Modeling of energy maneuverability based specific excess power contours for commercial aircraft using metaheuristic methods

Specific excess power (Ps) contours that can be obtained using the energy method; these are important contours that show the performance limits of the aircraft, allow the performance comparison of different aircraft, and help determine the trajectory corresponding to the minimum time to climb withou...

Full description

Saved in:
Bibliographic Details
Published inEnergy (Oxford) Vol. 269; p. 126819
Main Authors Oruc, Ridvan, Baklacioglu, Tolga
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.04.2023
Subjects
Online AccessGet full text
ISSN0360-5442
DOI10.1016/j.energy.2023.126819

Cover

Abstract Specific excess power (Ps) contours that can be obtained using the energy method; these are important contours that show the performance limits of the aircraft, allow the performance comparison of different aircraft, and help determine the trajectory corresponding to the minimum time to climb without the need for any mathematical operation. Due to the difficulties associated with obtaining Ps contours, there are not many studies on this subject. In order to overcome these difficulties, within the scope of this study, an estimation model was created that will easily predict the Ps contour depending only on flight altitude and Mach number. The data required for modeling are Ps contours obtained in a different study for B737-800 aircraft in 4 different flights. Although it is new, the cuckoo search algorithm (CSA) method, which has proven its success in many optimization problems, has been used for modeling and highly accurate results have been obtained. A different metaheuristic method, particle swarm optimization (PSO), was used to measure the accuracy of the model created. These models constitute the first attempt in the current literature; furthermore the datasets used include real Flight Data Recorder (FDR) values. •Cuckoo search algorithm for specific excess power contours modeling.•Comparison of cuckoo search algorithm and particle swarm optimization methods.•Effect of weight on aircraft performance.•Demonstration of aircraft performance in different specific excess power situations.
AbstractList Specific excess power (Pₛ) contours that can be obtained using the energy method; these are important contours that show the performance limits of the aircraft, allow the performance comparison of different aircraft, and help determine the trajectory corresponding to the minimum time to climb without the need for any mathematical operation. Due to the difficulties associated with obtaining Pₛ contours, there are not many studies on this subject. In order to overcome these difficulties, within the scope of this study, an estimation model was created that will easily predict the Pₛ contour depending only on flight altitude and Mach number. The data required for modeling are Pₛ contours obtained in a different study for B737-800 aircraft in 4 different flights. Although it is new, the cuckoo search algorithm (CSA) method, which has proven its success in many optimization problems, has been used for modeling and highly accurate results have been obtained. A different metaheuristic method, particle swarm optimization (PSO), was used to measure the accuracy of the model created. These models constitute the first attempt in the current literature; furthermore the datasets used include real Flight Data Recorder (FDR) values.
Specific excess power (Ps) contours that can be obtained using the energy method; these are important contours that show the performance limits of the aircraft, allow the performance comparison of different aircraft, and help determine the trajectory corresponding to the minimum time to climb without the need for any mathematical operation. Due to the difficulties associated with obtaining Ps contours, there are not many studies on this subject. In order to overcome these difficulties, within the scope of this study, an estimation model was created that will easily predict the Ps contour depending only on flight altitude and Mach number. The data required for modeling are Ps contours obtained in a different study for B737-800 aircraft in 4 different flights. Although it is new, the cuckoo search algorithm (CSA) method, which has proven its success in many optimization problems, has been used for modeling and highly accurate results have been obtained. A different metaheuristic method, particle swarm optimization (PSO), was used to measure the accuracy of the model created. These models constitute the first attempt in the current literature; furthermore the datasets used include real Flight Data Recorder (FDR) values. •Cuckoo search algorithm for specific excess power contours modeling.•Comparison of cuckoo search algorithm and particle swarm optimization methods.•Effect of weight on aircraft performance.•Demonstration of aircraft performance in different specific excess power situations.
ArticleNumber 126819
Author Baklacioglu, Tolga
Oruc, Ridvan
Author_xml – sequence: 1
  givenname: Ridvan
  surname: Oruc
  fullname: Oruc, Ridvan
  email: roruc@agri.edu.tr
  organization: Civil Aviation Vocational School, Agri Ibrahim Cecen University, Agri, 04200, Turkey
– sequence: 2
  givenname: Tolga
  orcidid: 0000-0002-9600-2697
  surname: Baklacioglu
  fullname: Baklacioglu, Tolga
  email: tbaklacioglu@eskisehir.edu.tr, tolga.baklacioglu@tai.com.tr
  organization: Faculty of Aeronautics and Astronautics, Eskisehir Technical University, Eskisehir, 26555, Turkey
BookMark eNp9kM1OwzAQhH0oErTwBhx85NJiO4nbXJBQxZ8E4gJny1mvqaskLt6kUPHypApn9rIaaWak-aZs0sYWGbuUYiGF1NfbBbaYPg4LJVS2kEqvZDlhZyLTYl7kuTplU6KtEKJYleUZ-3mJDuvQfvDo-ZjkjW2x32OyVahDd-CVJXScdgjBB-D4DUjEd_ELE4fYdrFPxH08iqbBBMHW3IYEyfqO93Qsb7CzG-xToG5oGNQmOjpnJ97WhBd_f8be7-_e1o_z59eHp_Xt8xyUXHVzrXNw3uYFLq30y0GV3ms53EpVGlDJyuVZVkoALIXSbolKOF0JLArwVZHN2NXYu0vxs0fqTBMIsK6HnbEnkymhlcxEKQZrPlohRaKE3uxSaGw6GCnMka_ZmpGSOfI1I98hdjPGcJixD5gMQcAW0IWE0BkXw_8Fvy1KjVs
Cites_doi 10.1108/AEAT-10-2019-0202
10.3846/16487788.2011.648310
10.1016/j.matpr.2015.07.223
10.1016/j.energy.2011.11.026
10.1016/j.chemolab.2015.08.020
10.1007/s00521-013-1367-1
10.1016/j.energy.2020.119009
10.1007/s00366-011-0241-y
10.1016/j.energy.2022.125069
10.1108/AEAT-09-2020-0213
10.1016/j.matpr.2017.07.055
10.1016/j.energy.2013.07.011
10.1016/j.energy.2018.11.096
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.energy.2023.126819
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
ExternalDocumentID 10_1016_j_energy_2023_126819
S036054422300213X
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
~HD
7S9
L.6
ID FETCH-LOGICAL-c218t-664cdfa45e7a1f764c9ff6111182b6ce21bd43391cce9026d7e20d6b0e55cfb53
IEDL.DBID .~1
ISSN 0360-5442
IngestDate Thu Oct 02 22:52:14 EDT 2025
Thu Oct 09 00:23:37 EDT 2025
Sat Apr 27 15:44:44 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Cuckoo search algorithm
Energy
Specific excess power
Aircraft
Particle swarm optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c218t-664cdfa45e7a1f764c9ff6111182b6ce21bd43391cce9026d7e20d6b0e55cfb53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9600-2697
PQID 3206213090
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3206213090
crossref_primary_10_1016_j_energy_2023_126819
elsevier_sciencedirect_doi_10_1016_j_energy_2023_126819
PublicationCentury 2000
PublicationDate 2023-04-15
PublicationDateYYYYMMDD 2023-04-15
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-15
  day: 15
PublicationDecade 2020
PublicationTitle Energy (Oxford)
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kulkarni, Patekar, Bhoskar, Kulkarni, Kakandikar, Nandedkar (bib24) 2015; 2
Anderson (bib8) 2011
Marini, Walczak (bib26) 2015; 149
Poles, Nuic, Mouillet (bib6) 2010
Yang, Deb (bib21) 2014; 24
Oruc (bib13) 2022
Gandomi, Yang, Alavi (bib22) 2013; 29
Nuic, Poinsot, Iagaru, Gallo, Navarro, Querejeta (bib7) 2005
Ojha (bib14) 1995
Siddhartha, Sharma, Varun (bib25) 2012; 38
Auguste (bib11) 2018
Oruc, Baklacioglu (bib18) 2020; 92
(bib1) 2005
Perrigot, Perier-Muzet, Ortega, Stitou (bib23) 2020; 211
Basu, Chowdhury (bib15) 2013; 60
Yang (bib16) 2014
Oruc, Baklacioglu, Turan (bib28) 2020; 35
Aviation (bib2) 2019
Oruc, Baklacioglu (bib10) 2022; 259
Yang, Deb (bib20) 2009
(bib5) 2019
(bib4) 2020
Joshi, Kulkarni, Kakandikar, Nandedkar (bib19) 2017; 4
Oruc, Baklacioglu (bib29) 2021; 93
Meng, Chang, Wang, Wang (bib17) 2019; 168
Filippone (bib9) 2012
Tables (bib3) 2020
Engelbrecht (bib27) 2007
Atuahene, Corda, Sawhney (bib12) 2011; 15
Nuic (10.1016/j.energy.2023.126819_bib7) 2005
Gandomi (10.1016/j.energy.2023.126819_bib22) 2013; 29
Auguste (10.1016/j.energy.2023.126819_bib11) 2018
Joshi (10.1016/j.energy.2023.126819_bib19) 2017; 4
Aviation (10.1016/j.energy.2023.126819_bib2)
Basu (10.1016/j.energy.2023.126819_bib15) 2013; 60
Oruc (10.1016/j.energy.2023.126819_bib28) 2020; 35
(10.1016/j.energy.2023.126819_bib4) 2020
Perrigot (10.1016/j.energy.2023.126819_bib23) 2020; 211
Poles (10.1016/j.energy.2023.126819_bib6) 2010
Atuahene (10.1016/j.energy.2023.126819_bib12) 2011; 15
Oruc (10.1016/j.energy.2023.126819_bib10) 2022; 259
Oruc (10.1016/j.energy.2023.126819_bib13) 2022
Ojha (10.1016/j.energy.2023.126819_bib14) 1995
Siddhartha (10.1016/j.energy.2023.126819_bib25) 2012; 38
Yang (10.1016/j.energy.2023.126819_bib20) 2009
Anderson (10.1016/j.energy.2023.126819_bib8) 2011
Marini (10.1016/j.energy.2023.126819_bib26) 2015; 149
Kulkarni (10.1016/j.energy.2023.126819_bib24) 2015; 2
Meng (10.1016/j.energy.2023.126819_bib17) 2019; 168
Filippone (10.1016/j.energy.2023.126819_bib9) 2012
Engelbrecht (10.1016/j.energy.2023.126819_bib27) 2007
Yang (10.1016/j.energy.2023.126819_bib16) 2014
Yang (10.1016/j.energy.2023.126819_bib21) 2014; 24
Oruc (10.1016/j.energy.2023.126819_bib18) 2020; 92
Tables (10.1016/j.energy.2023.126819_bib3)
Oruc (10.1016/j.energy.2023.126819_bib29) 2021; 93
(10.1016/j.energy.2023.126819_bib5) 2019
References_xml – year: 2014
  ident: bib16
  article-title: Nature-Inspired Optimization Algorithms
– start-page: 210
  year: 2009
  end-page: 214
  ident: bib20
  article-title: Cuckoo search via Lévy flights
  publication-title: World congress on nature and biologically inspired computing, NABIC 2009 - proceedings
– year: 2019
  ident: bib2
  article-title: Benefits report
– volume: 92
  start-page: 495
  year: 2020
  end-page: 501
  ident: bib18
  article-title: Modelling of fuel flow-rate of commercial aircraft for the climbing flight using cuckoo search algorithm
  publication-title: Aircraft Eng Aero Technol
– volume: 168
  start-page: 425
  year: 2019
  end-page: 439
  ident: bib17
  article-title: Multi-objective hydropower station operation using an improved cuckoo search algorithm
  publication-title: Energy
– year: 2005
  ident: bib1
  article-title: The economic & social benefits of air transport
– volume: 35
  start-page: 1997
  year: 2020
  end-page: 2012
  ident: bib28
  article-title: Optimization of an afterburning turbofan engine with multi objective particle swarm Method
  publication-title: J Fac Eng Archit Gazi Univ
– volume: 259
  year: 2022
  ident: bib10
  article-title: Modeling of aircraft performance parameters with metaheuristic methods to achieve specific excess power contours using energy maneuverability method
  publication-title: Energy
– volume: 60
  start-page: 99
  year: 2013
  end-page: 108
  ident: bib15
  article-title: Cuckoo search algorithm for economic dispatch
  publication-title: Energy
– year: 2011
  ident: bib8
  article-title: Introduction to flight
– start-page: 1
  year: 2010
  ident: bib6
  article-title: Advanced aircraft performance modeling for atm: analysis of BADA model capabilities
  publication-title: AIAA/IEEE digital avionics systems conference - proceedings
– start-page: 1
  year: 2005
  end-page: 14
  ident: bib7
  article-title: Advanced aircraft performance modeling for ATM: enhancements to the bada model
  publication-title: 24th digital avionics system conference
– year: 2020
  ident: bib4
  publication-title: Boeing. Commercial market outlook 2020-2039
– year: 1995
  ident: bib14
  article-title: Flight Performance of Aircraft
– volume: 38
  start-page: 406
  year: 2012
  end-page: 413
  ident: bib25
  article-title: A particle swarm optimization algorithm for optimization of thermal performance of a smooth flat plate solar air heater
  publication-title: Energy
– year: 2018
  ident: bib11
  article-title: Comparing specific excess power of general aviation aircraft (Master's Thesis)
– volume: 29
  start-page: 17
  year: 2013
  end-page: 35
  ident: bib22
  article-title: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems
  publication-title: Eng Comput
– volume: 2
  start-page: 2631
  year: 2015
  end-page: 2639
  ident: bib24
  article-title: Particle swarm optimization applications to mechanical engineering- A review
  publication-title: Mater Today Proc
– volume: 149
  start-page: 153
  year: 2015
  end-page: 165
  ident: bib26
  article-title: Particle swarm optimization (PSO). A tutorial
  publication-title: Chemometr Intell Lab Syst
– volume: 211
  year: 2020
  ident: bib23
  article-title: Technical economic analysis of PV-driven electricity and cold cogeneration systems using particle swarm optimization algorithm
  publication-title: Energy
– year: 2007
  ident: bib27
  article-title: Computational Intelligence: An Introduction
– year: 2012
  ident: bib9
  article-title: Advanced aircraft flight performance
– volume: 4
  start-page: 7262
  year: 2017
  end-page: 7269
  ident: bib19
  article-title: Cuckoo search optimization- A review
  publication-title: Mater Today Proc
– year: 2020
  ident: bib3
  article-title: Of the traffic forecasts
– year: 2019
  ident: bib5
  publication-title: Airbus. Global market forecast; Cities
– volume: 93
  start-page: 319
  year: 2021
  end-page: 326
  ident: bib29
  article-title: Modeling of fuel flow-rate of commercial aircraft for the descent flight using particle swarm optimization
  publication-title: Aircraft Eng Aero Technol
– volume: 24
  start-page: 169
  year: 2014
  end-page: 174
  ident: bib21
  article-title: Cuckoo search: recent advances and applications
  publication-title: Neural Comput Appl
– year: 2022
  ident: bib13
  article-title: Aircraft Energy Maneuverability and Modeling of Performance Parameters with Metaheuristic Methods (Doctoral Dissertation)
– volume: 15
  start-page: 83
  year: 2011
  end-page: 91
  ident: bib12
  article-title: Development and flight test of a real-time energy management display
  publication-title: Aviation
– ident: 10.1016/j.energy.2023.126819_bib3
– year: 2020
  ident: 10.1016/j.energy.2023.126819_bib4
– volume: 92
  start-page: 495
  issue: 3
  year: 2020
  ident: 10.1016/j.energy.2023.126819_bib18
  article-title: Modelling of fuel flow-rate of commercial aircraft for the climbing flight using cuckoo search algorithm
  publication-title: Aircraft Eng Aero Technol
  doi: 10.1108/AEAT-10-2019-0202
– volume: 15
  start-page: 83
  issue: 4
  year: 2011
  ident: 10.1016/j.energy.2023.126819_bib12
  article-title: Development and flight test of a real-time energy management display
  publication-title: Aviation
  doi: 10.3846/16487788.2011.648310
– year: 1995
  ident: 10.1016/j.energy.2023.126819_bib14
– ident: 10.1016/j.energy.2023.126819_bib2
– start-page: 210
  year: 2009
  ident: 10.1016/j.energy.2023.126819_bib20
  article-title: Cuckoo search via Lévy flights
– year: 2019
  ident: 10.1016/j.energy.2023.126819_bib5
– volume: 2
  start-page: 2631
  issue: 4–5
  year: 2015
  ident: 10.1016/j.energy.2023.126819_bib24
  article-title: Particle swarm optimization applications to mechanical engineering- A review
  publication-title: Mater Today Proc
  doi: 10.1016/j.matpr.2015.07.223
– volume: 38
  start-page: 406
  issue: 1
  year: 2012
  ident: 10.1016/j.energy.2023.126819_bib25
  article-title: A particle swarm optimization algorithm for optimization of thermal performance of a smooth flat plate solar air heater
  publication-title: Energy
  doi: 10.1016/j.energy.2011.11.026
– volume: 35
  start-page: 1997
  issue: 4
  year: 2020
  ident: 10.1016/j.energy.2023.126819_bib28
  article-title: Optimization of an afterburning turbofan engine with multi objective particle swarm Method
  publication-title: J Fac Eng Archit Gazi Univ
– start-page: 1
  year: 2005
  ident: 10.1016/j.energy.2023.126819_bib7
  article-title: Advanced aircraft performance modeling for ATM: enhancements to the bada model
– year: 2014
  ident: 10.1016/j.energy.2023.126819_bib16
– volume: 149
  start-page: 153
  year: 2015
  ident: 10.1016/j.energy.2023.126819_bib26
  article-title: Particle swarm optimization (PSO). A tutorial
  publication-title: Chemometr Intell Lab Syst
  doi: 10.1016/j.chemolab.2015.08.020
– volume: 24
  start-page: 169
  issue: 1
  year: 2014
  ident: 10.1016/j.energy.2023.126819_bib21
  article-title: Cuckoo search: recent advances and applications
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-013-1367-1
– year: 2022
  ident: 10.1016/j.energy.2023.126819_bib13
– volume: 211
  year: 2020
  ident: 10.1016/j.energy.2023.126819_bib23
  article-title: Technical economic analysis of PV-driven electricity and cold cogeneration systems using particle swarm optimization algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119009
– year: 2011
  ident: 10.1016/j.energy.2023.126819_bib8
– year: 2012
  ident: 10.1016/j.energy.2023.126819_bib9
– volume: 29
  start-page: 17
  issue: 1
  year: 2013
  ident: 10.1016/j.energy.2023.126819_bib22
  article-title: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems
  publication-title: Eng Comput
  doi: 10.1007/s00366-011-0241-y
– volume: 259
  year: 2022
  ident: 10.1016/j.energy.2023.126819_bib10
  article-title: Modeling of aircraft performance parameters with metaheuristic methods to achieve specific excess power contours using energy maneuverability method
  publication-title: Energy
  doi: 10.1016/j.energy.2022.125069
– start-page: 1
  year: 2010
  ident: 10.1016/j.energy.2023.126819_bib6
  article-title: Advanced aircraft performance modeling for atm: analysis of BADA model capabilities
– volume: 93
  start-page: 319
  issue: 2
  year: 2021
  ident: 10.1016/j.energy.2023.126819_bib29
  article-title: Modeling of fuel flow-rate of commercial aircraft for the descent flight using particle swarm optimization
  publication-title: Aircraft Eng Aero Technol
  doi: 10.1108/AEAT-09-2020-0213
– year: 2018
  ident: 10.1016/j.energy.2023.126819_bib11
– volume: 4
  start-page: 7262
  issue: 8
  year: 2017
  ident: 10.1016/j.energy.2023.126819_bib19
  article-title: Cuckoo search optimization- A review
  publication-title: Mater Today Proc
  doi: 10.1016/j.matpr.2017.07.055
– year: 2007
  ident: 10.1016/j.energy.2023.126819_bib27
– volume: 60
  start-page: 99
  year: 2013
  ident: 10.1016/j.energy.2023.126819_bib15
  article-title: Cuckoo search algorithm for economic dispatch
  publication-title: Energy
  doi: 10.1016/j.energy.2013.07.011
– volume: 168
  start-page: 425
  year: 2019
  ident: 10.1016/j.energy.2023.126819_bib17
  article-title: Multi-objective hydropower station operation using an improved cuckoo search algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2018.11.096
SSID ssj0005899
Score 2.421918
Snippet Specific excess power (Ps) contours that can be obtained using the energy method; these are important contours that show the performance limits of the...
Specific excess power (Pₛ) contours that can be obtained using the energy method; these are important contours that show the performance limits of the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 126819
SubjectTerms Aircraft
algorithms
altitude
Cuckoo search algorithm
data collection
Energy
flight
maneuverability
Particle swarm optimization
Specific excess power
Title Modeling of energy maneuverability based specific excess power contours for commercial aircraft using metaheuristic methods
URI https://dx.doi.org/10.1016/j.energy.2023.126819
https://www.proquest.com/docview/3206213090
Volume 269
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0360-5442
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0005899
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  issn: 0360-5442
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0005899
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Journals
  issn: 0360-5442
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0005899
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 0360-5442
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0005899
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0360-5442
  databaseCode: AKRWK
  dateStart: 19760301
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6iB72IT6yPEsHrtvtIdttjKS1V0YsKvYVkd6IV-qC7BUXwtzuz2cUHguAxS_bBzOSb2WS-GcYuQGRSG2m9KOuAJwJhaUlJj0qdA6CNyJS4wze38ehBXI3leI31ay4MpVVW2O8wvUTr6kq7kmZ7MZm07xB7Md4Q6N_IUUVjYrCLhLoYtN6_pHl0yh6SNNmj2TV9rszxgpJf16IW4q0gjDtUb-d39_QDqEvvM9xh21XYyHvuy3bZGsz22GbNKs732OHgk7GGE6slm--zN-p2RpxzPrfcfQmf6hms0IZdje5XTq4s40S6pMQhDi_EHeALaqDGKZcd355zjG5xQPvctMvO9WSZLrUtOGXOP_IpFPoJVq7uM3d9qfMD9jAc3PdHXtVxwUvR1RdeHIs0s1pISHRgExx1rY0JVTuhod5hgclEFHWDNIUu_r1lCYR-FhsfpEytkdEhW5_NZ3DEOAIwRo9RIkORCC0TkxmEMgN07ochl24wrxa0WrjCGqrOOHtWThyKFKOcYhosqbWhvhmIQuz_487zWnkK1w4diKCU56tcRaEfo-X4Xf_4308_YVs0ogOmQJ6y9WK5gjOMUwrTLA2xyTZ6l9ej2w9wAOr8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-67qF7Gf1YWNcvDfrqxB-SnTyWkpB1aV_aQt6EZJ-2FJqE2IGWQv_23lk2a8tgsEfbsi1Op9-dpPvdAZyiLJSxygVJ0cdARtLxlFIBpzpHJB1ROXOHL6_S8a28mKrpBpy3XBgOq2yw32N6jdbNnV4jzd5yNutdE_aSvyHJvrGhSqYf4KNUccYrsO7zqziPfl1EklsH3Lzlz9VBXlgT7LpcQ7wbxWmfE-783T69Q-ra_Iy24XPjN4oz37Ud2MD5Lmy1tOJyFzrDP5Q1atjM2XIPnrjcGZPOxcIJ3xNxb-a4JiX2SbofBduyQjDrkiOHBD4weUAsuYKa4GB2-nspyL2lC97o5m12YWarfGVcJTh0_pe4x8r8xrVP_Cx8YeryC9yOhjfn46ApuRDkZOurIE1lXjgjFWYmchldDZxLGVb7seXiYZEtZJIMojzHAS3figzjsEhtiErlzqqkA5vzxRy_giAEJvcxyVQsM2lUZgtLWGaRD_7I5zL7ELSC1kufWUO3IWd32otD88BoPzD7kLWjod9oiCbw_8eb39vB0zR5-ESEpLxYlzqJw5RUJxyE3_776yewNb65nOjJj6ufB_CJn_BpU6QOYbNarfGInJbKHtdK-QLqUuyR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+of+energy+maneuverability+based+specific+excess+power+contours+for+commercial+aircraft+using+metaheuristic+methods&rft.jtitle=Energy+%28Oxford%29&rft.au=Oruc%2C+Ridvan&rft.au=Baklacioglu%2C+Tolga&rft.date=2023-04-15&rft.issn=0360-5442&rft.volume=269&rft.spage=126819&rft_id=info:doi/10.1016%2Fj.energy.2023.126819&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_energy_2023_126819
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon