Modeling of energy maneuverability based specific excess power contours for commercial aircraft using metaheuristic methods
Specific excess power (Ps) contours that can be obtained using the energy method; these are important contours that show the performance limits of the aircraft, allow the performance comparison of different aircraft, and help determine the trajectory corresponding to the minimum time to climb withou...
        Saved in:
      
    
          | Published in | Energy (Oxford) Vol. 269; p. 126819 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        15.04.2023
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0360-5442 | 
| DOI | 10.1016/j.energy.2023.126819 | 
Cover
| Abstract | Specific excess power (Ps) contours that can be obtained using the energy method; these are important contours that show the performance limits of the aircraft, allow the performance comparison of different aircraft, and help determine the trajectory corresponding to the minimum time to climb without the need for any mathematical operation. Due to the difficulties associated with obtaining Ps contours, there are not many studies on this subject. In order to overcome these difficulties, within the scope of this study, an estimation model was created that will easily predict the Ps contour depending only on flight altitude and Mach number. The data required for modeling are Ps contours obtained in a different study for B737-800 aircraft in 4 different flights. Although it is new, the cuckoo search algorithm (CSA) method, which has proven its success in many optimization problems, has been used for modeling and highly accurate results have been obtained. A different metaheuristic method, particle swarm optimization (PSO), was used to measure the accuracy of the model created. These models constitute the first attempt in the current literature; furthermore the datasets used include real Flight Data Recorder (FDR) values.
•Cuckoo search algorithm for specific excess power contours modeling.•Comparison of cuckoo search algorithm and particle swarm optimization methods.•Effect of weight on aircraft performance.•Demonstration of aircraft performance in different specific excess power situations. | 
    
|---|---|
| AbstractList | Specific excess power (Pₛ) contours that can be obtained using the energy method; these are important contours that show the performance limits of the aircraft, allow the performance comparison of different aircraft, and help determine the trajectory corresponding to the minimum time to climb without the need for any mathematical operation. Due to the difficulties associated with obtaining Pₛ contours, there are not many studies on this subject. In order to overcome these difficulties, within the scope of this study, an estimation model was created that will easily predict the Pₛ contour depending only on flight altitude and Mach number. The data required for modeling are Pₛ contours obtained in a different study for B737-800 aircraft in 4 different flights. Although it is new, the cuckoo search algorithm (CSA) method, which has proven its success in many optimization problems, has been used for modeling and highly accurate results have been obtained. A different metaheuristic method, particle swarm optimization (PSO), was used to measure the accuracy of the model created. These models constitute the first attempt in the current literature; furthermore the datasets used include real Flight Data Recorder (FDR) values. Specific excess power (Ps) contours that can be obtained using the energy method; these are important contours that show the performance limits of the aircraft, allow the performance comparison of different aircraft, and help determine the trajectory corresponding to the minimum time to climb without the need for any mathematical operation. Due to the difficulties associated with obtaining Ps contours, there are not many studies on this subject. In order to overcome these difficulties, within the scope of this study, an estimation model was created that will easily predict the Ps contour depending only on flight altitude and Mach number. The data required for modeling are Ps contours obtained in a different study for B737-800 aircraft in 4 different flights. Although it is new, the cuckoo search algorithm (CSA) method, which has proven its success in many optimization problems, has been used for modeling and highly accurate results have been obtained. A different metaheuristic method, particle swarm optimization (PSO), was used to measure the accuracy of the model created. These models constitute the first attempt in the current literature; furthermore the datasets used include real Flight Data Recorder (FDR) values. •Cuckoo search algorithm for specific excess power contours modeling.•Comparison of cuckoo search algorithm and particle swarm optimization methods.•Effect of weight on aircraft performance.•Demonstration of aircraft performance in different specific excess power situations.  | 
    
| ArticleNumber | 126819 | 
    
| Author | Baklacioglu, Tolga Oruc, Ridvan  | 
    
| Author_xml | – sequence: 1 givenname: Ridvan surname: Oruc fullname: Oruc, Ridvan email: roruc@agri.edu.tr organization: Civil Aviation Vocational School, Agri Ibrahim Cecen University, Agri, 04200, Turkey – sequence: 2 givenname: Tolga orcidid: 0000-0002-9600-2697 surname: Baklacioglu fullname: Baklacioglu, Tolga email: tbaklacioglu@eskisehir.edu.tr, tolga.baklacioglu@tai.com.tr organization: Faculty of Aeronautics and Astronautics, Eskisehir Technical University, Eskisehir, 26555, Turkey  | 
    
| BookMark | eNp9kM1OwzAQhH0oErTwBhx85NJiO4nbXJBQxZ8E4gJny1mvqaskLt6kUPHypApn9rIaaWak-aZs0sYWGbuUYiGF1NfbBbaYPg4LJVS2kEqvZDlhZyLTYl7kuTplU6KtEKJYleUZ-3mJDuvQfvDo-ZjkjW2x32OyVahDd-CVJXScdgjBB-D4DUjEd_ELE4fYdrFPxH08iqbBBMHW3IYEyfqO93Qsb7CzG-xToG5oGNQmOjpnJ97WhBd_f8be7-_e1o_z59eHp_Xt8xyUXHVzrXNw3uYFLq30y0GV3ms53EpVGlDJyuVZVkoALIXSbolKOF0JLArwVZHN2NXYu0vxs0fqTBMIsK6HnbEnkymhlcxEKQZrPlohRaKE3uxSaGw6GCnMka_ZmpGSOfI1I98hdjPGcJixD5gMQcAW0IWE0BkXw_8Fvy1KjVs | 
    
| Cites_doi | 10.1108/AEAT-10-2019-0202 10.3846/16487788.2011.648310 10.1016/j.matpr.2015.07.223 10.1016/j.energy.2011.11.026 10.1016/j.chemolab.2015.08.020 10.1007/s00521-013-1367-1 10.1016/j.energy.2020.119009 10.1007/s00366-011-0241-y 10.1016/j.energy.2022.125069 10.1108/AEAT-09-2020-0213 10.1016/j.matpr.2017.07.055 10.1016/j.energy.2013.07.011 10.1016/j.energy.2018.11.096  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2023 Elsevier Ltd | 
    
| Copyright_xml | – notice: 2023 Elsevier Ltd | 
    
| DBID | AAYXX CITATION 7S9 L.6  | 
    
| DOI | 10.1016/j.energy.2023.126819 | 
    
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | AGRICOLA | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Economics Environmental Sciences  | 
    
| ExternalDocumentID | 10_1016_j_energy_2023_126819 S036054422300213X  | 
    
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AHHHB AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ~HD 7S9 L.6  | 
    
| ID | FETCH-LOGICAL-c218t-664cdfa45e7a1f764c9ff6111182b6ce21bd43391cce9026d7e20d6b0e55cfb53 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0360-5442 | 
    
| IngestDate | Thu Oct 02 22:52:14 EDT 2025 Thu Oct 09 00:23:37 EDT 2025 Sat Apr 27 15:44:44 EDT 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Cuckoo search algorithm Energy Specific excess power Aircraft Particle swarm optimization  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c218t-664cdfa45e7a1f764c9ff6111182b6ce21bd43391cce9026d7e20d6b0e55cfb53 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| ORCID | 0000-0002-9600-2697 | 
    
| PQID | 3206213090 | 
    
| PQPubID | 24069 | 
    
| ParticipantIDs | proquest_miscellaneous_3206213090 crossref_primary_10_1016_j_energy_2023_126819 elsevier_sciencedirect_doi_10_1016_j_energy_2023_126819  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-04-15 | 
    
| PublicationDateYYYYMMDD | 2023-04-15 | 
    
| PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-15 day: 15  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Energy (Oxford) | 
    
| PublicationYear | 2023 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Kulkarni, Patekar, Bhoskar, Kulkarni, Kakandikar, Nandedkar (bib24) 2015; 2 Anderson (bib8) 2011 Marini, Walczak (bib26) 2015; 149 Poles, Nuic, Mouillet (bib6) 2010 Yang, Deb (bib21) 2014; 24 Oruc (bib13) 2022 Gandomi, Yang, Alavi (bib22) 2013; 29 Nuic, Poinsot, Iagaru, Gallo, Navarro, Querejeta (bib7) 2005 Ojha (bib14) 1995 Siddhartha, Sharma, Varun (bib25) 2012; 38 Auguste (bib11) 2018 Oruc, Baklacioglu (bib18) 2020; 92 (bib1) 2005 Perrigot, Perier-Muzet, Ortega, Stitou (bib23) 2020; 211 Basu, Chowdhury (bib15) 2013; 60 Yang (bib16) 2014 Oruc, Baklacioglu, Turan (bib28) 2020; 35 Aviation (bib2) 2019 Oruc, Baklacioglu (bib10) 2022; 259 Yang, Deb (bib20) 2009 (bib5) 2019 (bib4) 2020 Joshi, Kulkarni, Kakandikar, Nandedkar (bib19) 2017; 4 Oruc, Baklacioglu (bib29) 2021; 93 Meng, Chang, Wang, Wang (bib17) 2019; 168 Filippone (bib9) 2012 Tables (bib3) 2020 Engelbrecht (bib27) 2007 Atuahene, Corda, Sawhney (bib12) 2011; 15 Nuic (10.1016/j.energy.2023.126819_bib7) 2005 Gandomi (10.1016/j.energy.2023.126819_bib22) 2013; 29 Auguste (10.1016/j.energy.2023.126819_bib11) 2018 Joshi (10.1016/j.energy.2023.126819_bib19) 2017; 4 Aviation (10.1016/j.energy.2023.126819_bib2) Basu (10.1016/j.energy.2023.126819_bib15) 2013; 60 Oruc (10.1016/j.energy.2023.126819_bib28) 2020; 35 (10.1016/j.energy.2023.126819_bib4) 2020 Perrigot (10.1016/j.energy.2023.126819_bib23) 2020; 211 Poles (10.1016/j.energy.2023.126819_bib6) 2010 Atuahene (10.1016/j.energy.2023.126819_bib12) 2011; 15 Oruc (10.1016/j.energy.2023.126819_bib10) 2022; 259 Oruc (10.1016/j.energy.2023.126819_bib13) 2022 Ojha (10.1016/j.energy.2023.126819_bib14) 1995 Siddhartha (10.1016/j.energy.2023.126819_bib25) 2012; 38 Yang (10.1016/j.energy.2023.126819_bib20) 2009 Anderson (10.1016/j.energy.2023.126819_bib8) 2011 Marini (10.1016/j.energy.2023.126819_bib26) 2015; 149 Kulkarni (10.1016/j.energy.2023.126819_bib24) 2015; 2 Meng (10.1016/j.energy.2023.126819_bib17) 2019; 168 Filippone (10.1016/j.energy.2023.126819_bib9) 2012 Engelbrecht (10.1016/j.energy.2023.126819_bib27) 2007 Yang (10.1016/j.energy.2023.126819_bib16) 2014 Yang (10.1016/j.energy.2023.126819_bib21) 2014; 24 Oruc (10.1016/j.energy.2023.126819_bib18) 2020; 92 Tables (10.1016/j.energy.2023.126819_bib3) Oruc (10.1016/j.energy.2023.126819_bib29) 2021; 93 (10.1016/j.energy.2023.126819_bib5) 2019  | 
    
| References_xml | – year: 2014 ident: bib16 article-title: Nature-Inspired Optimization Algorithms – start-page: 210 year: 2009 end-page: 214 ident: bib20 article-title: Cuckoo search via Lévy flights publication-title: World congress on nature and biologically inspired computing, NABIC 2009 - proceedings – year: 2019 ident: bib2 article-title: Benefits report – volume: 92 start-page: 495 year: 2020 end-page: 501 ident: bib18 article-title: Modelling of fuel flow-rate of commercial aircraft for the climbing flight using cuckoo search algorithm publication-title: Aircraft Eng Aero Technol – volume: 168 start-page: 425 year: 2019 end-page: 439 ident: bib17 article-title: Multi-objective hydropower station operation using an improved cuckoo search algorithm publication-title: Energy – year: 2005 ident: bib1 article-title: The economic & social benefits of air transport – volume: 35 start-page: 1997 year: 2020 end-page: 2012 ident: bib28 article-title: Optimization of an afterburning turbofan engine with multi objective particle swarm Method publication-title: J Fac Eng Archit Gazi Univ – volume: 259 year: 2022 ident: bib10 article-title: Modeling of aircraft performance parameters with metaheuristic methods to achieve specific excess power contours using energy maneuverability method publication-title: Energy – volume: 60 start-page: 99 year: 2013 end-page: 108 ident: bib15 article-title: Cuckoo search algorithm for economic dispatch publication-title: Energy – year: 2011 ident: bib8 article-title: Introduction to flight – start-page: 1 year: 2010 ident: bib6 article-title: Advanced aircraft performance modeling for atm: analysis of BADA model capabilities publication-title: AIAA/IEEE digital avionics systems conference - proceedings – start-page: 1 year: 2005 end-page: 14 ident: bib7 article-title: Advanced aircraft performance modeling for ATM: enhancements to the bada model publication-title: 24th digital avionics system conference – year: 2020 ident: bib4 publication-title: Boeing. Commercial market outlook 2020-2039 – year: 1995 ident: bib14 article-title: Flight Performance of Aircraft – volume: 38 start-page: 406 year: 2012 end-page: 413 ident: bib25 article-title: A particle swarm optimization algorithm for optimization of thermal performance of a smooth flat plate solar air heater publication-title: Energy – year: 2018 ident: bib11 article-title: Comparing specific excess power of general aviation aircraft (Master's Thesis) – volume: 29 start-page: 17 year: 2013 end-page: 35 ident: bib22 article-title: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems publication-title: Eng Comput – volume: 2 start-page: 2631 year: 2015 end-page: 2639 ident: bib24 article-title: Particle swarm optimization applications to mechanical engineering- A review publication-title: Mater Today Proc – volume: 149 start-page: 153 year: 2015 end-page: 165 ident: bib26 article-title: Particle swarm optimization (PSO). A tutorial publication-title: Chemometr Intell Lab Syst – volume: 211 year: 2020 ident: bib23 article-title: Technical economic analysis of PV-driven electricity and cold cogeneration systems using particle swarm optimization algorithm publication-title: Energy – year: 2007 ident: bib27 article-title: Computational Intelligence: An Introduction – year: 2012 ident: bib9 article-title: Advanced aircraft flight performance – volume: 4 start-page: 7262 year: 2017 end-page: 7269 ident: bib19 article-title: Cuckoo search optimization- A review publication-title: Mater Today Proc – year: 2020 ident: bib3 article-title: Of the traffic forecasts – year: 2019 ident: bib5 publication-title: Airbus. Global market forecast; Cities – volume: 93 start-page: 319 year: 2021 end-page: 326 ident: bib29 article-title: Modeling of fuel flow-rate of commercial aircraft for the descent flight using particle swarm optimization publication-title: Aircraft Eng Aero Technol – volume: 24 start-page: 169 year: 2014 end-page: 174 ident: bib21 article-title: Cuckoo search: recent advances and applications publication-title: Neural Comput Appl – year: 2022 ident: bib13 article-title: Aircraft Energy Maneuverability and Modeling of Performance Parameters with Metaheuristic Methods (Doctoral Dissertation) – volume: 15 start-page: 83 year: 2011 end-page: 91 ident: bib12 article-title: Development and flight test of a real-time energy management display publication-title: Aviation – ident: 10.1016/j.energy.2023.126819_bib3 – year: 2020 ident: 10.1016/j.energy.2023.126819_bib4 – volume: 92 start-page: 495 issue: 3 year: 2020 ident: 10.1016/j.energy.2023.126819_bib18 article-title: Modelling of fuel flow-rate of commercial aircraft for the climbing flight using cuckoo search algorithm publication-title: Aircraft Eng Aero Technol doi: 10.1108/AEAT-10-2019-0202 – volume: 15 start-page: 83 issue: 4 year: 2011 ident: 10.1016/j.energy.2023.126819_bib12 article-title: Development and flight test of a real-time energy management display publication-title: Aviation doi: 10.3846/16487788.2011.648310 – year: 1995 ident: 10.1016/j.energy.2023.126819_bib14 – ident: 10.1016/j.energy.2023.126819_bib2 – start-page: 210 year: 2009 ident: 10.1016/j.energy.2023.126819_bib20 article-title: Cuckoo search via Lévy flights – year: 2019 ident: 10.1016/j.energy.2023.126819_bib5 – volume: 2 start-page: 2631 issue: 4–5 year: 2015 ident: 10.1016/j.energy.2023.126819_bib24 article-title: Particle swarm optimization applications to mechanical engineering- A review publication-title: Mater Today Proc doi: 10.1016/j.matpr.2015.07.223 – volume: 38 start-page: 406 issue: 1 year: 2012 ident: 10.1016/j.energy.2023.126819_bib25 article-title: A particle swarm optimization algorithm for optimization of thermal performance of a smooth flat plate solar air heater publication-title: Energy doi: 10.1016/j.energy.2011.11.026 – volume: 35 start-page: 1997 issue: 4 year: 2020 ident: 10.1016/j.energy.2023.126819_bib28 article-title: Optimization of an afterburning turbofan engine with multi objective particle swarm Method publication-title: J Fac Eng Archit Gazi Univ – start-page: 1 year: 2005 ident: 10.1016/j.energy.2023.126819_bib7 article-title: Advanced aircraft performance modeling for ATM: enhancements to the bada model – year: 2014 ident: 10.1016/j.energy.2023.126819_bib16 – volume: 149 start-page: 153 year: 2015 ident: 10.1016/j.energy.2023.126819_bib26 article-title: Particle swarm optimization (PSO). A tutorial publication-title: Chemometr Intell Lab Syst doi: 10.1016/j.chemolab.2015.08.020 – volume: 24 start-page: 169 issue: 1 year: 2014 ident: 10.1016/j.energy.2023.126819_bib21 article-title: Cuckoo search: recent advances and applications publication-title: Neural Comput Appl doi: 10.1007/s00521-013-1367-1 – year: 2022 ident: 10.1016/j.energy.2023.126819_bib13 – volume: 211 year: 2020 ident: 10.1016/j.energy.2023.126819_bib23 article-title: Technical economic analysis of PV-driven electricity and cold cogeneration systems using particle swarm optimization algorithm publication-title: Energy doi: 10.1016/j.energy.2020.119009 – year: 2011 ident: 10.1016/j.energy.2023.126819_bib8 – year: 2012 ident: 10.1016/j.energy.2023.126819_bib9 – volume: 29 start-page: 17 issue: 1 year: 2013 ident: 10.1016/j.energy.2023.126819_bib22 article-title: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems publication-title: Eng Comput doi: 10.1007/s00366-011-0241-y – volume: 259 year: 2022 ident: 10.1016/j.energy.2023.126819_bib10 article-title: Modeling of aircraft performance parameters with metaheuristic methods to achieve specific excess power contours using energy maneuverability method publication-title: Energy doi: 10.1016/j.energy.2022.125069 – start-page: 1 year: 2010 ident: 10.1016/j.energy.2023.126819_bib6 article-title: Advanced aircraft performance modeling for atm: analysis of BADA model capabilities – volume: 93 start-page: 319 issue: 2 year: 2021 ident: 10.1016/j.energy.2023.126819_bib29 article-title: Modeling of fuel flow-rate of commercial aircraft for the descent flight using particle swarm optimization publication-title: Aircraft Eng Aero Technol doi: 10.1108/AEAT-09-2020-0213 – year: 2018 ident: 10.1016/j.energy.2023.126819_bib11 – volume: 4 start-page: 7262 issue: 8 year: 2017 ident: 10.1016/j.energy.2023.126819_bib19 article-title: Cuckoo search optimization- A review publication-title: Mater Today Proc doi: 10.1016/j.matpr.2017.07.055 – year: 2007 ident: 10.1016/j.energy.2023.126819_bib27 – volume: 60 start-page: 99 year: 2013 ident: 10.1016/j.energy.2023.126819_bib15 article-title: Cuckoo search algorithm for economic dispatch publication-title: Energy doi: 10.1016/j.energy.2013.07.011 – volume: 168 start-page: 425 year: 2019 ident: 10.1016/j.energy.2023.126819_bib17 article-title: Multi-objective hydropower station operation using an improved cuckoo search algorithm publication-title: Energy doi: 10.1016/j.energy.2018.11.096  | 
    
| SSID | ssj0005899 | 
    
| Score | 2.421918 | 
    
| Snippet | Specific excess power (Ps) contours that can be obtained using the energy method; these are important contours that show the performance limits of the... Specific excess power (Pₛ) contours that can be obtained using the energy method; these are important contours that show the performance limits of the...  | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Index Database Publisher  | 
    
| StartPage | 126819 | 
    
| SubjectTerms | Aircraft algorithms altitude Cuckoo search algorithm data collection Energy flight maneuverability Particle swarm optimization Specific excess power  | 
    
| Title | Modeling of energy maneuverability based specific excess power contours for commercial aircraft using metaheuristic methods | 
    
| URI | https://dx.doi.org/10.1016/j.energy.2023.126819 https://www.proquest.com/docview/3206213090  | 
    
| Volume | 269 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0360-5442 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0005899 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect issn: 0360-5442 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0005899 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Journals issn: 0360-5442 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0005899 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 0360-5442 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0005899 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0360-5442 databaseCode: AKRWK dateStart: 19760301 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6iB72IT6yPEsHrtvtIdttjKS1V0YsKvYVkd6IV-qC7BUXwtzuz2cUHguAxS_bBzOSb2WS-GcYuQGRSG2m9KOuAJwJhaUlJj0qdA6CNyJS4wze38ehBXI3leI31ay4MpVVW2O8wvUTr6kq7kmZ7MZm07xB7Md4Q6N_IUUVjYrCLhLoYtN6_pHl0yh6SNNmj2TV9rszxgpJf16IW4q0gjDtUb-d39_QDqEvvM9xh21XYyHvuy3bZGsz22GbNKs732OHgk7GGE6slm--zN-p2RpxzPrfcfQmf6hms0IZdje5XTq4s40S6pMQhDi_EHeALaqDGKZcd355zjG5xQPvctMvO9WSZLrUtOGXOP_IpFPoJVq7uM3d9qfMD9jAc3PdHXtVxwUvR1RdeHIs0s1pISHRgExx1rY0JVTuhod5hgclEFHWDNIUu_r1lCYR-FhsfpEytkdEhW5_NZ3DEOAIwRo9RIkORCC0TkxmEMgN07ochl24wrxa0WrjCGqrOOHtWThyKFKOcYhosqbWhvhmIQuz_487zWnkK1w4diKCU56tcRaEfo-X4Xf_4308_YVs0ogOmQJ6y9WK5gjOMUwrTLA2xyTZ6l9ej2w9wAOr8 | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-67qF7Gf1YWNcvDfrqxB-SnTyWkpB1aV_aQt6EZJ-2FJqE2IGWQv_23lk2a8tgsEfbsi1Op9-dpPvdAZyiLJSxygVJ0cdARtLxlFIBpzpHJB1ROXOHL6_S8a28mKrpBpy3XBgOq2yw32N6jdbNnV4jzd5yNutdE_aSvyHJvrGhSqYf4KNUccYrsO7zqziPfl1EklsH3Lzlz9VBXlgT7LpcQ7wbxWmfE-783T69Q-ra_Iy24XPjN4oz37Ud2MD5Lmy1tOJyFzrDP5Q1atjM2XIPnrjcGZPOxcIJ3xNxb-a4JiX2SbofBduyQjDrkiOHBD4weUAsuYKa4GB2-nspyL2lC97o5m12YWarfGVcJTh0_pe4x8r8xrVP_Cx8YeryC9yOhjfn46ApuRDkZOurIE1lXjgjFWYmchldDZxLGVb7seXiYZEtZJIMojzHAS3figzjsEhtiErlzqqkA5vzxRy_giAEJvcxyVQsM2lUZgtLWGaRD_7I5zL7ELSC1kufWUO3IWd32otD88BoPzD7kLWjod9oiCbw_8eb39vB0zR5-ESEpLxYlzqJw5RUJxyE3_776yewNb65nOjJj6ufB_CJn_BpU6QOYbNarfGInJbKHtdK-QLqUuyR | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+of+energy+maneuverability+based+specific+excess+power+contours+for+commercial+aircraft+using+metaheuristic+methods&rft.jtitle=Energy+%28Oxford%29&rft.au=Oruc%2C+Ridvan&rft.au=Baklacioglu%2C+Tolga&rft.date=2023-04-15&rft.issn=0360-5442&rft.volume=269&rft.spage=126819&rft_id=info:doi/10.1016%2Fj.energy.2023.126819&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_energy_2023_126819 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |