 10.1063/1.1700493 – volume: 124 start-page: 665 issue: 4 year: 2013 ident: 10.1016/j.physa.2019.121056_b38 article-title: Combined convection in a lid-driven cavity with an inside obstacle subjected to Al 2 O 3-Water nanofluid: Effect of solid volume fraction and nanofluid variable properties publication-title: Acta Phys. Pol. A. doi: 10.12693/APhysPolA.124.665 – volume: 125 start-page: 1083 year: 2017 ident: 10.1016/j.physa.2019.121056_b46 article-title: Irreversibility analysis for flow of a non-Newtonian hybrid nanofluid containing coated CNT/Fe3O4 nanoparticles in a minichannel heat exchanger publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.07.100 – volume: 74 start-page: 108 year: 2016 ident: 10.1016/j.physa.2019.121056_b5 article-title: Effects of temperature and concentration on the viscosity of nanofluids made of single-wall carbon nanotubes in ethylene glycol publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2016.02.008 – year: 2000 ident: 10.1016/j.physa.2019.121056_b52 – volume: 84 start-page: 28 year: 2018 ident: 10.1016/j.physa.2019.121056_b22 article-title: Heat transfer and entropy generation optimization for flow of a non-Newtonian hybrid nanofluid containing coated CNT/Fe3O4 nanoparticles in a concentric annulus publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2017.12.029 – start-page: 155 year: 1997 ident: 10.1016/j.physa.2019.121056_b53 article-title: Support vector regression machines – volume: 131 start-page: 432 year: 2019 ident: 10.1016/j.physa.2019.121056_b91 article-title: A novel comprehensive experimental study concerned synthesizes and prepare liquid paraffin-Fe3O4 mixture to develop models for both thermal conductivity & viscosity: A new approach of GMDH type of neural network publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2018.11.069 – volume: 84 start-page: 149 year: 2018 ident: 10.1016/j.physa.2019.121056_b23 article-title: Thermal and hydraulic characteristics of a minichannel heat exchanger operated with a non-Newtonian hybrid nanofluid publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2018.01.014 – volume: 97 start-page: 226 year: 2018 ident: 10.1016/j.physa.2019.121056_b25 article-title: Investigation of permeability effect on slip velocity and temperature jump boundary conditions for FMWNT/Water nanofluid flow and heat transfer inside a microchannel filled by a porous media publication-title: Physica E doi: 10.1016/j.physe.2017.11.008 – volume: 275 start-page: 192 year: 2019 ident: 10.1016/j.physa.2019.121056_b92 article-title: Molecular dynamics simulation of fluid flow passing through a nanochannel: Effects of geometric shape of roughnesses publication-title: J. Molecular Liquids doi: 10.1016/j.molliq.2018.11.057 – volume: 263 start-page: 382 year: 2018 ident: 10.1016/j.physa.2019.121056_b75 article-title: Thermal and hydraulic analysis of a rectangular microchannel with gallium-copper oxide nano-suspension publication-title: J. Molecular Liquids doi: 10.1016/j.molliq.2018.05.026 – volume: 419 start-page: 420 year: 2016 ident: 10.1016/j.physa.2019.121056_b7 article-title: Developing the laminar MHD forced convection flow of water/FMWNT carbon nanotubes in a microchannel imposed the uniform heat flux publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2016.06.063 – volume: 68 start-page: 248 year: 2015 ident: 10.1016/j.physa.2019.121056_b11 article-title: Experimental study on thermal conductivity of DWCNT-ZnO/water-EG nanofluids publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2015.09.001 – volume: 46 start-page: 1373 issue: 10 year: 2011 ident: 10.1016/j.physa.2019.121056_b3 article-title: Effects of magnetic field on nanofluid forced convection in a partially heated microchannel publication-title: Int. J. Non-Linear Mech. doi: 10.1016/j.ijnonlinmec.2011.07.013 – volume: 318 start-page: 441 year: 2017 ident: 10.1016/j.physa.2019.121056_b48 article-title: Experimental investigation and modeling of thermal conductivity and viscosity for non-Newtonian hybrid nanofluid containing coated CNT/Fe3O4 nanoparticles publication-title: Powder Technol. doi: 10.1016/j.powtec.2017.06.023 – volume: 8 issue: 4 year: 2016 ident: 10.1016/j.physa.2019.121056_b47 article-title: Numerical simulation of heat transfer and turbulent flow of water nanofluids copper oxide in rectangular microchannel with semi-attached rib publication-title: Adv. Mech. Eng. doi: 10.1177/1687814016641016 – volume: 253 start-page: 169 year: 2018 ident: 10.1016/j.physa.2019.121056_b72 article-title: Measuring the viscosity of Fe3O4-MWCNTs/EG hybrid nanofluid for evaluation of thermal efficiency: Newtonian and non-Newtonian behavior publication-title: J. Molecular Liquids doi: 10.1016/j.molliq.2018.01.012 – volume: 27 start-page: 2175 issue: 5 year: 2016 ident: 10.1016/j.physa.2019.121056_b45 article-title: A modified two-phase mixture model of nanofluid flow and heat transfer in a 3-D curved microtube publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2016.08.002 – volume: 47 start-page: 21 issue: 1 year: 2015 ident: 10.1016/j.physa.2019.121056_b33 article-title: Magneto-natural convection in square cavities with a source–sink pair on different walls publication-title: Int. J. Appl. Electromagn. Mech. doi: 10.3233/JAE-130097 – volume: 230 start-page: 408 year: 2017 ident: 10.1016/j.physa.2019.121056_b44 article-title: Hybrid nanoparticles effects on rheological behavior of water-EG coolant under different temperatures: An experimental study publication-title: J. Molecular Liquids doi: 10.1016/j.molliq.2017.01.043 – volume: 53 start-page: 265 issue: 1 year: 2017 ident: 10.1016/j.physa.2019.121056_b80 article-title: Thermal behavior of aqueous iron oxide nano-fluid as a coolant on a flat disc heater under the pool boiling condition publication-title: Heat Mass Transf. doi: 10.1007/s00231-016-1823-4 – volume: 121 start-page: 1273 issue: 3 year: 2015 ident: 10.1016/j.physa.2019.121056_b18 article-title: Evaluation of thermal conductivity of COOH-functionalized MWCNTs/water via temperature and solid volume fraction by using experimental data and ANN methods publication-title: J. Therm. Anal. Calorimetry doi: 10.1007/s10973-015-4565-5 – volume: 61 start-page: 25 year: 2017 ident: 10.1016/j.physa.2019.121056_b31 article-title: Fluid flow and heat transfer of non-Newtonian nanofluid in a microtube considering slip velocity and temperature jump boundary conditions publication-title: Eur. J. Mech. B Fluids doi: 10.1016/j.euromechflu.2016.09.014 – volume: 105 start-page: 137 year: 2016 ident: 10.1016/j.physa.2019.121056_b68 article-title: Natural convection of Al2O3–water nanofluid in an inclined enclosure with the effects of slip velocity mechanisms: Brownian motion and thermophoresis phenomenon publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2016.02.006 – volume: 102 start-page: 45 year: 2016 ident: 10.1016/j.physa.2019.121056_b24 article-title: Effects of temperature and solid volume fraction on viscosity of SiO2-MWCNTs/SAE40 hybrid nanofluid as a coolant and lubricant in heat engines publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.04.002 – volume: 86 start-page: 68 year: 2017 ident: 10.1016/j.physa.2019.121056_b30 article-title: The effect of velocity and dimension of solid nanoparticles on heat transfer in non-Newtonian nanofluid publication-title: Physica E doi: 10.1016/j.physe.2016.10.013 – volume: 340 start-page: 370 year: 2018 ident: 10.1016/j.physa.2019.121056_b19 article-title: Effect of line dipole magnetic field on entropy generation of Mn-Zn ferrite ferrofluid flowing through a minichannel using two-phase mixture model publication-title: Powder Technol. doi: 10.1016/j.powtec.2018.09.052 – volume: 127 start-page: 1169 year: 2018 ident: 10.1016/j.physa.2019.121056_b56 article-title: Synthesized CuFe2O4/SiO2 nanocomposites added to water/EG: Evaluation of the thermophysical properties beside sensitivity analysis & EANN publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2018.08.112 – volume: 91 start-page: 509 year: 2018 ident: 10.1016/j.physa.2019.121056_b86 article-title: Thermal performance of a heat sink microchannel working with biologically produced silver-water nanofluid: experimental assessment publication-title: Exp. Therm Fluid Sci. doi: 10.1016/j.expthermflusci.2017.11.007 – volume: 88 start-page: 60 year: 2017 ident: 10.1016/j.physa.2019.121056_b43 article-title: Influence of T-semi attached rib on turbulent flow and heat transfer parameters of a silver-water nanofluid with different volume fractions in a three-dimensional trapezoidal microchannel publication-title: Physica E doi: 10.1016/j.physe.2016.11.021 – volume: 509 start-page: 729 year: 2018 ident: 10.1016/j.physa.2019.121056_b64 article-title: Develop the lattice Boltzmann method to simulate the slip velocity and temperature domain of buoyancy forces of FMWCNT nano particles in water through a micro flow imposed to the specified heat flux publication-title: Physica A doi: 10.1016/j.physa.2018.06.031 – volume: 66 start-page: 100 year: 2015 ident: 10.1016/j.physa.2019.121056_b15 article-title: Thermal conductivity of Cu/TiO2–water/EG hybrid nanofluid: Experimental data and modeling using artificial neural network and correlation publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2015.05.014 – volume: 402 start-page: 150 year: 2014 ident: 10.1016/j.physa.2019.121056_b63 article-title: Mixed convection of copper–water nanofluid in a shallow inclined lid driven cavity using the lattice Boltzmann method publication-title: Physica A doi: 10.1016/j.physa.2014.01.057 – volume: 537 start-page: 176 year: 2018 ident: 10.1016/j.physa.2019.121056_b59 article-title: The numerical modeling of water/FMWCNT nanofluid flow and heat transfer in a backward-facing contracting channel publication-title: Physica B doi: 10.1016/j.physb.2018.02.022 – volume: 129 start-page: 859 issue: 2 year: 2017 ident: 10.1016/j.physa.2019.121056_b16 article-title: Developing a new correlation to estimate the thermal conductivity of MWCNT-CuO/water hybrid nanofluid via an experimental investigation publication-title: J. Therm. Anal. Calorimetry doi: 10.1007/s10973-017-6213-8 – start-page: 1 year: 2019 ident: 10.1016/j.physa.2019.121056_b76 article-title: Heat transfer and pressure drop characteristics of mgo nanofluid in a double pipe heat exchanger publication-title: Heat Mass Transf. – volume: 52 start-page: 2293 issue: 10 year: 2016 ident: 10.1016/j.physa.2019.121056_b93 article-title: Effect of temperature and concentration on thermal conductivity and viscosity of ferrofluid loaded with carbon nanotubes publication-title: Heat Mass Transf. doi: 10.1007/s00231-015-1743-8 – volume: 76 start-page: 171 year: 2016 ident: 10.1016/j.physa.2019.121056_b14 article-title: An experimental study on thermal conductivity of F-MWCNTs–Fe3O4/EG hybrid nanofluid: effects of temperature and concentration publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2016.05.029 – volume: 45 start-page: 309 issue: 4 year: 2014 ident: 10.1016/j.physa.2019.121056_b41 article-title: Mixed convection flow and heat transfer in a ventilated inclined cavity containing hot obstacles subjected to a nanofluid publication-title: Heat Transfer Res. doi: 10.1615/HeatTransRes.2013006880 – volume: 290 start-page: 135 year: 2016 ident: 10.1016/j.physa.2019.121056_b42 article-title: Investigation of rib’s height effect on heat transfer and flow parameters of laminar water–Al2O3 nanofluid in a rib-microchannel publication-title: Appl. Math. Comput. – volume: 29 start-page: 405 issue: 3 year: 2015 ident: 10.1016/j.physa.2019.121056_b85 article-title: Application of spherical copper oxide (II) water nano-fluid as a potential coolant in a boiling annular heat exchanger publication-title: Chem. Biochem. Engi. Q. doi: 10.15255/CABEQ.2014.2069 – start-page: 275 year: 2006 ident: 10.1016/j.physa.2019.121056_b74 – volume: 2014 year: 2014 ident: 10.1016/j.physa.2019.121056_b57 article-title: Numerical study of entropy generation due to coupled laminar and turbulent mixed convection and thermal radiation in an enclosure filled with a semitransparent medium publication-title: Sci. World J. doi: 10.1155/2014/761745 – volume: 54 start-page: 985 issue: 4 year: 2018 ident: 10.1016/j.physa.2019.121056_b84 article-title: Thermal performance analysis of a flat heat pipe working with carbon nanotube-water nanofluid for cooling of a high heat flux heater publication-title: Heat Mass Transf. doi: 10.1007/s00231-017-2201-6 – volume: 4 start-page: 415 issue: 3 year: 1992 ident: 10.1016/j.physa.2019.121056_b50 article-title: Bayesian interpolation publication-title: Neural Comput. doi: 10.1162/neco.1992.4.3.415 – volume: 150 start-page: 37 year: 2017 ident: 10.1016/j.physa.2019.121056_b32 article-title: Optimization of irreversibility and thermal characteristics of a mini heat exchanger operated with a new hybrid nanofluid containing carbon nanotubes decorated with magnetic nanoparticles publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2017.08.007 – volume: 56 start-page: 443 issue: 3 year: 2015 ident: 10.1016/j.physa.2019.121056_b40 article-title: Mixed convection in a lid-driven cavity with an inside hot obstacle filled by an Al2O3–water nanofluid publication-title: J. Appl. Mech. Tech. Phys. doi: 10.1134/S0021894415030141 – volume: 4 start-page: 251 issue: 2 year: 1991 ident: 10.1016/j.physa.2019.121056_b49 article-title: Approximation capabilities of multilayer feedforward networks publication-title: Neural Netw. doi: 10.1016/0893-6080(91)90009-T – volume: 77 start-page: 49 year: 2016 ident: 10.1016/j.physa.2019.121056_b27 article-title: Predicting the viscosity of multi-walled carbon nanotubes/water nanofluid by developing an optimal artificial neural network based on experimental data publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2016.07.008 – volume: 76 start-page: 1 year: 2016 ident: 10.1016/j.physa.2019.121056_b58 article-title: Experimental investigation on laminar forced convective heat transfer of ferrofluid loaded with carbon nanotubes under constant and alternating magnetic fields publication-title: Exp. Therm Fluid Sci. doi: 10.1016/j.expthermflusci.2016.03.010 – volume: 95 start-page: 433 year: 2016 ident: 10.1016/j.physa.2019.121056_b81 article-title: On the fouling formation of functionalized and non-functionalized carbon nanotube nano-fluids under pool boiling condition publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.11.071 – volume: 131 start-page: 2741 issue: 3 year: 2018 ident: 10.1016/j.physa.2019.121056_b21 article-title: Prediction of rheological behavior of SiO 2-MWCNTs/10W40 hybrid nanolubricant by designing neural network publication-title: J. Therm. Anal. Calorimetry doi: 10.1007/s10973-017-6688-3 – volume: 125 start-page: 151 issue: 1 year: 2003 ident: 10.1016/j.physa.2019.121056_b10 article-title: Investigation on convective heat transfer and flow features of nanofluids publication-title: J. Heat Transfer doi: 10.1115/1.1532008 – volume: 233 start-page: 352 year: 2017 ident: 10.1016/j.physa.2019.121056_b37 article-title: An experimental study on rheological behavior of ethylene glycol based nanofluid: proposing a new correlation as a function of silica concentration and temperature publication-title: J. Molecular Liquids doi: 10.1016/j.molliq.2017.03.020 – volume: 49 start-page: 89 year: 2015 ident: 10.1016/j.physa.2019.121056_b8 article-title: Simulation of copper–water nanofluid in a microchannel in slip flow regime using the lattice Boltzmann method publication-title: Eur. J. Mech. B Fluids doi: 10.1016/j.euromechflu.2014.08.004 – volume: 84 start-page: 564 year: 2016 ident: 10.1016/j.physa.2019.121056_b34 article-title: Effects of temperature and particles concentration on the dynamic viscosity of MgO-MWCNT/ethylene glycol hybrid nanofluid: experimental study publication-title: Physica E: Low-dimensional Systems and Nanostructures doi: 10.1016/j.physe.2016.06.015 – volume: 86 start-page: 245 year: 2017 ident: 10.1016/j.physa.2019.121056_b26 article-title: Rheological characteristics of mgo/oil nanolubricants: Experimental study and neural network modeling publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2017.05.017 – volume: 30 start-page: 489 issue: 4 year: 2017 ident: 10.1016/j.physa.2019.121056_b82 article-title: Thermal performance and viscosity of biologically produced silver/coconut oil Nanofluids publication-title: Chem. Biochem. Eng. Q. doi: 10.15255/CABEQ.2015.2203 – volume: 617 start-page: 102 year: 2015 ident: 10.1016/j.physa.2019.121056_b94 article-title: An experimental study on the effect of ultrasonication on thermal conductivity of ferrofluid loaded with carbon nanotubes publication-title: Thermochim. Acta doi: 10.1016/j.tca.2015.08.025 – volume: 79 start-page: 231 year: 2016 ident: 10.1016/j.physa.2019.121056_b6 article-title: An experimental study on rheological behavior of hybrid nanofluids made of iron and copper oxide in a binary mixture of water and ethylene glycol: non-Newtonian behavior publication-title: Exp. Therm Fluid Sci. doi: 10.1016/j.expthermflusci.2016.07.015 – volume: 11 start-page: 203 issue: 10 year: 2007 ident: 10.1016/j.physa.2019.121056_b54 article-title: Support vector regression publication-title: Neural Inf. Process.-Lett. Rev. – volume: 521 start-page: 98 year: 2019 ident: 10.1016/j.physa.2019.121056_b89 article-title: Effects of dispersed added Graphene Oxide-Silicon Carbide nanoparticles to present a statistical formulation for the mixture thermal properties publication-title: Physica A doi: 10.1016/j.physa.2019.01.035 – volume: 519 start-page: 159 year: 2019 ident: 10.1016/j.physa.2019.121056_b90 article-title: Develop 24 dissimilar ANNs by suitable architectures & training algorithms via sensitivity analysis to better statistical presentation: Measure MSEs between targets & ANN for Fe–CuO/Eg–Water nanofluid publication-title: Physica A doi: 10.1016/j.physa.2018.12.031 – volume: 509 start-page: 515 year: 2018 ident: 10.1016/j.physa.2019.121056_b2 article-title: The investigation of thermal radiation and free convection heat transfer mechanisms of nanofluid inside a shallow cavity by lattice Boltzmann method publication-title: Physica A doi: 10.1016/j.physa.2018.06.034 – volume: 58 start-page: 37 issue: 1 year: 2014 ident: 10.1016/j.physa.2019.121056_b88 article-title: Forced convective and nucleate flow boiling heat transfer to alumnia nanofluids publication-title: Period. Polytechn. Chem. Eng. doi: 10.3311/PPch.2206 – volume: 32 start-page: 3975 issue: 8 year: 2018 ident: 10.1016/j.physa.2019.121056_b79 article-title: Heat transfer and fluid flow of MgO/ethylene glycol in a corrugated heat exchanger publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-018-0748-x – volume: 30 start-page: 809 issue: 2 year: 2016 ident: 10.1016/j.physa.2019.121056_b60 article-title: Effect of magnetic field on thermal conductivity and viscosity of a magnetic nanofluid loaded with carbon nanotubes publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-016-0135-4 – volume: 63 start-page: 35 year: 2015 ident: 10.1016/j.physa.2019.121056_b13 article-title: Modeling of thermal conductivity of ZnO-EG using experimental data and ANN methods publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2015.01.001 – start-page: 1 year: 2018 ident: 10.1016/j.physa.2019.121056_b17 article-title: Second law analysis of turbulent convection flow of boehmite alumina nanofluid inside a double-pipe heat exchanger considering various shapes for nanoparticle publication-title: J. Therm. Anal. Calorimetry – volume: 509 start-page: 210 year: 2018 ident: 10.1016/j.physa.2019.121056_b65 article-title: Develop the nano scale method of lattice Boltzmann to predict the fluid flow and heat transfer of air in the inclined lid driven cavity with a large heat source inside, two case studies: Pure natural convection & mixed convection publication-title: Physica A doi: 10.1016/j.physa.2018.06.013 |
| SSID | ssj0001732 |
| Score | 2.3657382 |
| Snippet | A new multi-objective optimization model composed of the artificial neural network (ANN) and the genetic algorithm (GA) methods based on the empirical... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 121056 |
| SubjectTerms | Artificial neural network CuO/liquid paraffin nanofluid Empirical results Genetic algorithm Multi-objective optimization |
| Title | Minimize pressure drop and maximize heat transfer coefficient by the new proposed multi-objective optimization/statistical model composed of “ANN + Genetic Algorithm” based on empirical data of CuO/paraffin nanofluid in a pipe |
| URI | https://dx.doi.org/10.1016/j.physa.2019.121056 |
| Volume | 527 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-2119 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001732 issn: 0378-4371 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-2119 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001732 issn: 0378-4371 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-2119 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001732 issn: 0378-4371 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-2119 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001732 issn: 0378-4371 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIiQuiKcoj2oO3CBkN3ES73G1olpAXQ5QqbfIdhxwtbGjNCsBB9QfAn-uB34HM07CQ0I9cHTWI1k7o5nPyTffMPZUpWmeC5NEBqt9xBOZRUonKS4zhKd6sZCh6_14k69P-OvT7HSPraZeGKJVjrl_yOkhW49P4vHfjFtr43eztBA8LeYIQUh0jTRBOS9oisGLr79pHvMiHb4k4G2Jdk_KQ4HjRW8PSHxoviCVhRlNsf5Xdfqj4hzdYjdHqAjL4TS32Z5xd9j1QNnU53fZj2PrbGO_GAhc1l1noOp8C9JV0MhPw0-UaqEP4NR0oL0JihFYaEB9BsR-gKga7X3rzw2aEbsw8upsyILgMZ80Y6NmTK1HQdUZzxTm5wDR0YOdr-Hy4ttys4FnQDrWuAmW2w--s_3H5vLiO1CtxG0OTNPaIEoCRE0lw9XubUz643gwB046X293tgJcSGhta-6xk6OX71fraJzaEGmEC32Uo1MURzQs6trkM01qN3hJTXWupKyEzKoq0WJeYxhgstVFIbEk1lwJnRmx4LP0Ptt33pkHDEjLhkupMZtrrgop6jRXStAlMlEyyQ9YMnmr1KOkOU3W2JYTd-2sDC4uycXl4OID9vyXUTsoely9PZ_CoPwrMEusOVcZPvxfw0fsBq0GluFjtt93O_MEkU-vDkNoH7Jry1dv1pufr1MJUA |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEYIL4inKcw7cIGQ3dh57XK2oFuguB1qpt8h2nOJqE0dpVgIOqD8E_lwP_A5mnISHhHrg6HhGsjLWzDfJ58-MPVecJ0lmosBgtQ9EJONA6YjjMEZ4qmcz6U-9r9bJ8ki8PY6Pd9hiPAtDtMoh9_c53Wfr4Uk4vM2wsTb8MOFpJng6RQhComviCrsq4iilDuzV1988j2nK-18J2C6R-Sg95Ele9PmA1IemM5JZmNA11v8qT3-UnP1b7OaAFWHeL-c22zH1HXbNczb12V32Y2VrW9kvBjyZddsaKFrXgKwLqOSnfopyLXQenZoWtDNeMgIrDajPgOAPEFajv2vcmUE3ohcGTp32aRAcJpRqOKkZ0tkjL-uMa_IX6ADx0b2fK-Hi_Nt8vYYXQELWaATzzYlrbfexujj_DlQs0awGUzXWq5IAcVPJcbF9H5IAOS6shlrWrtxsbQE4kNDYxtxjR_uvDxfLYLi2IdCIF7ogwagogXA4K0uTTDTJ3WCXynWipCwyGRdFpLNpifsAs61OU4k1sRQq07HJZmLC77Pd2tXmAQMSsxFSakznWqhUZiVPlMqoi4yUjJI9Fo3RyvWgaU5Xa2zykbx2mvsQ5xTivA_xHnv5y6npJT0uN0_GbZD_tTNzLDqXOT78X8dn7PrycHWQH7xZv3vEbtBMTzl8zHa7dmueIAzq1FO_zX8CtDwK5Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Minimize+pressure+drop+and+maximize+heat+transfer+coefficient+by+the+new+proposed+multi-objective+optimization%2Fstatistical+model+composed+of+%E2%80%9CANN+%2B+Genetic+Algorithm%E2%80%9D+based+on+empirical+data+of+CuO%2Fparaffin+nanofluid+in+a+pipe&rft.jtitle=Physica+A&rft.au=Bagherzadeh%2C+Seyed+Amin&rft.au=Sulgani%2C+Mohsen+Tahmasebi&rft.au=Nikkhah%2C+Vahid&rft.au=Bahrami%2C+Mehrdad&rft.date=2019-08-01&rft.pub=Elsevier+B.V&rft.issn=0378-4371&rft.eissn=1873-2119&rft.volume=527&rft_id=info:doi/10.1016%2Fj.physa.2019.121056&rft.externalDocID=S0378437119306454 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4371&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4371&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4371&client=summon |