Minimize pressure drop and maximize heat transfer coefficient by the new proposed multi-objective optimization/statistical model composed of “ANN + Genetic Algorithm” based on empirical data of CuO/paraffin nanofluid in a pipe

A new multi-objective optimization model composed of the artificial neural network (ANN) and the genetic algorithm (GA) methods based on the empirical thermo-physical characteristics of CuO/liquid paraffin nanofluid flow in a pipe is presented for the first time. It means a new optimization /statist...

Full description

Saved in:
Bibliographic Details
Published inPhysica A Vol. 527; p. 121056
Main Authors Bagherzadeh, Seyed Amin, Sulgani, Mohsen Tahmasebi, Nikkhah, Vahid, Bahrami, Mehrdad, Karimipour, Arash, Jiang, Yu
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2019
Subjects
Online AccessGet full text
ISSN0378-4371
1873-2119
DOI10.1016/j.physa.2019.121056

Cover

Abstract A new multi-objective optimization model composed of the artificial neural network (ANN) and the genetic algorithm (GA) methods based on the empirical thermo-physical characteristics of CuO/liquid paraffin nanofluid flow in a pipe is presented for the first time. It means a new optimization /statistical approach is achieved based on ANN together with GA; so that at first ANN is employed to predict the nanofluid thermo-physical properties and then the heat transfer coefficient and the pressure drop ratios of the nanofluid to the basefluid, are optimized as well as to minimize the pressure drop ratio and maximize the heat transfer coefficient ratio by using the multi-objective optimization approach of GA. The results of the multi-objective optimization via the GA show that the Pareto optimal front quantifies the trade-offs in satisfying the two fitness function of heat transfer coefficient and the pressure drop ratios. •Minimize pressure drop and maximize heat transfer coefficient.•New proposed multi-objective optimization/statistical model.•ANN plus Genetic Algorithm based on empirical data.
AbstractList A new multi-objective optimization model composed of the artificial neural network (ANN) and the genetic algorithm (GA) methods based on the empirical thermo-physical characteristics of CuO/liquid paraffin nanofluid flow in a pipe is presented for the first time. It means a new optimization /statistical approach is achieved based on ANN together with GA; so that at first ANN is employed to predict the nanofluid thermo-physical properties and then the heat transfer coefficient and the pressure drop ratios of the nanofluid to the basefluid, are optimized as well as to minimize the pressure drop ratio and maximize the heat transfer coefficient ratio by using the multi-objective optimization approach of GA. The results of the multi-objective optimization via the GA show that the Pareto optimal front quantifies the trade-offs in satisfying the two fitness function of heat transfer coefficient and the pressure drop ratios. •Minimize pressure drop and maximize heat transfer coefficient.•New proposed multi-objective optimization/statistical model.•ANN plus Genetic Algorithm based on empirical data.
ArticleNumber 121056
Author Bagherzadeh, Seyed Amin
Karimipour, Arash
Bahrami, Mehrdad
Nikkhah, Vahid
Sulgani, Mohsen Tahmasebi
Jiang, Yu
Author_xml – sequence: 1
  givenname: Seyed Amin
  surname: Bagherzadeh
  fullname: Bagherzadeh, Seyed Amin
  organization: Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
– sequence: 2
  givenname: Mohsen Tahmasebi
  surname: Sulgani
  fullname: Sulgani, Mohsen Tahmasebi
  organization: Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
– sequence: 3
  givenname: Vahid
  surname: Nikkhah
  fullname: Nikkhah, Vahid
  organization: School of chemical, gas and oil Engineering, Semnan University, Semnan, Iran
– sequence: 4
  givenname: Mehrdad
  surname: Bahrami
  fullname: Bahrami, Mehrdad
  organization: Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
– sequence: 5
  givenname: Arash
  surname: Karimipour
  fullname: Karimipour, Arash
  organization: Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
– sequence: 6
  givenname: Yu
  surname: Jiang
  fullname: Jiang, Yu
  email: jiangyu@cumt.edu.cn
  organization: School of Mechatronics Engineering, China University of Mining and Technology, Xuzhou 211006, China
BookMark eNqFkc9u1DAQhy1UJLaFJ-DiO8quHeePc-CwWkFBKu0FztHEGbNeJXZkewvbUx8EXq4HngNnw4kDnEbWzPfTeL5LcmGdRUJec7bmjFebw3ranwKsc8abNc85K6tnZMVlLbKc8-aCrJioZVaImr8glyEcGGO8FvmK_PpkrBnNA9LJYwhHj7T3bqJgezrC96W1R4g0erBBo6fKodZGGbSRdica90gtfku8m1zAhB2HaDLXHVBFc4_UTXGOgWic3YSYaohGwUBH1-OQ4saFc5o-Pf7Y3t7SN_QaLaYhuh2-Om_ifnx6_Ek7OI9ZiuNk_DmihwgzuDvebSbwkBaz1IJ1ejianqYH0MlM-JI81zAEfPWnXpEv79993n3Ibu6uP-62N5nKuYxZJQvRFZJ3UmusmMorURYsF6rqAHoJZd_nSnLdNFAKqeoairzRRSdVibIpmLgiYslV3oXgUbeTNyP4U8tZO6tqD-1ZVTurahdViWr-opSJ53ulo5vhP-zbhcX0rXuDvg2zGoW98UlA2zvzT_43FO27BQ
CitedBy_id crossref_primary_10_1016_j_asoc_2021_107328
crossref_primary_10_1016_j_physa_2019_123950
crossref_primary_10_1002_apj_2500
crossref_primary_10_1007_s11356_022_22462_6
crossref_primary_10_1016_j_physa_2019_124124
crossref_primary_10_1016_j_est_2022_105266
crossref_primary_10_3390_pr8060693
crossref_primary_10_1016_j_physa_2019_122409
crossref_primary_10_1007_s10973_019_09189_2
crossref_primary_10_1038_s41598_022_16463_1
crossref_primary_10_1007_s10973_020_09989_x
crossref_primary_10_1007_s10973_022_11822_6
crossref_primary_10_1007_s10973_020_09541_x
crossref_primary_10_1016_j_susmat_2025_e01348
crossref_primary_10_1155_2021_9632277
crossref_primary_10_1515_zna_2021_0163
crossref_primary_10_1021_acsomega_3c06432
crossref_primary_10_1007_s10973_024_13023_9
crossref_primary_10_1016_j_physa_2019_122637
crossref_primary_10_1016_j_engappai_2021_104314
crossref_primary_10_1007_s11356_021_14126_8
crossref_primary_10_1007_s10973_020_10212_0
crossref_primary_10_1002_htj_21970
crossref_primary_10_1007_s10973_019_08789_2
crossref_primary_10_1134_S1810232824010107
crossref_primary_10_1108_AEAT_06_2019_0129
crossref_primary_10_3390_sym12010120
crossref_primary_10_1016_j_enganabound_2022_08_014
Cites_doi 10.1016/j.spmi.2012.01.002
10.1007/s00231-017-2065-9
10.1615/HeatTransRes.2014007271
10.1016/0893-6080(89)90020-8
10.1016/j.ijheatmasstransfer.2018.07.123
10.1016/j.applthermaleng.2017.06.110
10.1016/j.ijheatmasstransfer.2017.06.061
10.1016/j.icheatmasstransfer.2018.02.002
10.1016/j.applthermaleng.2017.04.083
10.1016/j.physe.2016.10.015
10.1016/j.ijthermalsci.2015.01.015
10.3311/PPch.9324
10.1063/1.2093936
10.1016/j.jmmm.2017.01.016
10.1016/j.physe.2016.07.013
10.1016/j.ijheatmasstransfer.2017.11.125
10.1016/j.ijheatmasstransfer.2015.06.059
10.1063/1.1700493
10.12693/APhysPolA.124.665
10.1016/j.applthermaleng.2017.07.100
10.1016/j.icheatmasstransfer.2016.02.008
10.1016/j.jtice.2017.12.029
10.1016/j.ijheatmasstransfer.2018.11.069
10.1016/j.jtice.2018.01.014
10.1016/j.physe.2017.11.008
10.1016/j.molliq.2018.11.057
10.1016/j.molliq.2018.05.026
10.1016/j.jmmm.2016.06.063
10.1016/j.icheatmasstransfer.2015.09.001
10.1016/j.ijnonlinmec.2011.07.013
10.1016/j.powtec.2017.06.023
10.1177/1687814016641016
10.1016/j.molliq.2018.01.012
10.1016/j.apt.2016.08.002
10.3233/JAE-130097
10.1016/j.molliq.2017.01.043
10.1007/s00231-016-1823-4
10.1007/s10973-015-4565-5
10.1016/j.euromechflu.2016.09.014
10.1016/j.ijthermalsci.2016.02.006
10.1016/j.applthermaleng.2016.04.002
10.1016/j.physe.2016.10.013
10.1016/j.powtec.2018.09.052
10.1016/j.ijheatmasstransfer.2018.08.112
10.1016/j.expthermflusci.2017.11.007
10.1016/j.physe.2016.11.021
10.1016/j.physa.2018.06.031
10.1016/j.icheatmasstransfer.2015.05.014
10.1016/j.physa.2014.01.057
10.1016/j.physb.2018.02.022
10.1007/s10973-017-6213-8
10.1007/s00231-015-1743-8
10.1016/j.icheatmasstransfer.2016.05.029
10.1615/HeatTransRes.2013006880
10.15255/CABEQ.2014.2069
10.1155/2014/761745
10.1007/s00231-017-2201-6
10.1162/neco.1992.4.3.415
10.1016/j.enconman.2017.08.007
10.1134/S0021894415030141
10.1016/0893-6080(91)90009-T
10.1016/j.icheatmasstransfer.2016.07.008
10.1016/j.expthermflusci.2016.03.010
10.1016/j.applthermaleng.2015.11.071
10.1007/s10973-017-6688-3
10.1115/1.1532008
10.1016/j.molliq.2017.03.020
10.1016/j.euromechflu.2014.08.004
10.1016/j.physe.2016.06.015
10.1016/j.icheatmasstransfer.2017.05.017
10.15255/CABEQ.2015.2203
10.1016/j.tca.2015.08.025
10.1016/j.expthermflusci.2016.07.015
10.1016/j.physa.2019.01.035
10.1016/j.physa.2018.12.031
10.1016/j.physa.2018.06.034
10.3311/PPch.2206
10.1007/s12206-018-0748-x
10.1007/s12206-016-0135-4
10.1016/j.icheatmasstransfer.2015.01.001
10.1016/j.physa.2018.06.013
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.physa.2019.121056
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1873-2119
ExternalDocumentID 10_1016_j_physa_2019_121056
S0378437119306454
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAPFB
AAXUO
ABAOU
ABMAC
ABNEU
ABYKQ
ACAZW
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADFHU
ADGUI
AEBSH
AEKER
AEYQN
AFFNX
AFKWA
AFTJW
AGHFR
AGTHC
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIIAU
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
AXLSJ
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IXIXF
J1W
K-O
KOM
M38
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSB
SSF
SSQ
SSW
SSZ
T5K
TN5
TWZ
WH7
XPP
YNT
ZMT
~02
~G-
29O
5VS
6TJ
AAFFL
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACROA
ACRPL
ADMUD
ADNMO
ADVLN
AEIPS
AFJKZ
AFODL
AGQPQ
AIIUN
AJWLA
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BEHZQ
BEZPJ
BGSCR
BNTGB
BPUDD
BULVW
BZJEE
CITATION
EFKBS
FEDTE
FGOYB
HMV
HVGLF
HZ~
MVM
NDZJH
R2-
SEW
SPG
VOH
WUQ
XJT
XOL
YYP
ZY4
~HD
ID FETCH-LOGICAL-c218t-6843b481b8ffe60c26354023c6baad8a5dd2c81f99a538c77a429f4b8c5e89403
IEDL.DBID .~1
ISSN 0378-4371
IngestDate Thu Apr 24 22:52:47 EDT 2025
Wed Oct 01 02:17:40 EDT 2025
Fri Feb 23 02:33:06 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Empirical results
CuO/liquid paraffin nanofluid
Multi-objective optimization
Artificial neural network
Genetic algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c218t-6843b481b8ffe60c26354023c6baad8a5dd2c81f99a538c77a429f4b8c5e89403
ParticipantIDs crossref_primary_10_1016_j_physa_2019_121056
crossref_citationtrail_10_1016_j_physa_2019_121056
elsevier_sciencedirect_doi_10_1016_j_physa_2019_121056
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-01
2019-08-00
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationTitle Physica A
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Jiji, Jiji (b74) 2006
Alipour, Karimipour, Safaei, Semiromi, Akbari (b43) 2017; 88
Shahsavar, Saghafian, Salimpour, Shafii (b58) 2016; 76
Shahsavar, Bahiraei (b48) 2017; 318
Chon, Kihm, Lee, Choi (b12) 2005; 87
Hornik (b49) 1991; 4
Alrashed, Akbari, Heydari, Toghraie, Zarringhalam, Shabani, Seifi, Goodarzi (b59) 2018; 537
Sarafraz, Nikkhah, Nakhjavani, Arya (b86) 2018; 91
Zadkhast, Toghraie, Karimipour (b16) 2017; 129
Nadooshan, Esfe, Afrand (b21) 2018; 131
Karimipour, Taghipour, Malvandi (b7) 2016; 419
Esfe, Yan, Akbari, Karimipour, Hassani (b11) 2015; 68
Akbari, Toghraie, Karimipour (b47) 2016; 8
Cristianini, Shawe-Taylor (b52) 2000
Soltani, Akbari (b34) 2016; 84
Sarafraz, Hormozi, Peyghambarzadeh, Vaeli (b87) 2015; 8
Xuan, Li (b10) 2003; 125
Esfe, Esforjani, Akbari, Karimiopour (b36) 2014; 45
Hornik, Stinchcombe, White (b55) 1989; 2
Esfe, Bahiraei, Hajmohammad, Afrand (b26) 2017; 86
Shahsavar, Saghafian, Salimpour, Shafii (b93) 2016; 52
Karimipour (b4) 2015; 91
Esfe, Saedodin, Naderi, Alirezaie, Karimipour, Wongwises, Goodarzi, bin Dahari (b13) 2015; 63
Mahmoodi, Esfe, Akbari, Karimipour, Afrand (b33) 2015; 47
Arya, Sarafraz, Pourmehran, Arjomandi (b76) 2019
Basak, Pal, Patranabis (b54) 2007; 11
Esfe, Naderi, Akbari, Afrand, Karimipour (b18) 2015; 121
Karimipour, Nezhad, D’Orazio, Esfe, Safaei, Shirani (b8) 2015; 49
Shahsavar, Moradi, Bahiraei (b22) 2018; 84
Shahsavar, Rahimi, Bahiraei (b32) 2017; 150
Hagan, Demuth, Beale, De Jesús (b51) 2014
Shahsavar, Salimpour, Saghafian, Shafii (b94) 2015; 617
Salari, Peyghambarzadeh, Sarafraz, Hormozi, Nikkhah (b80) 2017; 53
Esfe, Niazi, Esforjani, Akbari (b41) 2014; 45
Hosseini, Safaei, Goodarzi, Alrashed, Nguyen (b9) 2017; 114
Drucker, Burges, Kaufman, Smola, Vapnik (b53) 1997
Afrand, Nadooshan, Hassani, Yarmand, Dahari (b27) 2016; 77
Shahsavar, Khanmohammadi, Karimipour, Goodarzi (b91) 2019; 131
Alipour, Toghraie, Karimipour, Hajian (b92) 2019; 275
Bahrami, Akbari, Karimipour, Afrand (b6) 2016; 79
Monfared, Shahsavar, Bahrebar (b17) 2018
Sarafraz, Nikkhah, Madani, Jafarian, Hormozi (b83) 2017; 121
Nakhjavani, Nikkhah, Sarafraz, Shoja, Sarafraz (b77) 2017; 53
Karimipour, D’Orazio, Shadloo (b67) 2017; 86
Mahyari, Karimipour, Afrand (b89) 2019; 521
Alrashed, Karimipour, Bagherzadeh, Safaei, Afrand (b20) 2018; 127
Zareie, Akbari (b44) 2017; 230
Arya, Sarafraz, Arjomandi (b79) 2018; 32
Shahsavar, Salimpour, Saghafian, Shafii (b60) 2016; 30
Salari, Peyghambarzadeh, Sarafraz, Hormozi (b78) 2016; 60
Afrand, Najafabadi, Akbari (b24) 2016; 102
Karimipour, Bagherzadeh, Goodarzi, Alnaqi, Bahiraei, Safaei, Shadloo (b56) 2018; 127
Nojoomizadeh, D’Orazio, Karimipour, Afrand, Goodarzi (b25) 2018; 97
Akbari, Afrand, Arshi, Karimipour (b37) 2017; 233
Goodarzi, Safaei, Oztop, Karimipour, Sadeghinezhad, Dahari, Kazi, Jomhari (b57) 2014; 2014
Esfe, Arani, Karimiopour, Esforjani (b66) 2014; 45
Akbari, Safaei, Goodarzi, Akbar, Zarringhalam, Shabani, Dahari (b45) 2016; 27
Fox, McDonald, Pritchard (b73) 1985
Esfe, Wongwises, Naderi, Asadi, Safaei, Rostamian, Dahari, Karimipour (b15) 2015; 66
Karimipour, Ghasemi, Darvanjooghi, Abdollahi (b71) 2018; 92
Afrand, Rostami, Akbari, Wongwises, Esfe, Karimipour (b39) 2015; 90
Goodarzi, D’Orazio, Keshavarzi, Mousavi, Karimipour (b65) 2018; 509
Baratpour, Karimipour, Afrand, Wongwises (b5) 2016; 74
Esfe, Ghadi, Esforjania, Akbari (b38) 2013; 124
Harandi, Karimipour, Afrand, Akbari, D’Orazio (b14) 2016; 76
Bahiraei, Godini, Shahsavar (b23) 2018; 84
Sarafraz, Hormozi, Silakhori, Peyghambarzadeh (b81) 2016; 95
Bahrami, Akbari, Bagherzadeh, Karimipour, Afrand, Goodarzi (b90) 2019; 519
Bahiraei, Berahmand, Shahsavar (b46) 2017; 125
Nadooshan, Eshgarf, Afrand (b72) 2018; 253
Nojoomizadeh, Karimipour, Firouzi, Afrand (b62) 2018; 119
Nikkhah, Sarafraz, Hormozi (b85) 2015; 29
Sajadifar, Karimipour, Toghraie (b31) 2017; 61
Abu-Nada, Oztop, Pop (b69) 2012; 51
Akbari, Toghraie, Karimipour, Marzban, Ahmadi (b30) 2017; 86
Afrand, Karimipour, Nadooshan, Akbari (b35) 2016; 84
Arya, Sarafraz, Shahmiri, Madani, Nikkhah, Nakhjavani (b84) 2018; 54
Brinkman (b1) 1952; 20
Afrand, Toghraie, Karimipour, Wongwises (b29) 2017; 430
Esfandiary, Mehmandoust, Karimipour, Pakravan (b68) 2016; 105
Haji-Sheikh, Eftekhar, Lou (b70) 1982
Shahsavar, Ansarian, Bahiraei (b19) 2018; 340
Akbari, Toghraie, Karimipour, Safaei, Goodarzi, Alipour, Dahari (b42) 2016; 290
Safaei, Karimipour, Abdollahi, Nguyen (b2) 2018; 509
Aminossadati, Raisi, Ghasemi (b3) 2011; 46
Karimipour, D’Orazio, Goodarzi (b64) 2018; 509
Sarafraz, Arya, Nikkhah, Hormozi (b82) 2017; 30
Goodarzi, Safaei, Karimipour, Hooman, Dahari, Kazi, Sadeghinezhad (b61) 2014
Sarafraz, Hormozi (b88) 2014; 58
Ranjbarzadeh, Isfahani, Afrand, Karimipour, Hojaji (b28) 2017; 125
Sarafraz, Arya, Arjomandi (b75) 2018; 263
MacKay (b50) 1992; 4
Esfe, Akbari, Karimipour (b40) 2015; 56
Karimipour, Esfe, Safaei, Semiromi, Jafari, Kazi (b63) 2014; 402
Safaei (10.1016/j.physa.2019.121056_b2) 2018; 509
Chon (10.1016/j.physa.2019.121056_b12) 2005; 87
Esfandiary (10.1016/j.physa.2019.121056_b68) 2016; 105
Shahsavar (10.1016/j.physa.2019.121056_b19) 2018; 340
Shahsavar (10.1016/j.physa.2019.121056_b22) 2018; 84
Karimipour (10.1016/j.physa.2019.121056_b56) 2018; 127
Sarafraz (10.1016/j.physa.2019.121056_b81) 2016; 95
Monfared (10.1016/j.physa.2019.121056_b17) 2018
Jiji (10.1016/j.physa.2019.121056_b74) 2006
Mahyari (10.1016/j.physa.2019.121056_b89) 2019; 521
Alrashed (10.1016/j.physa.2019.121056_b59) 2018; 537
Goodarzi (10.1016/j.physa.2019.121056_b57) 2014; 2014
Esfe (10.1016/j.physa.2019.121056_b41) 2014; 45
Karimipour (10.1016/j.physa.2019.121056_b71) 2018; 92
Shahsavar (10.1016/j.physa.2019.121056_b48) 2017; 318
Akbari (10.1016/j.physa.2019.121056_b37) 2017; 233
Sajadifar (10.1016/j.physa.2019.121056_b31) 2017; 61
Shahsavar (10.1016/j.physa.2019.121056_b32) 2017; 150
Akbari (10.1016/j.physa.2019.121056_b45) 2016; 27
Salari (10.1016/j.physa.2019.121056_b78) 2016; 60
Esfe (10.1016/j.physa.2019.121056_b18) 2015; 121
Fox (10.1016/j.physa.2019.121056_b73) 1985
Sarafraz (10.1016/j.physa.2019.121056_b82) 2017; 30
Esfe (10.1016/j.physa.2019.121056_b15) 2015; 66
Haji-Sheikh (10.1016/j.physa.2019.121056_b70) 1982
Mahmoodi (10.1016/j.physa.2019.121056_b33) 2015; 47
Harandi (10.1016/j.physa.2019.121056_b14) 2016; 76
Nikkhah (10.1016/j.physa.2019.121056_b85) 2015; 29
Akbari (10.1016/j.physa.2019.121056_b47) 2016; 8
Goodarzi (10.1016/j.physa.2019.121056_b61) 2014
Esfe (10.1016/j.physa.2019.121056_b36) 2014; 45
Afrand (10.1016/j.physa.2019.121056_b39) 2015; 90
Akbari (10.1016/j.physa.2019.121056_b42) 2016; 290
Karimipour (10.1016/j.physa.2019.121056_b64) 2018; 509
Esfe (10.1016/j.physa.2019.121056_b11) 2015; 68
Nojoomizadeh (10.1016/j.physa.2019.121056_b25) 2018; 97
Abu-Nada (10.1016/j.physa.2019.121056_b69) 2012; 51
Nadooshan (10.1016/j.physa.2019.121056_b72) 2018; 253
Nojoomizadeh (10.1016/j.physa.2019.121056_b62) 2018; 119
Bahrami (10.1016/j.physa.2019.121056_b90) 2019; 519
Shahsavar (10.1016/j.physa.2019.121056_b91) 2019; 131
Esfe (10.1016/j.physa.2019.121056_b40) 2015; 56
Sarafraz (10.1016/j.physa.2019.121056_b86) 2018; 91
Arya (10.1016/j.physa.2019.121056_b76) 2019
Cristianini (10.1016/j.physa.2019.121056_b52) 2000
Bahrami (10.1016/j.physa.2019.121056_b6) 2016; 79
Afrand (10.1016/j.physa.2019.121056_b27) 2016; 77
Sarafraz (10.1016/j.physa.2019.121056_b83) 2017; 121
Nakhjavani (10.1016/j.physa.2019.121056_b77) 2017; 53
Shahsavar (10.1016/j.physa.2019.121056_b94) 2015; 617
Sarafraz (10.1016/j.physa.2019.121056_b87) 2015; 8
Goodarzi (10.1016/j.physa.2019.121056_b65) 2018; 509
Arya (10.1016/j.physa.2019.121056_b84) 2018; 54
Baratpour (10.1016/j.physa.2019.121056_b5) 2016; 74
MacKay (10.1016/j.physa.2019.121056_b50) 1992; 4
Esfe (10.1016/j.physa.2019.121056_b26) 2017; 86
Karimipour (10.1016/j.physa.2019.121056_b63) 2014; 402
Brinkman (10.1016/j.physa.2019.121056_b1) 1952; 20
Shahsavar (10.1016/j.physa.2019.121056_b58) 2016; 76
Afrand (10.1016/j.physa.2019.121056_b24) 2016; 102
Zareie (10.1016/j.physa.2019.121056_b44) 2017; 230
Drucker (10.1016/j.physa.2019.121056_b53) 1997
Shahsavar (10.1016/j.physa.2019.121056_b93) 2016; 52
Afrand (10.1016/j.physa.2019.121056_b35) 2016; 84
Bahiraei (10.1016/j.physa.2019.121056_b46) 2017; 125
Akbari (10.1016/j.physa.2019.121056_b30) 2017; 86
Sarafraz (10.1016/j.physa.2019.121056_b88) 2014; 58
Soltani (10.1016/j.physa.2019.121056_b34) 2016; 84
Afrand (10.1016/j.physa.2019.121056_b29) 2017; 430
Alipour (10.1016/j.physa.2019.121056_b92) 2019; 275
Hornik (10.1016/j.physa.2019.121056_b55) 1989; 2
Esfe (10.1016/j.physa.2019.121056_b66) 2014; 45
Xuan (10.1016/j.physa.2019.121056_b10) 2003; 125
Arya (10.1016/j.physa.2019.121056_b79) 2018; 32
Karimipour (10.1016/j.physa.2019.121056_b4) 2015; 91
Hornik (10.1016/j.physa.2019.121056_b49) 1991; 4
Basak (10.1016/j.physa.2019.121056_b54) 2007; 11
Karimipour (10.1016/j.physa.2019.121056_b67) 2017; 86
Alrashed (10.1016/j.physa.2019.121056_b20) 2018; 127
Esfe (10.1016/j.physa.2019.121056_b13) 2015; 63
Sarafraz (10.1016/j.physa.2019.121056_b75) 2018; 263
Hosseini (10.1016/j.physa.2019.121056_b9) 2017; 114
Aminossadati (10.1016/j.physa.2019.121056_b3) 2011; 46
Bahiraei (10.1016/j.physa.2019.121056_b23) 2018; 84
Nadooshan (10.1016/j.physa.2019.121056_b21) 2018; 131
Hagan (10.1016/j.physa.2019.121056_b51) 2014
Alipour (10.1016/j.physa.2019.121056_b43) 2017; 88
Salari (10.1016/j.physa.2019.121056_b80) 2017; 53
Zadkhast (10.1016/j.physa.2019.121056_b16) 2017; 129
Shahsavar (10.1016/j.physa.2019.121056_b60) 2016; 30
Ranjbarzadeh (10.1016/j.physa.2019.121056_b28) 2017; 125
Karimipour (10.1016/j.physa.2019.121056_b8) 2015; 49
Karimipour (10.1016/j.physa.2019.121056_b7) 2016; 419
Esfe (10.1016/j.physa.2019.121056_b38) 2013; 124
References_xml – volume: 49
  start-page: 89
  year: 2015
  end-page: 99
  ident: b8
  article-title: Simulation of copper–water nanofluid in a microchannel in slip flow regime using the lattice Boltzmann method
  publication-title: Eur. J. Mech. B Fluids
– start-page: 155
  year: 1997
  end-page: 161
  ident: b53
  article-title: Support vector regression machines
  publication-title: Advances in Neural Information Processing Systems
– volume: 419
  start-page: 420
  year: 2016
  end-page: 428
  ident: b7
  article-title: Developing the laminar MHD forced convection flow of water/FMWNT carbon nanotubes in a microchannel imposed the uniform heat flux
  publication-title: J. Magn. Magn. Mater.
– volume: 45
  start-page: 279
  year: 2014
  end-page: 292
  ident: b66
  article-title: Numerical simulation of natural convection around an obstacle placed in an enclosure filled with different types of nanofluids
  publication-title: Heat Transfer Res.
– volume: 131
  start-page: 432
  year: 2019
  end-page: 441
  ident: b91
  article-title: A novel comprehensive experimental study concerned synthesizes and prepare liquid paraffin-Fe3O4 mixture to develop models for both thermal conductivity & viscosity: A new approach of GMDH type of neural network
  publication-title: Int. J. Heat Mass Transfer
– volume: 92
  start-page: 90
  year: 2018
  end-page: 99
  ident: b71
  article-title: A new correlation for estimating the thermal conductivity and dynamic viscosity of CuO/liquid paraffin nanofluid using neural network method
  publication-title: Int. Commun. Heat Mass Transfer
– volume: 509
  start-page: 729
  year: 2018
  end-page: 745
  ident: b64
  article-title: Develop the lattice Boltzmann method to simulate the slip velocity and temperature domain of buoyancy forces of FMWCNT nano particles in water through a micro flow imposed to the specified heat flux
  publication-title: Physica A
– volume: 86
  start-page: 68
  year: 2017
  end-page: 75
  ident: b30
  article-title: The effect of velocity and dimension of solid nanoparticles on heat transfer in non-Newtonian nanofluid
  publication-title: Physica E
– volume: 121
  start-page: 1273
  year: 2015
  end-page: 1278
  ident: b18
  article-title: Evaluation of thermal conductivity of COOH-functionalized MWCNTs/water via temperature and solid volume fraction by using experimental data and ANN methods
  publication-title: J. Therm. Anal. Calorimetry
– volume: 47
  start-page: 21
  year: 2015
  end-page: 32
  ident: b33
  article-title: Magneto-natural convection in square cavities with a source–sink pair on different walls
  publication-title: Int. J. Appl. Electromagn. Mech.
– volume: 617
  start-page: 102
  year: 2015
  end-page: 110
  ident: b94
  article-title: An experimental study on the effect of ultrasonication on thermal conductivity of ferrofluid loaded with carbon nanotubes
  publication-title: Thermochim. Acta
– volume: 86
  start-page: 146
  year: 2017
  end-page: 153
  ident: b67
  article-title: The effects of different nano particles of Al2O3 and Ag on the MHD nano fluid flow and heat transfer in a microchannel including slip velocity and temperature jump
  publication-title: Physica E
– volume: 91
  start-page: 146
  year: 2015
  end-page: 156
  ident: b4
  article-title: New correlation for Nusselt number of nanofluid with Ag/Al2O3/Cu nanoparticles in a microchannel considering slip velocity and temperature jump by using lattice Boltzmann method
  publication-title: Int. J. Therm. Sci.
– volume: 114
  start-page: 207
  year: 2017
  end-page: 210
  ident: b9
  article-title: New temperature, interfacial shell dependent dimensionless model for thermal conductivity of nanofluids
  publication-title: Int. J. Heat Mass Transfer
– volume: 56
  start-page: 443
  year: 2015
  end-page: 453
  ident: b40
  article-title: Mixed convection in a lid-driven cavity with an inside hot obstacle filled by an Al2O3–water nanofluid
  publication-title: J. Appl. Mech. Tech. Phys.
– volume: 66
  start-page: 100
  year: 2015
  end-page: 104
  ident: b15
  article-title: Thermal conductivity of Cu/TiO2–water/EG hybrid nanofluid: Experimental data and modeling using artificial neural network and correlation
  publication-title: Int. Commun. Heat Mass Transfer
– volume: 32
  start-page: 3975
  year: 2018
  end-page: 3982
  ident: b79
  article-title: Heat transfer and fluid flow of MgO/ethylene glycol in a corrugated heat exchanger
  publication-title: J. Mech. Sci. Technol.
– volume: 84
  start-page: 564
  year: 2016
  end-page: 570
  ident: b34
  article-title: Effects of temperature and particles concentration on the dynamic viscosity of MgO-MWCNT/ethylene glycol hybrid nanofluid: experimental study
  publication-title: Physica E: Low-dimensional Systems and Nanostructures
– volume: 60
  start-page: 252
  year: 2016
  end-page: 258
  ident: b78
  article-title: Boiling heat transfer of alumina nano-fluids: role of nanoparticle deposition on the boiling heat transfer coefficient
  publication-title: Period. Polytech. Chem. Eng.
– year: 2000
  ident: b52
  article-title: An Introduction to Support Vector Machines
– volume: 275
  start-page: 192
  year: 2019
  end-page: 203
  ident: b92
  article-title: Molecular dynamics simulation of fluid flow passing through a nanochannel: Effects of geometric shape of roughnesses
  publication-title: J. Molecular Liquids
– volume: 11
  start-page: 203
  year: 2007
  end-page: 224
  ident: b54
  article-title: Support vector regression
  publication-title: Neural Inf. Process.-Lett. Rev.
– volume: 46
  start-page: 1373
  year: 2011
  end-page: 1382
  ident: b3
  article-title: Effects of magnetic field on nanofluid forced convection in a partially heated microchannel
  publication-title: Int. J. Non-Linear Mech.
– volume: 84
  start-page: 149
  year: 2018
  end-page: 161
  ident: b23
  article-title: Thermal and hydraulic characteristics of a minichannel heat exchanger operated with a non-Newtonian hybrid nanofluid
  publication-title: J. Taiwan Inst. Chem. Eng.
– start-page: 846
  year: 1982
  ident: b70
  article-title: Some thermophysical properties of paraffin wax as a thermal storage medium
  publication-title: 3rd Joint Thermophysics, Fluids, Plasma and Heat Transfer Conference
– volume: 125
  start-page: 151
  year: 2003
  end-page: 155
  ident: b10
  article-title: Investigation on convective heat transfer and flow features of nanofluids
  publication-title: J. Heat Transfer
– start-page: 1
  year: 2018
  end-page: 12
  ident: b17
  article-title: Second law analysis of turbulent convection flow of boehmite alumina nanofluid inside a double-pipe heat exchanger considering various shapes for nanoparticle
  publication-title: J. Therm. Anal. Calorimetry
– volume: 102
  start-page: 45
  year: 2016
  end-page: 54
  ident: b24
  article-title: Effects of temperature and solid volume fraction on viscosity of SiO2-MWCNTs/SAE40 hybrid nanofluid as a coolant and lubricant in heat engines
  publication-title: Appl. Therm. Eng.
– volume: 54
  start-page: 985
  year: 2018
  end-page: 997
  ident: b84
  article-title: Thermal performance analysis of a flat heat pipe working with carbon nanotube-water nanofluid for cooling of a high heat flux heater
  publication-title: Heat Mass Transf.
– volume: 53
  start-page: 265
  year: 2017
  end-page: 275
  ident: b80
  article-title: Thermal behavior of aqueous iron oxide nano-fluid as a coolant on a flat disc heater under the pool boiling condition
  publication-title: Heat Mass Transf.
– volume: 29
  start-page: 405
  year: 2015
  end-page: 415
  ident: b85
  article-title: Application of spherical copper oxide (II) water nano-fluid as a potential coolant in a boiling annular heat exchanger
  publication-title: Chem. Biochem. Engi. Q.
– volume: 509
  start-page: 210
  year: 2018
  end-page: 233
  ident: b65
  article-title: Develop the nano scale method of lattice Boltzmann to predict the fluid flow and heat transfer of air in the inclined lid driven cavity with a large heat source inside, two case studies: Pure natural convection & mixed convection
  publication-title: Physica A
– volume: 2
  start-page: 359
  year: 1989
  end-page: 366
  ident: b55
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Netw.
– year: 2014
  ident: b51
  article-title: Neural Network Design
– year: 1985
  ident: b73
  article-title: Introduction to Fluid Mechanics
– volume: 233
  start-page: 352
  year: 2017
  end-page: 357
  ident: b37
  article-title: An experimental study on rheological behavior of ethylene glycol based nanofluid: proposing a new correlation as a function of silica concentration and temperature
  publication-title: J. Molecular Liquids
– volume: 61
  start-page: 25
  year: 2017
  end-page: 32
  ident: b31
  article-title: Fluid flow and heat transfer of non-Newtonian nanofluid in a microtube considering slip velocity and temperature jump boundary conditions
  publication-title: Eur. J. Mech. B Fluids
– volume: 30
  start-page: 809
  year: 2016
  end-page: 815
  ident: b60
  article-title: Effect of magnetic field on thermal conductivity and viscosity of a magnetic nanofluid loaded with carbon nanotubes
  publication-title: J. Mech. Sci. Technol.
– volume: 340
  start-page: 370
  year: 2018
  end-page: 379
  ident: b19
  article-title: Effect of line dipole magnetic field on entropy generation of Mn-Zn ferrite ferrofluid flowing through a minichannel using two-phase mixture model
  publication-title: Powder Technol.
– volume: 318
  start-page: 441
  year: 2017
  end-page: 450
  ident: b48
  article-title: Experimental investigation and modeling of thermal conductivity and viscosity for non-Newtonian hybrid nanofluid containing coated CNT/Fe3O4 nanoparticles
  publication-title: Powder Technol.
– volume: 91
  start-page: 509
  year: 2018
  end-page: 519
  ident: b86
  article-title: Thermal performance of a heat sink microchannel working with biologically produced silver-water nanofluid: experimental assessment
  publication-title: Exp. Therm Fluid Sci.
– volume: 20
  year: 1952
  ident: b1
  article-title: The viscosity of concentrated suspensions and solutions
  publication-title: J. Chem. Phys.
– volume: 131
  start-page: 2741
  year: 2018
  end-page: 2748
  ident: b21
  article-title: Prediction of rheological behavior of SiO 2-MWCNTs/10W40 hybrid nanolubricant by designing neural network
  publication-title: J. Therm. Anal. Calorimetry
– volume: 290
  start-page: 135
  year: 2016
  end-page: 153
  ident: b42
  article-title: Investigation of rib’s height effect on heat transfer and flow parameters of laminar water–Al2O3 nanofluid in a rib-microchannel
  publication-title: Appl. Math. Comput.
– volume: 84
  start-page: 474
  year: 2016
  end-page: 481
  ident: b35
  article-title: The variations of heat transfer and slip velocity of FMWNT-water nano-fluid along the micro-channel in the lack and presence of a magnetic field
  publication-title: Physica E
– volume: 97
  start-page: 226
  year: 2018
  end-page: 238
  ident: b25
  article-title: Investigation of permeability effect on slip velocity and temperature jump boundary conditions for FMWNT/Water nanofluid flow and heat transfer inside a microchannel filled by a porous media
  publication-title: Physica E
– volume: 52
  start-page: 2293
  year: 2016
  end-page: 2301
  ident: b93
  article-title: Effect of temperature and concentration on thermal conductivity and viscosity of ferrofluid loaded with carbon nanotubes
  publication-title: Heat Mass Transf.
– volume: 2014
  year: 2014
  ident: b57
  article-title: Numerical study of entropy generation due to coupled laminar and turbulent mixed convection and thermal radiation in an enclosure filled with a semitransparent medium
  publication-title: Sci. World J.
– volume: 263
  start-page: 382
  year: 2018
  end-page: 389
  ident: b75
  article-title: Thermal and hydraulic analysis of a rectangular microchannel with gallium-copper oxide nano-suspension
  publication-title: J. Molecular Liquids
– start-page: 762184
  year: 2014
  ident: b61
  article-title: Comparison of the finite volume and lattice Boltzmann methods for solving natural convection heat transfer problems inside cavities and enclosures
  publication-title: Abstract and Applied Analysis, Vol. 2014
– volume: 105
  start-page: 137
  year: 2016
  end-page: 158
  ident: b68
  article-title: Natural convection of Al2O3–water nanofluid in an inclined enclosure with the effects of slip velocity mechanisms: Brownian motion and thermophoresis phenomenon
  publication-title: Int. J. Therm. Sci.
– volume: 58
  start-page: 37
  year: 2014
  end-page: 46
  ident: b88
  article-title: Forced convective and nucleate flow boiling heat transfer to alumnia nanofluids
  publication-title: Period. Polytechn. Chem. Eng.
– volume: 521
  start-page: 98
  year: 2019
  end-page: 112
  ident: b89
  article-title: Effects of dispersed added Graphene Oxide-Silicon Carbide nanoparticles to present a statistical formulation for the mixture thermal properties
  publication-title: Physica A
– volume: 51
  start-page: 381
  year: 2012
  end-page: 395
  ident: b69
  article-title: Buoyancy induced flow in a nanofluid filled enclosure partially exposed to forced convection
  publication-title: Superlattices Microstruct.
– volume: 88
  start-page: 60
  year: 2017
  end-page: 76
  ident: b43
  article-title: Influence of T-semi attached rib on turbulent flow and heat transfer parameters of a silver-water nanofluid with different volume fractions in a three-dimensional trapezoidal microchannel
  publication-title: Physica E
– volume: 230
  start-page: 408
  year: 2017
  end-page: 414
  ident: b44
  article-title: Hybrid nanoparticles effects on rheological behavior of water-EG coolant under different temperatures: An experimental study
  publication-title: J. Molecular Liquids
– volume: 95
  start-page: 433
  year: 2016
  end-page: 444
  ident: b81
  article-title: On the fouling formation of functionalized and non-functionalized carbon nanotube nano-fluids under pool boiling condition
  publication-title: Appl. Therm. Eng.
– volume: 30
  start-page: 489
  year: 2017
  end-page: 500
  ident: b82
  article-title: Thermal performance and viscosity of biologically produced silver/coconut oil Nanofluids
  publication-title: Chem. Biochem. Eng. Q.
– volume: 76
  start-page: 1
  year: 2016
  end-page: 11
  ident: b58
  article-title: Experimental investigation on laminar forced convective heat transfer of ferrofluid loaded with carbon nanotubes under constant and alternating magnetic fields
  publication-title: Exp. Therm Fluid Sci.
– volume: 76
  start-page: 171
  year: 2016
  end-page: 177
  ident: b14
  article-title: An experimental study on thermal conductivity of F-MWCNTs–Fe3O4/EG hybrid nanofluid: effects of temperature and concentration
  publication-title: Int. Commun. Heat Mass Transfer
– volume: 125
  start-page: 69
  year: 2017
  end-page: 79
  ident: b28
  article-title: An experimental study on heat transfer and pressure drop of water/graphene oxide nanofluid in a copper tube under air cross-flow: applicable as a heat exchanger
  publication-title: Appl. Therm. Eng.
– volume: 121
  start-page: 388
  year: 2017
  end-page: 399
  ident: b83
  article-title: Low-frequency vibration for fouling mitigation and intensification of thermal performance of a plate heat exchanger working with CuO/water nanofluid
  publication-title: Appl. Therm. Eng.
– volume: 537
  start-page: 176
  year: 2018
  end-page: 183
  ident: b59
  article-title: The numerical modeling of water/FMWCNT nanofluid flow and heat transfer in a backward-facing contracting channel
  publication-title: Physica B
– volume: 519
  start-page: 159
  year: 2019
  end-page: 168
  ident: b90
  article-title: Develop 24 dissimilar ANNs by suitable architectures & training algorithms via sensitivity analysis to better statistical presentation: Measure MSEs between targets & ANN for Fe–CuO/Eg–Water nanofluid
  publication-title: Physica A
– volume: 86
  start-page: 245
  year: 2017
  end-page: 252
  ident: b26
  article-title: Rheological characteristics of mgo/oil nanolubricants: Experimental study and neural network modeling
  publication-title: Int. Commun. Heat Mass Transfer
– volume: 8
  year: 2015
  ident: b87
  article-title: Upward flow boiling to DI-water and cuo nanofluids inside the concentric annuli
  publication-title: J. Appl. Fluid Mech.
– volume: 68
  start-page: 248
  year: 2015
  end-page: 251
  ident: b11
  article-title: Experimental study on thermal conductivity of DWCNT-ZnO/water-EG nanofluids
  publication-title: Int. Commun. Heat Mass Transfer
– volume: 4
  start-page: 251
  year: 1991
  end-page: 257
  ident: b49
  article-title: Approximation capabilities of multilayer feedforward networks
  publication-title: Neural Netw.
– volume: 79
  start-page: 231
  year: 2016
  end-page: 237
  ident: b6
  article-title: An experimental study on rheological behavior of hybrid nanofluids made of iron and copper oxide in a binary mixture of water and ethylene glycol: non-Newtonian behavior
  publication-title: Exp. Therm Fluid Sci.
– volume: 430
  start-page: 22
  year: 2017
  end-page: 28
  ident: b29
  article-title: A numerical study of natural convection in a vertical annulus filled with gallium in the presence of magnetic field
  publication-title: J. Magn. Magn. Mater.
– volume: 90
  start-page: 418
  year: 2015
  end-page: 426
  ident: b39
  article-title: Effect of induced electric field on magneto-natural convection in a vertical cylindrical annulus filled with liquid potassium
  publication-title: Int. J. Heat Mass Transfer
– volume: 129
  start-page: 859
  year: 2017
  end-page: 867
  ident: b16
  article-title: Developing a new correlation to estimate the thermal conductivity of MWCNT-CuO/water hybrid nanofluid via an experimental investigation
  publication-title: J. Therm. Anal. Calorimetry
– volume: 77
  start-page: 49
  year: 2016
  end-page: 53
  ident: b27
  article-title: Predicting the viscosity of multi-walled carbon nanotubes/water nanofluid by developing an optimal artificial neural network based on experimental data
  publication-title: Int. Commun. Heat Mass Transfer
– volume: 127
  start-page: 925
  year: 2018
  end-page: 935
  ident: b20
  article-title: Electro-and thermophysical properties of water-based nanofluids containing copper ferrite nanoparticles coated with silica: Experimental data, modeling through enhanced ANN and curve fitting
  publication-title: Int. J. Heat Mass Transfer
– volume: 45
  start-page: 563
  year: 2014
  end-page: 578
  ident: b36
  article-title: Mixed-convection flow in a lid-driven square cavity filled with a nanofluid with variable properties: effect of the nanoparticle diameter and of the position of a hot obstacle
  publication-title: Heat Transfer Res.
– volume: 119
  start-page: 891
  year: 2018
  end-page: 906
  ident: b62
  article-title: Investigation of permeability and porosity effects on the slip velocity and convection heat transfer rate of Fe 3 O 4/water nanofluid flow in a microchannel while its lower half filled by a porous medium
  publication-title: Int. J. Heat Mass Transfer
– volume: 124
  start-page: 665
  year: 2013
  end-page: 672
  ident: b38
  article-title: Combined convection in a lid-driven cavity with an inside obstacle subjected to Al 2 O 3-Water nanofluid: Effect of solid volume fraction and nanofluid variable properties
  publication-title: Acta Phys. Pol. A.
– start-page: 275
  year: 2006
  ident: b74
  article-title: Heat Convection
– volume: 8
  year: 2016
  ident: b47
  article-title: Numerical simulation of heat transfer and turbulent flow of water nanofluids copper oxide in rectangular microchannel with semi-attached rib
  publication-title: Adv. Mech. Eng.
– volume: 74
  start-page: 108
  year: 2016
  end-page: 113
  ident: b5
  article-title: Effects of temperature and concentration on the viscosity of nanofluids made of single-wall carbon nanotubes in ethylene glycol
  publication-title: Int. Commun. Heat Mass Transfer
– volume: 150
  start-page: 37
  year: 2017
  end-page: 47
  ident: b32
  article-title: Optimization of irreversibility and thermal characteristics of a mini heat exchanger operated with a new hybrid nanofluid containing carbon nanotubes decorated with magnetic nanoparticles
  publication-title: Energy Convers. Manage.
– volume: 509
  start-page: 515
  year: 2018
  end-page: 535
  ident: b2
  article-title: The investigation of thermal radiation and free convection heat transfer mechanisms of nanofluid inside a shallow cavity by lattice Boltzmann method
  publication-title: Physica A
– volume: 127
  start-page: 1169
  year: 2018
  end-page: 1179
  ident: b56
  article-title: Synthesized CuFe2O4/SiO2 nanocomposites added to water/EG: Evaluation of the thermophysical properties beside sensitivity analysis & EANN
  publication-title: Int. J. Heat Mass Transfer
– volume: 53
  start-page: 3201
  year: 2017
  end-page: 3209
  ident: b77
  article-title: Green synthesis of silver nanoparticles using green tea leaves: Experimental study on the morphological, rheological and antibacterial behaviour
  publication-title: Heat Mass Transf.
– volume: 125
  start-page: 1083
  year: 2017
  end-page: 1093
  ident: b46
  article-title: Irreversibility analysis for flow of a non-Newtonian hybrid nanofluid containing coated CNT/Fe3O4 nanoparticles in a minichannel heat exchanger
  publication-title: Appl. Therm. Eng.
– volume: 253
  start-page: 169
  year: 2018
  end-page: 177
  ident: b72
  article-title: Measuring the viscosity of Fe3O4-MWCNTs/EG hybrid nanofluid for evaluation of thermal efficiency: Newtonian and non-Newtonian behavior
  publication-title: J. Molecular Liquids
– volume: 84
  start-page: 28
  year: 2018
  end-page: 40
  ident: b22
  article-title: Heat transfer and entropy generation optimization for flow of a non-Newtonian hybrid nanofluid containing coated CNT/Fe3O4 nanoparticles in a concentric annulus
  publication-title: J. Taiwan Inst. Chem. Eng.
– volume: 27
  start-page: 2175
  year: 2016
  end-page: 2185
  ident: b45
  article-title: A modified two-phase mixture model of nanofluid flow and heat transfer in a 3-D curved microtube
  publication-title: Adv. Powder Technol.
– start-page: 1
  year: 2019
  end-page: 13
  ident: b76
  article-title: Heat transfer and pressure drop characteristics of mgo nanofluid in a double pipe heat exchanger
  publication-title: Heat Mass Transf.
– volume: 63
  start-page: 35
  year: 2015
  end-page: 40
  ident: b13
  article-title: Modeling of thermal conductivity of ZnO-EG using experimental data and ANN methods
  publication-title: Int. Commun. Heat Mass Transfer
– volume: 45
  start-page: 309
  year: 2014
  end-page: 338
  ident: b41
  article-title: Mixed convection flow and heat transfer in a ventilated inclined cavity containing hot obstacles subjected to a nanofluid
  publication-title: Heat Transfer Res.
– volume: 4
  start-page: 415
  year: 1992
  end-page: 447
  ident: b50
  article-title: Bayesian interpolation
  publication-title: Neural Comput.
– volume: 402
  start-page: 150
  year: 2014
  end-page: 168
  ident: b63
  article-title: Mixed convection of copper–water nanofluid in a shallow inclined lid driven cavity using the lattice Boltzmann method
  publication-title: Physica A
– volume: 87
  year: 2005
  ident: b12
  article-title: Empirical correlation finding the role of temperature and particle size for nanofluid (Al 2 O 3) thermal conductivity enhancement
  publication-title: Appl. Phys. Lett.
– volume: 51
  start-page: 381
  issue: 3
  year: 2012
  ident: 10.1016/j.physa.2019.121056_b69
  article-title: Buoyancy induced flow in a nanofluid filled enclosure partially exposed to forced convection
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2012.01.002
– year: 1985
  ident: 10.1016/j.physa.2019.121056_b73
– year: 2014
  ident: 10.1016/j.physa.2019.121056_b51
– volume: 53
  start-page: 3201
  issue: 10
  year: 2017
  ident: 10.1016/j.physa.2019.121056_b77
  article-title: Green synthesis of silver nanoparticles using green tea leaves: Experimental study on the morphological, rheological and antibacterial behaviour
  publication-title: Heat Mass Transf.
  doi: 10.1007/s00231-017-2065-9
– volume: 45
  start-page: 563
  issue: 6
  year: 2014
  ident: 10.1016/j.physa.2019.121056_b36
  article-title: Mixed-convection flow in a lid-driven square cavity filled with a nanofluid with variable properties: effect of the nanoparticle diameter and of the position of a hot obstacle
  publication-title: Heat Transfer Res.
  doi: 10.1615/HeatTransRes.2014007271
– volume: 2
  start-page: 359
  issue: 5
  year: 1989
  ident: 10.1016/j.physa.2019.121056_b55
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(89)90020-8
– volume: 127
  start-page: 925
  year: 2018
  ident: 10.1016/j.physa.2019.121056_b20
  article-title: Electro-and thermophysical properties of water-based nanofluids containing copper ferrite nanoparticles coated with silica: Experimental data, modeling through enhanced ANN and curve fitting
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2018.07.123
– volume: 125
  start-page: 69
  year: 2017
  ident: 10.1016/j.physa.2019.121056_b28
  article-title: An experimental study on heat transfer and pressure drop of water/graphene oxide nanofluid in a copper tube under air cross-flow: applicable as a heat exchanger
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.06.110
– volume: 114
  start-page: 207
  year: 2017
  ident: 10.1016/j.physa.2019.121056_b9
  article-title: New temperature, interfacial shell dependent dimensionless model for thermal conductivity of nanofluids
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2017.06.061
– volume: 92
  start-page: 90
  year: 2018
  ident: 10.1016/j.physa.2019.121056_b71
  article-title: A new correlation for estimating the thermal conductivity and dynamic viscosity of CuO/liquid paraffin nanofluid using neural network method
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2018.02.002
– volume: 121
  start-page: 388
  year: 2017
  ident: 10.1016/j.physa.2019.121056_b83
  article-title: Low-frequency vibration for fouling mitigation and intensification of thermal performance of a plate heat exchanger working with CuO/water nanofluid
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.04.083
– volume: 86
  start-page: 146
  year: 2017
  ident: 10.1016/j.physa.2019.121056_b67
  article-title: The effects of different nano particles of Al2O3 and Ag on the MHD nano fluid flow and heat transfer in a microchannel including slip velocity and temperature jump
  publication-title: Physica E
  doi: 10.1016/j.physe.2016.10.015
– volume: 91
  start-page: 146
  year: 2015
  ident: 10.1016/j.physa.2019.121056_b4
  article-title: New correlation for Nusselt number of nanofluid with Ag/Al2O3/Cu nanoparticles in a microchannel considering slip velocity and temperature jump by using lattice Boltzmann method
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2015.01.015
– volume: 60
  start-page: 252
  issue: 4
  year: 2016
  ident: 10.1016/j.physa.2019.121056_b78
  article-title: Boiling heat transfer of alumina nano-fluids: role of nanoparticle deposition on the boiling heat transfer coefficient
  publication-title: Period. Polytech. Chem. Eng.
  doi: 10.3311/PPch.9324
– volume: 87
  issue: 15
  year: 2005
  ident: 10.1016/j.physa.2019.121056_b12
  article-title: Empirical correlation finding the role of temperature and particle size for nanofluid (Al 2 O 3) thermal conductivity enhancement
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2093936
– volume: 430
  start-page: 22
  year: 2017
  ident: 10.1016/j.physa.2019.121056_b29
  article-title: A numerical study of natural convection in a vertical annulus filled with gallium in the presence of magnetic field
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2017.01.016
– volume: 45
  start-page: 279
  issue: 3
  year: 2014
  ident: 10.1016/j.physa.2019.121056_b66
  article-title: Numerical simulation of natural convection around an obstacle placed in an enclosure filled with different types of nanofluids
  publication-title: Heat Transfer Res.
– start-page: 846
  year: 1982
  ident: 10.1016/j.physa.2019.121056_b70
  article-title: Some thermophysical properties of paraffin wax as a thermal storage medium
– volume: 84
  start-page: 474
  year: 2016
  ident: 10.1016/j.physa.2019.121056_b35
  article-title: The variations of heat transfer and slip velocity of FMWNT-water nano-fluid along the micro-channel in the lack and presence of a magnetic field
  publication-title: Physica E
  doi: 10.1016/j.physe.2016.07.013
– volume: 119
  start-page: 891
  year: 2018
  ident: 10.1016/j.physa.2019.121056_b62
  article-title: Investigation of permeability and porosity effects on the slip velocity and convection heat transfer rate of Fe 3 O 4/water nanofluid flow in a microchannel while its lower half filled by a porous medium
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2017.11.125
– start-page: 762184
  year: 2014
  ident: 10.1016/j.physa.2019.121056_b61
  article-title: Comparison of the finite volume and lattice Boltzmann methods for solving natural convection heat transfer problems inside cavities and enclosures
– volume: 90
  start-page: 418
  year: 2015
  ident: 10.1016/j.physa.2019.121056_b39
  article-title: Effect of induced electric field on magneto-natural convection in a vertical cylindrical annulus filled with liquid potassium
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2015.06.059
– volume: 8
  issue: 4
  year: 2015
  ident: 10.1016/j.physa.2019.121056_b87
  article-title: Upward flow boiling to DI-water and cuo nanofluids inside the concentric annuli
  publication-title: J. Appl. Fluid Mech.
– volume: 20
  issue: 4
  year: 1952
  ident: 10.1016/j.physa.2019.121056_b1
  article-title: The viscosity of concentrated suspensions and solutions
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1700493
– volume: 124
  start-page: 665
  issue: 4
  year: 2013
  ident: 10.1016/j.physa.2019.121056_b38
  article-title: Combined convection in a lid-driven cavity with an inside obstacle subjected to Al 2 O 3-Water nanofluid: Effect of solid volume fraction and nanofluid variable properties
  publication-title: Acta Phys. Pol. A.
  doi: 10.12693/APhysPolA.124.665
– volume: 125
  start-page: 1083
  year: 2017
  ident: 10.1016/j.physa.2019.121056_b46
  article-title: Irreversibility analysis for flow of a non-Newtonian hybrid nanofluid containing coated CNT/Fe3O4 nanoparticles in a minichannel heat exchanger
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.07.100
– volume: 74
  start-page: 108
  year: 2016
  ident: 10.1016/j.physa.2019.121056_b5
  article-title: Effects of temperature and concentration on the viscosity of nanofluids made of single-wall carbon nanotubes in ethylene glycol
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2016.02.008
– year: 2000
  ident: 10.1016/j.physa.2019.121056_b52
– volume: 84
  start-page: 28
  year: 2018
  ident: 10.1016/j.physa.2019.121056_b22
  article-title: Heat transfer and entropy generation optimization for flow of a non-Newtonian hybrid nanofluid containing coated CNT/Fe3O4 nanoparticles in a concentric annulus
  publication-title: J. Taiwan Inst. Chem. Eng.
  doi: 10.1016/j.jtice.2017.12.029
– start-page: 155
  year: 1997
  ident: 10.1016/j.physa.2019.121056_b53
  article-title: Support vector regression machines
– volume: 131
  start-page: 432
  year: 2019
  ident: 10.1016/j.physa.2019.121056_b91
  article-title: A novel comprehensive experimental study concerned synthesizes and prepare liquid paraffin-Fe3O4 mixture to develop models for both thermal conductivity & viscosity: A new approach of GMDH type of neural network
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2018.11.069
– volume: 84
  start-page: 149
  year: 2018
  ident: 10.1016/j.physa.2019.121056_b23
  article-title: Thermal and hydraulic characteristics of a minichannel heat exchanger operated with a non-Newtonian hybrid nanofluid
  publication-title: J. Taiwan Inst. Chem. Eng.
  doi: 10.1016/j.jtice.2018.01.014
– volume: 97
  start-page: 226
  year: 2018
  ident: 10.1016/j.physa.2019.121056_b25
  article-title: Investigation of permeability effect on slip velocity and temperature jump boundary conditions for FMWNT/Water nanofluid flow and heat transfer inside a microchannel filled by a porous media
  publication-title: Physica E
  doi: 10.1016/j.physe.2017.11.008
– volume: 275
  start-page: 192
  year: 2019
  ident: 10.1016/j.physa.2019.121056_b92
  article-title: Molecular dynamics simulation of fluid flow passing through a nanochannel: Effects of geometric shape of roughnesses
  publication-title: J. Molecular Liquids
  doi: 10.1016/j.molliq.2018.11.057
– volume: 263
  start-page: 382
  year: 2018
  ident: 10.1016/j.physa.2019.121056_b75
  article-title: Thermal and hydraulic analysis of a rectangular microchannel with gallium-copper oxide nano-suspension
  publication-title: J. Molecular Liquids
  doi: 10.1016/j.molliq.2018.05.026
– volume: 419
  start-page: 420
  year: 2016
  ident: 10.1016/j.physa.2019.121056_b7
  article-title: Developing the laminar MHD forced convection flow of water/FMWNT carbon nanotubes in a microchannel imposed the uniform heat flux
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2016.06.063
– volume: 68
  start-page: 248
  year: 2015
  ident: 10.1016/j.physa.2019.121056_b11
  article-title: Experimental study on thermal conductivity of DWCNT-ZnO/water-EG nanofluids
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2015.09.001
– volume: 46
  start-page: 1373
  issue: 10
  year: 2011
  ident: 10.1016/j.physa.2019.121056_b3
  article-title: Effects of magnetic field on nanofluid forced convection in a partially heated microchannel
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/j.ijnonlinmec.2011.07.013
– volume: 318
  start-page: 441
  year: 2017
  ident: 10.1016/j.physa.2019.121056_b48
  article-title: Experimental investigation and modeling of thermal conductivity and viscosity for non-Newtonian hybrid nanofluid containing coated CNT/Fe3O4 nanoparticles
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2017.06.023
– volume: 8
  issue: 4
  year: 2016
  ident: 10.1016/j.physa.2019.121056_b47
  article-title: Numerical simulation of heat transfer and turbulent flow of water nanofluids copper oxide in rectangular microchannel with semi-attached rib
  publication-title: Adv. Mech. Eng.
  doi: 10.1177/1687814016641016
– volume: 253
  start-page: 169
  year: 2018
  ident: 10.1016/j.physa.2019.121056_b72
  article-title: Measuring the viscosity of Fe3O4-MWCNTs/EG hybrid nanofluid for evaluation of thermal efficiency: Newtonian and non-Newtonian behavior
  publication-title: J. Molecular Liquids
  doi: 10.1016/j.molliq.2018.01.012
– volume: 27
  start-page: 2175
  issue: 5
  year: 2016
  ident: 10.1016/j.physa.2019.121056_b45
  article-title: A modified two-phase mixture model of nanofluid flow and heat transfer in a 3-D curved microtube
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2016.08.002
– volume: 47
  start-page: 21
  issue: 1
  year: 2015
  ident: 10.1016/j.physa.2019.121056_b33
  article-title: Magneto-natural convection in square cavities with a source–sink pair on different walls
  publication-title: Int. J. Appl. Electromagn. Mech.
  doi: 10.3233/JAE-130097
– volume: 230
  start-page: 408
  year: 2017
  ident: 10.1016/j.physa.2019.121056_b44
  article-title: Hybrid nanoparticles effects on rheological behavior of water-EG coolant under different temperatures: An experimental study
  publication-title: J. Molecular Liquids
  doi: 10.1016/j.molliq.2017.01.043
– volume: 53
  start-page: 265
  issue: 1
  year: 2017
  ident: 10.1016/j.physa.2019.121056_b80
  article-title: Thermal behavior of aqueous iron oxide nano-fluid as a coolant on a flat disc heater under the pool boiling condition
  publication-title: Heat Mass Transf.
  doi: 10.1007/s00231-016-1823-4
– volume: 121
  start-page: 1273
  issue: 3
  year: 2015
  ident: 10.1016/j.physa.2019.121056_b18
  article-title: Evaluation of thermal conductivity of COOH-functionalized MWCNTs/water via temperature and solid volume fraction by using experimental data and ANN methods
  publication-title: J. Therm. Anal. Calorimetry
  doi: 10.1007/s10973-015-4565-5
– volume: 61
  start-page: 25
  year: 2017
  ident: 10.1016/j.physa.2019.121056_b31
  article-title: Fluid flow and heat transfer of non-Newtonian nanofluid in a microtube considering slip velocity and temperature jump boundary conditions
  publication-title: Eur. J. Mech. B Fluids
  doi: 10.1016/j.euromechflu.2016.09.014
– volume: 105
  start-page: 137
  year: 2016
  ident: 10.1016/j.physa.2019.121056_b68
  article-title: Natural convection of Al2O3–water nanofluid in an inclined enclosure with the effects of slip velocity mechanisms: Brownian motion and thermophoresis phenomenon
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2016.02.006
– volume: 102
  start-page: 45
  year: 2016
  ident: 10.1016/j.physa.2019.121056_b24
  article-title: Effects of temperature and solid volume fraction on viscosity of SiO2-MWCNTs/SAE40 hybrid nanofluid as a coolant and lubricant in heat engines
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.04.002
– volume: 86
  start-page: 68
  year: 2017
  ident: 10.1016/j.physa.2019.121056_b30
  article-title: The effect of velocity and dimension of solid nanoparticles on heat transfer in non-Newtonian nanofluid
  publication-title: Physica E
  doi: 10.1016/j.physe.2016.10.013
– volume: 340
  start-page: 370
  year: 2018
  ident: 10.1016/j.physa.2019.121056_b19
  article-title: Effect of line dipole magnetic field on entropy generation of Mn-Zn ferrite ferrofluid flowing through a minichannel using two-phase mixture model
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2018.09.052
– volume: 127
  start-page: 1169
  year: 2018
  ident: 10.1016/j.physa.2019.121056_b56
  article-title: Synthesized CuFe2O4/SiO2 nanocomposites added to water/EG: Evaluation of the thermophysical properties beside sensitivity analysis & EANN
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2018.08.112
– volume: 91
  start-page: 509
  year: 2018
  ident: 10.1016/j.physa.2019.121056_b86
  article-title: Thermal performance of a heat sink microchannel working with biologically produced silver-water nanofluid: experimental assessment
  publication-title: Exp. Therm Fluid Sci.
  doi: 10.1016/j.expthermflusci.2017.11.007
– volume: 88
  start-page: 60
  year: 2017
  ident: 10.1016/j.physa.2019.121056_b43
  article-title: Influence of T-semi attached rib on turbulent flow and heat transfer parameters of a silver-water nanofluid with different volume fractions in a three-dimensional trapezoidal microchannel
  publication-title: Physica E
  doi: 10.1016/j.physe.2016.11.021
– volume: 509
  start-page: 729
  year: 2018
  ident: 10.1016/j.physa.2019.121056_b64
  article-title: Develop the lattice Boltzmann method to simulate the slip velocity and temperature domain of buoyancy forces of FMWCNT nano particles in water through a micro flow imposed to the specified heat flux
  publication-title: Physica A
  doi: 10.1016/j.physa.2018.06.031
– volume: 66
  start-page: 100
  year: 2015
  ident: 10.1016/j.physa.2019.121056_b15
  article-title: Thermal conductivity of Cu/TiO2–water/EG hybrid nanofluid: Experimental data and modeling using artificial neural network and correlation
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2015.05.014
– volume: 402
  start-page: 150
  year: 2014
  ident: 10.1016/j.physa.2019.121056_b63
  article-title: Mixed convection of copper–water nanofluid in a shallow inclined lid driven cavity using the lattice Boltzmann method
  publication-title: Physica A
  doi: 10.1016/j.physa.2014.01.057
– volume: 537
  start-page: 176
  year: 2018
  ident: 10.1016/j.physa.2019.121056_b59
  article-title: The numerical modeling of water/FMWCNT nanofluid flow and heat transfer in a backward-facing contracting channel
  publication-title: Physica B
  doi: 10.1016/j.physb.2018.02.022
– volume: 129
  start-page: 859
  issue: 2
  year: 2017
  ident: 10.1016/j.physa.2019.121056_b16
  article-title: Developing a new correlation to estimate the thermal conductivity of MWCNT-CuO/water hybrid nanofluid via an experimental investigation
  publication-title: J. Therm. Anal. Calorimetry
  doi: 10.1007/s10973-017-6213-8
– start-page: 1
  year: 2019
  ident: 10.1016/j.physa.2019.121056_b76
  article-title: Heat transfer and pressure drop characteristics of mgo nanofluid in a double pipe heat exchanger
  publication-title: Heat Mass Transf.
– volume: 52
  start-page: 2293
  issue: 10
  year: 2016
  ident: 10.1016/j.physa.2019.121056_b93
  article-title: Effect of temperature and concentration on thermal conductivity and viscosity of ferrofluid loaded with carbon nanotubes
  publication-title: Heat Mass Transf.
  doi: 10.1007/s00231-015-1743-8
– volume: 76
  start-page: 171
  year: 2016
  ident: 10.1016/j.physa.2019.121056_b14
  article-title: An experimental study on thermal conductivity of F-MWCNTs–Fe3O4/EG hybrid nanofluid: effects of temperature and concentration
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2016.05.029
– volume: 45
  start-page: 309
  issue: 4
  year: 2014
  ident: 10.1016/j.physa.2019.121056_b41
  article-title: Mixed convection flow and heat transfer in a ventilated inclined cavity containing hot obstacles subjected to a nanofluid
  publication-title: Heat Transfer Res.
  doi: 10.1615/HeatTransRes.2013006880
– volume: 290
  start-page: 135
  year: 2016
  ident: 10.1016/j.physa.2019.121056_b42
  article-title: Investigation of rib’s height effect on heat transfer and flow parameters of laminar water–Al2O3 nanofluid in a rib-microchannel
  publication-title: Appl. Math. Comput.
– volume: 29
  start-page: 405
  issue: 3
  year: 2015
  ident: 10.1016/j.physa.2019.121056_b85
  article-title: Application of spherical copper oxide (II) water nano-fluid as a potential coolant in a boiling annular heat exchanger
  publication-title: Chem. Biochem. Engi. Q.
  doi: 10.15255/CABEQ.2014.2069
– start-page: 275
  year: 2006
  ident: 10.1016/j.physa.2019.121056_b74
– volume: 2014
  year: 2014
  ident: 10.1016/j.physa.2019.121056_b57
  article-title: Numerical study of entropy generation due to coupled laminar and turbulent mixed convection and thermal radiation in an enclosure filled with a semitransparent medium
  publication-title: Sci. World J.
  doi: 10.1155/2014/761745
– volume: 54
  start-page: 985
  issue: 4
  year: 2018
  ident: 10.1016/j.physa.2019.121056_b84
  article-title: Thermal performance analysis of a flat heat pipe working with carbon nanotube-water nanofluid for cooling of a high heat flux heater
  publication-title: Heat Mass Transf.
  doi: 10.1007/s00231-017-2201-6
– volume: 4
  start-page: 415
  issue: 3
  year: 1992
  ident: 10.1016/j.physa.2019.121056_b50
  article-title: Bayesian interpolation
  publication-title: Neural Comput.
  doi: 10.1162/neco.1992.4.3.415
– volume: 150
  start-page: 37
  year: 2017
  ident: 10.1016/j.physa.2019.121056_b32
  article-title: Optimization of irreversibility and thermal characteristics of a mini heat exchanger operated with a new hybrid nanofluid containing carbon nanotubes decorated with magnetic nanoparticles
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2017.08.007
– volume: 56
  start-page: 443
  issue: 3
  year: 2015
  ident: 10.1016/j.physa.2019.121056_b40
  article-title: Mixed convection in a lid-driven cavity with an inside hot obstacle filled by an Al2O3–water nanofluid
  publication-title: J. Appl. Mech. Tech. Phys.
  doi: 10.1134/S0021894415030141
– volume: 4
  start-page: 251
  issue: 2
  year: 1991
  ident: 10.1016/j.physa.2019.121056_b49
  article-title: Approximation capabilities of multilayer feedforward networks
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(91)90009-T
– volume: 77
  start-page: 49
  year: 2016
  ident: 10.1016/j.physa.2019.121056_b27
  article-title: Predicting the viscosity of multi-walled carbon nanotubes/water nanofluid by developing an optimal artificial neural network based on experimental data
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2016.07.008
– volume: 76
  start-page: 1
  year: 2016
  ident: 10.1016/j.physa.2019.121056_b58
  article-title: Experimental investigation on laminar forced convective heat transfer of ferrofluid loaded with carbon nanotubes under constant and alternating magnetic fields
  publication-title: Exp. Therm Fluid Sci.
  doi: 10.1016/j.expthermflusci.2016.03.010
– volume: 95
  start-page: 433
  year: 2016
  ident: 10.1016/j.physa.2019.121056_b81
  article-title: On the fouling formation of functionalized and non-functionalized carbon nanotube nano-fluids under pool boiling condition
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.11.071
– volume: 131
  start-page: 2741
  issue: 3
  year: 2018
  ident: 10.1016/j.physa.2019.121056_b21
  article-title: Prediction of rheological behavior of SiO 2-MWCNTs/10W40 hybrid nanolubricant by designing neural network
  publication-title: J. Therm. Anal. Calorimetry
  doi: 10.1007/s10973-017-6688-3
– volume: 125
  start-page: 151
  issue: 1
  year: 2003
  ident: 10.1016/j.physa.2019.121056_b10
  article-title: Investigation on convective heat transfer and flow features of nanofluids
  publication-title: J. Heat Transfer
  doi: 10.1115/1.1532008
– volume: 233
  start-page: 352
  year: 2017
  ident: 10.1016/j.physa.2019.121056_b37
  article-title: An experimental study on rheological behavior of ethylene glycol based nanofluid: proposing a new correlation as a function of silica concentration and temperature
  publication-title: J. Molecular Liquids
  doi: 10.1016/j.molliq.2017.03.020
– volume: 49
  start-page: 89
  year: 2015
  ident: 10.1016/j.physa.2019.121056_b8
  article-title: Simulation of copper–water nanofluid in a microchannel in slip flow regime using the lattice Boltzmann method
  publication-title: Eur. J. Mech. B Fluids
  doi: 10.1016/j.euromechflu.2014.08.004
– volume: 84
  start-page: 564
  year: 2016
  ident: 10.1016/j.physa.2019.121056_b34
  article-title: Effects of temperature and particles concentration on the dynamic viscosity of MgO-MWCNT/ethylene glycol hybrid nanofluid: experimental study
  publication-title: Physica E: Low-dimensional Systems and Nanostructures
  doi: 10.1016/j.physe.2016.06.015
– volume: 86
  start-page: 245
  year: 2017
  ident: 10.1016/j.physa.2019.121056_b26
  article-title: Rheological characteristics of mgo/oil nanolubricants: Experimental study and neural network modeling
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2017.05.017
– volume: 30
  start-page: 489
  issue: 4
  year: 2017
  ident: 10.1016/j.physa.2019.121056_b82
  article-title: Thermal performance and viscosity of biologically produced silver/coconut oil Nanofluids
  publication-title: Chem. Biochem. Eng. Q.
  doi: 10.15255/CABEQ.2015.2203
– volume: 617
  start-page: 102
  year: 2015
  ident: 10.1016/j.physa.2019.121056_b94
  article-title: An experimental study on the effect of ultrasonication on thermal conductivity of ferrofluid loaded with carbon nanotubes
  publication-title: Thermochim. Acta
  doi: 10.1016/j.tca.2015.08.025
– volume: 79
  start-page: 231
  year: 2016
  ident: 10.1016/j.physa.2019.121056_b6
  article-title: An experimental study on rheological behavior of hybrid nanofluids made of iron and copper oxide in a binary mixture of water and ethylene glycol: non-Newtonian behavior
  publication-title: Exp. Therm Fluid Sci.
  doi: 10.1016/j.expthermflusci.2016.07.015
– volume: 11
  start-page: 203
  issue: 10
  year: 2007
  ident: 10.1016/j.physa.2019.121056_b54
  article-title: Support vector regression
  publication-title: Neural Inf. Process.-Lett. Rev.
– volume: 521
  start-page: 98
  year: 2019
  ident: 10.1016/j.physa.2019.121056_b89
  article-title: Effects of dispersed added Graphene Oxide-Silicon Carbide nanoparticles to present a statistical formulation for the mixture thermal properties
  publication-title: Physica A
  doi: 10.1016/j.physa.2019.01.035
– volume: 519
  start-page: 159
  year: 2019
  ident: 10.1016/j.physa.2019.121056_b90
  article-title: Develop 24 dissimilar ANNs by suitable architectures & training algorithms via sensitivity analysis to better statistical presentation: Measure MSEs between targets & ANN for Fe–CuO/Eg–Water nanofluid
  publication-title: Physica A
  doi: 10.1016/j.physa.2018.12.031
– volume: 509
  start-page: 515
  year: 2018
  ident: 10.1016/j.physa.2019.121056_b2
  article-title: The investigation of thermal radiation and free convection heat transfer mechanisms of nanofluid inside a shallow cavity by lattice Boltzmann method
  publication-title: Physica A
  doi: 10.1016/j.physa.2018.06.034
– volume: 58
  start-page: 37
  issue: 1
  year: 2014
  ident: 10.1016/j.physa.2019.121056_b88
  article-title: Forced convective and nucleate flow boiling heat transfer to alumnia nanofluids
  publication-title: Period. Polytechn. Chem. Eng.
  doi: 10.3311/PPch.2206
– volume: 32
  start-page: 3975
  issue: 8
  year: 2018
  ident: 10.1016/j.physa.2019.121056_b79
  article-title: Heat transfer and fluid flow of MgO/ethylene glycol in a corrugated heat exchanger
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-018-0748-x
– volume: 30
  start-page: 809
  issue: 2
  year: 2016
  ident: 10.1016/j.physa.2019.121056_b60
  article-title: Effect of magnetic field on thermal conductivity and viscosity of a magnetic nanofluid loaded with carbon nanotubes
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-016-0135-4
– volume: 63
  start-page: 35
  year: 2015
  ident: 10.1016/j.physa.2019.121056_b13
  article-title: Modeling of thermal conductivity of ZnO-EG using experimental data and ANN methods
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2015.01.001
– start-page: 1
  year: 2018
  ident: 10.1016/j.physa.2019.121056_b17
  article-title: Second law analysis of turbulent convection flow of boehmite alumina nanofluid inside a double-pipe heat exchanger considering various shapes for nanoparticle
  publication-title: J. Therm. Anal. Calorimetry
– volume: 509
  start-page: 210
  year: 2018
  ident: 10.1016/j.physa.2019.121056_b65
  article-title: Develop the nano scale method of lattice Boltzmann to predict the fluid flow and heat transfer of air in the inclined lid driven cavity with a large heat source inside, two case studies: Pure natural convection & mixed convection
  publication-title: Physica A
  doi: 10.1016/j.physa.2018.06.013
SSID ssj0001732
Score 2.3657382
Snippet A new multi-objective optimization model composed of the artificial neural network (ANN) and the genetic algorithm (GA) methods based on the empirical...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 121056
SubjectTerms Artificial neural network
CuO/liquid paraffin nanofluid
Empirical results
Genetic algorithm
Multi-objective optimization
Title Minimize pressure drop and maximize heat transfer coefficient by the new proposed multi-objective optimization/statistical model composed of “ANN + Genetic Algorithm” based on empirical data of CuO/paraffin nanofluid in a pipe
URI https://dx.doi.org/10.1016/j.physa.2019.121056
Volume 527
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-2119
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001732
  issn: 0378-4371
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-2119
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001732
  issn: 0378-4371
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-2119
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001732
  issn: 0378-4371
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-2119
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001732
  issn: 0378-4371
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIiQuiKcoj2oO3CBkN3ES73G1olpAXQ5QqbfIdhxwtbGjNCsBB9QfAn-uB34HM07CQ0I9cHTWI1k7o5nPyTffMPZUpWmeC5NEBqt9xBOZRUonKS4zhKd6sZCh6_14k69P-OvT7HSPraZeGKJVjrl_yOkhW49P4vHfjFtr43eztBA8LeYIQUh0jTRBOS9oisGLr79pHvMiHb4k4G2Jdk_KQ4HjRW8PSHxoviCVhRlNsf5Xdfqj4hzdYjdHqAjL4TS32Z5xd9j1QNnU53fZj2PrbGO_GAhc1l1noOp8C9JV0MhPw0-UaqEP4NR0oL0JihFYaEB9BsR-gKga7X3rzw2aEbsw8upsyILgMZ80Y6NmTK1HQdUZzxTm5wDR0YOdr-Hy4ttys4FnQDrWuAmW2w--s_3H5vLiO1CtxG0OTNPaIEoCRE0lw9XubUz643gwB046X293tgJcSGhta-6xk6OX71fraJzaEGmEC32Uo1MURzQs6trkM01qN3hJTXWupKyEzKoq0WJeYxhgstVFIbEk1lwJnRmx4LP0Ptt33pkHDEjLhkupMZtrrgop6jRXStAlMlEyyQ9YMnmr1KOkOU3W2JYTd-2sDC4uycXl4OID9vyXUTsoely9PZ_CoPwrMEusOVcZPvxfw0fsBq0GluFjtt93O_MEkU-vDkNoH7Jry1dv1pufr1MJUA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEYIL4inKcw7cIGQ3dh57XK2oFuguB1qpt8h2nOJqE0dpVgIOqD8E_lwP_A5mnISHhHrg6HhGsjLWzDfJ58-MPVecJ0lmosBgtQ9EJONA6YjjMEZ4qmcz6U-9r9bJ8ki8PY6Pd9hiPAtDtMoh9_c53Wfr4Uk4vM2wsTb8MOFpJng6RQhComviCrsq4iilDuzV1988j2nK-18J2C6R-Sg95Ele9PmA1IemM5JZmNA11v8qT3-UnP1b7OaAFWHeL-c22zH1HXbNczb12V32Y2VrW9kvBjyZddsaKFrXgKwLqOSnfopyLXQenZoWtDNeMgIrDajPgOAPEFajv2vcmUE3ohcGTp32aRAcJpRqOKkZ0tkjL-uMa_IX6ADx0b2fK-Hi_Nt8vYYXQELWaATzzYlrbfexujj_DlQs0awGUzXWq5IAcVPJcbF9H5IAOS6shlrWrtxsbQE4kNDYxtxjR_uvDxfLYLi2IdCIF7ogwagogXA4K0uTTDTJ3WCXynWipCwyGRdFpLNpifsAs61OU4k1sRQq07HJZmLC77Pd2tXmAQMSsxFSakznWqhUZiVPlMqoi4yUjJI9Fo3RyvWgaU5Xa2zykbx2mvsQ5xTivA_xHnv5y6npJT0uN0_GbZD_tTNzLDqXOT78X8dn7PrycHWQH7xZv3vEbtBMTzl8zHa7dmueIAzq1FO_zX8CtDwK5Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Minimize+pressure+drop+and+maximize+heat+transfer+coefficient+by+the+new+proposed+multi-objective+optimization%2Fstatistical+model+composed+of+%E2%80%9CANN+%2B+Genetic+Algorithm%E2%80%9D+based+on+empirical+data+of+CuO%2Fparaffin+nanofluid+in+a+pipe&rft.jtitle=Physica+A&rft.au=Bagherzadeh%2C+Seyed+Amin&rft.au=Sulgani%2C+Mohsen+Tahmasebi&rft.au=Nikkhah%2C+Vahid&rft.au=Bahrami%2C+Mehrdad&rft.date=2019-08-01&rft.pub=Elsevier+B.V&rft.issn=0378-4371&rft.eissn=1873-2119&rft.volume=527&rft_id=info:doi/10.1016%2Fj.physa.2019.121056&rft.externalDocID=S0378437119306454
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4371&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4371&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4371&client=summon