Artificial Neural Network prediction model for MRR in WEDM of WC-Co

The studied work aimed to develop the predictive models of removal rate of WC-Co composite material in WEDM. Back prorogation algorithm of ANN is used to predict the MRR in WEDM of WC-Co. The training and testing data were collected by performing WEDM experiments on work piece material of WC-Co as p...

Full description

Saved in:
Bibliographic Details
Published inMaterials today : proceedings Vol. 72; pp. 1650 - 1656
Main Authors Sable, Yogesh, Dharmadhikari, H.M.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 2023
Subjects
Online AccessGet full text
ISSN2214-7853
2214-7853
DOI10.1016/j.matpr.2022.09.444

Cover

Abstract The studied work aimed to develop the predictive models of removal rate of WC-Co composite material in WEDM. Back prorogation algorithm of ANN is used to predict the MRR in WEDM of WC-Co. The training and testing data were collected by performing WEDM experiments on work piece material of WC-Co as per FCC composite design, containing five control factors like peak current, wire tension, pulse on-duration, servo voltage and pulse off-duration, and material removal rate were considered as the performance measure. ANN model has been developed with less than 0.05 error and correlation coefficient R2 of testing-0.95871 and validation-0.9968 to forecast the value of MRR.
AbstractList The studied work aimed to develop the predictive models of removal rate of WC-Co composite material in WEDM. Back prorogation algorithm of ANN is used to predict the MRR in WEDM of WC-Co. The training and testing data were collected by performing WEDM experiments on work piece material of WC-Co as per FCC composite design, containing five control factors like peak current, wire tension, pulse on-duration, servo voltage and pulse off-duration, and material removal rate were considered as the performance measure. ANN model has been developed with less than 0.05 error and correlation coefficient R2 of testing-0.95871 and validation-0.9968 to forecast the value of MRR.
Author Dharmadhikari, H.M.
Sable, Yogesh
Author_xml – sequence: 1
  givenname: Yogesh
  surname: Sable
  fullname: Sable, Yogesh
  email: yssablejnec@gmail.com
  organization: Department of Mechanical Engineering, Jawaharlal Nehru Engineering College, Aurangabad 431005, MS, India
– sequence: 2
  givenname: H.M.
  surname: Dharmadhikari
  fullname: Dharmadhikari, H.M.
  organization: Department of Mechanical Engineering, Marathwada Institute of Technology, Aurangabad 431005, MS, India
BookMark eNqFkMlOwzAURS1UJErpF7DxDyR4yuAFiyqUQWpBqkBdWo7zLLmkceUYEH9P2rJALGB17-Y8vXvO0ajzHSB0SUlKCc2vNulWx11IGWEsJTIVQpygMWNUJEWZ8dGPfoamfb8hhNAsJyXNx6iaheisM063-BHewiHihw-veBegcSY63-Gtb6DF1ge8XK2w6_B6frPE3uJ1lVT-Ap1a3fYw_c4JermdP1f3yeLp7qGaLRLDaBmTzLKM17qAhpY1B8u04URYkpcgRVGyLJeiqeu6McC5tCDzIiu5FDUp6sIUjE-QPN41wfd9AKuMi3r_YAzatYoStReiNuogRO2FKCLVIGRg-S92F9xWh89_qOsjBcOsdwdB9cZBZwYxAUxUjXd_8l8xtXwa
CitedBy_id crossref_primary_10_1177_09544089241296722
crossref_primary_10_1007_s00170_023_12476_w
crossref_primary_10_1016_j_matpr_2023_08_352
Cites_doi 10.1016/j.precisioneng.2021.08.018
10.1007/s13198-020-00990-z
10.1016/j.mspro.2014.07.205
10.1007/s00170-010-2653-z
10.1081/AMP-200055033
10.1016/j.procir.2013.01.003
10.15373/2249555X/MAY2013/66
10.1007/s00170-004-2203-7
10.1080/10426910903365760
10.1109/INECCE.2011.5953887
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID AAYXX
CITATION
DOI 10.1016/j.matpr.2022.09.444
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2214-7853
EndPage 1656
ExternalDocumentID 10_1016_j_matpr_2022_09_444
S2214785322062666
GroupedDBID --M
.~1
0R~
1~.
4.4
457
4G.
5VS
7-5
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
GBLVA
HZ~
KOM
M41
NCXOZ
O9-
OAUVE
P-8
P-9
PC.
ROL
SPC
SPCBC
SSM
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACLOT
ACVFH
ADCNI
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
ID FETCH-LOGICAL-c218t-5f253ba7ed18b3ef2ac304f068e947825694dbbbdce339fe96758394b07b7c723
IEDL.DBID .~1
ISSN 2214-7853
IngestDate Wed Oct 01 03:37:32 EDT 2025
Thu Apr 24 22:58:42 EDT 2025
Sat Feb 24 15:48:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords ANN
Material removal rate
WC-Co
WEDM
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c218t-5f253ba7ed18b3ef2ac304f068e947825694dbbbdce339fe96758394b07b7c723
PageCount 7
ParticipantIDs crossref_citationtrail_10_1016_j_matpr_2022_09_444
crossref_primary_10_1016_j_matpr_2022_09_444
elsevier_sciencedirect_doi_10_1016_j_matpr_2022_09_444
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023
2023-00-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023
PublicationDecade 2020
PublicationTitle Materials today : proceedings
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Prajapati, Patel, Asal (b0040) 2011; 3
Nourbaksh, Rajurkar, Malshe, Cao (b0065) 2013; 5
Ganapathy, Balasubramanian, Vasanth, Thulasiraman (b0095) 2020
Lalwani, Sharma, Pruncu, Unune (b0100) 2020; 4
Machining Process Based on a Combined Artificial Neural Network and Particle Swarm Optimization Algorithm, Scientia Iranica, Sharif University of Technology, vol. 27, no. 3, 2020, pp.1206–1217.
Ahmad, Praveen, Prateek, Kalyani, Ranganath, Mishra, Akhtar (b0030) 2018; 6
Panda, Bhoi (b0080) 2005; 20
Patowari, Saha, Mishra (b0115) 2010; 51
Surya, Vinay Kumar, Keshavamurthy, Ugrasen, Ravindra (b0090) 2017; 4
Somashekhar, Ramachandran, Mathew (b0075) 2010; 25
Ugrasen, Ravindra, Naveen Prakash, Keshavamurthy (b0010) 2014; 6
Phate, Toney (b0005) 2019; 22
Alduroobi, Ubaid, Tawfiq, Elias (b0070) 2020; 11
All India Manufacturing Technology, Design and Research Conference(AIMTDR 2014), IIT Guwahati, Assam, India, pp. 152 – 1-4.
Trias Andromeda, AzliYahya, Nor Hisham, Kamal Khalil, Ade Erawan, Predicting Material Removal Rate of Electrical Discharge Machining (EDM) Using Artificial Neural Network for High I
Mahapatra, Patnaik (b0035) 2006; 13
Quarto (b0060) 2022; 73
Quarto, D’Urso, Giardini, Maccarini, Carminati (b0105) 2021
Sarkar, Mitra, Bhattacharyya (b0110) 2006; 27
M. Azadi Moghaddam, F. Kolahan, Modeling and Optimization of the Electrical Discharge.
Current, in: International Conference on Electrical, Control and Computer Engineering, Pahang, Malaysia, June 21–22, 2011, pp. 259–262.
OnurGuven, Kaya, YigitKazancoglu, Kulekci (b0025) 2010; 44
Yahaya, Andromeda, Baharom, Rahim, Mahmud (b0020) 2011; 1
Sagbas, Kahraman, Esme (b0045) 2012; 25
V. Balasubramaniam, N. Baskar, C. Sathiya Narayanan, Optimization of Electrical Discharge Machining Parameters Using Artificial Neural Network with Different Electrodes, in: 5th International & 26
Sagbas (10.1016/j.matpr.2022.09.444_b0045) 2012; 25
Quarto (10.1016/j.matpr.2022.09.444_b0105) 2021
OnurGuven (10.1016/j.matpr.2022.09.444_b0025) 2010; 44
Mahapatra (10.1016/j.matpr.2022.09.444_b0035) 2006; 13
Sarkar (10.1016/j.matpr.2022.09.444_b0110) 2006; 27
Ugrasen (10.1016/j.matpr.2022.09.444_b0010) 2014; 6
Alduroobi (10.1016/j.matpr.2022.09.444_b0070) 2020; 11
Somashekhar (10.1016/j.matpr.2022.09.444_b0075) 2010; 25
Panda (10.1016/j.matpr.2022.09.444_b0080) 2005; 20
Phate (10.1016/j.matpr.2022.09.444_b0005) 2019; 22
Quarto (10.1016/j.matpr.2022.09.444_b0060) 2022; 73
Lalwani (10.1016/j.matpr.2022.09.444_b0100) 2020; 4
10.1016/j.matpr.2022.09.444_b0055
Nourbaksh (10.1016/j.matpr.2022.09.444_b0065) 2013; 5
Prajapati (10.1016/j.matpr.2022.09.444_b0040) 2011; 3
Surya (10.1016/j.matpr.2022.09.444_b0090) 2017; 4
10.1016/j.matpr.2022.09.444_b0050
10.1016/j.matpr.2022.09.444_b0085
Patowari (10.1016/j.matpr.2022.09.444_b0115) 2010; 51
Ahmad (10.1016/j.matpr.2022.09.444_b0030) 2018; 6
Ganapathy (10.1016/j.matpr.2022.09.444_b0095) 2020
10.1016/j.matpr.2022.09.444_b0015
Yahaya (10.1016/j.matpr.2022.09.444_b0020) 2011; 1
References_xml – volume: 73
  start-page: 63
  year: 2022
  end-page: 70
  ident: b0060
  article-title: GianlucaD’Urso and Claudio Giardini, Micro-EDM Optimization ThroughParticle Swarm Algorithm and Artificial Neural Network, Elsevier
  publication-title: J. Precis. Eng.
– volume: 13
  start-page: 494
  year: 2006
  end-page: 502
  ident: b0035
  article-title: Optimization of Wire Electrical Discharge Machining (WEDM) Process Parameters Using Genetic Algorithm
  publication-title: Indian J. Eng. Mater. Sci.
– volume: 25
  start-page: 467
  year: 2010
  end-page: 475
  ident: b0075
  article-title: Optimization of Material Removal Rate in Micro-EDM Using Artificial Neural Network and Genetic Algorithms, Taylor and Francis
  publication-title: Mater. Manuf. Process.
– reference: Current, in: International Conference on Electrical, Control and Computer Engineering, Pahang, Malaysia, June 21–22, 2011, pp. 259–262.
– year: 2020
  ident: b0095
  article-title: Comparative Investigation of Artificial Neural Network (ANN) and Response Surface Methodology (RSM) Expection in EDM Parameters,Elsevier
  publication-title: Mater. Today: Proc.
– volume: 4
  start-page: 1
  year: 2020
  end-page: 21
  ident: b0100
  article-title: Reponse Surface Methodology and Artificial Neural Network- Based Models for Predicting Performance of Wire Electrical Discharge Machining of Inconel 718 Alloy
  publication-title: J. Manuf. Mater. Process. (MDPI)
– volume: 25
  year: 2012
  ident: b0045
  article-title: Optimization of Wire Electrical Discharge Machining Process Using Taguchi Method and Back Propagation Neural Network
  publication-title: J. Eng. Arch. Faculty EskişehirOsmangazi Univ.
– reference: Trias Andromeda, AzliYahya, Nor Hisham, Kamal Khalil, Ade Erawan, Predicting Material Removal Rate of Electrical Discharge Machining (EDM) Using Artificial Neural Network for High I
– volume: 27
  start-page: 501
  year: 2006
  end-page: 508
  ident: b0110
  article-title: Parametric Optimization of Wire Electrical Discharge Machining of γ Titanium Aluminide Alloy Through an Artificial Neural Network Model, Springer
  publication-title: Int. J. Manuf. Technol.
– reference: M. Azadi Moghaddam, F. Kolahan, Modeling and Optimization of the Electrical Discharge.
– volume: 6
  start-page: 312
  year: 2018
  end-page: 317
  ident: b0030
  article-title: Modelling and Optimization of Process Parameters Affecting Machining Involved in Electric Discharge Machining by GA-ANN
  publication-title: Int. J. Adv. Res. Innovat.
– start-page: 1
  year: 2021
  end-page: 12
  ident: b0105
  article-title: A Comparison Between Finite Element Model (FEM) Simulation and an Integrated Artificial Neural Network (ANN)- Partical Swarm Optimization (PSO) Approach to Forecast Performance of Micro Electro Discharge Machining (Micro-EDM) Drilling
  publication-title: Micromachines(MDPI)
– volume: 11
  start-page: 1314
  year: 2020
  end-page: 1338
  ident: b0070
  article-title: Wire EDM process optimization for machining AISI 1045 steel by use of Taguchi method, artificial neural network and analysis of variances
  publication-title: Int. J. Syst. Assur. Eng. Manag.
– volume: 4
  start-page: 203
  year: 2017
  end-page: 212
  ident: b0090
  article-title: Prediction of Machining Characteristics Using Artificial Neural Network in Wire EDM of Al7075 based In-situ Composite, Elsevier
  publication-title: Mater. Today: Proc.
– volume: 22
  start-page: 468
  year: 2019
  end-page: 476
  ident: b0005
  article-title: Modeling and prediction of WEDM performance parameters for Al/SiCpMMC using dimensional analysis and artificial neural network, Elsevier
  publication-title: Eng. Sci. Technol. Int. J.
– volume: 6
  start-page: 1752
  year: 2014
  end-page: 1760
  ident: b0010
  article-title: Process Optimization and Estimation of Machining Performances Using Artificial Neural Network in Wire EDM, Elsevier
  publication-title: Procedia Mater. Sci.
– reference: V. Balasubramaniam, N. Baskar, C. Sathiya Narayanan, Optimization of Electrical Discharge Machining Parameters Using Artificial Neural Network with Different Electrodes, in: 5th International & 26
– volume: 1
  start-page: 298
  year: 2011
  end-page: 302
  ident: b0020
  article-title: Material Removal Rate Prediction of Electrical Discharge Machining Process Using Artificial Neural Network, ACADEMIA
  publication-title: J. Mech. Eng. Automat.
– volume: 51
  start-page: 627
  year: 2010
  end-page: 638
  ident: b0115
  article-title: Artificial Neural Network Model in Surface Modification by EDM Using Tungsten- Copper Powder Metallurgy Sintered Electrodes, Springer
  publication-title: Int. J. Manuf. Technol.
– volume: 5
  start-page: 13
  year: 2013
  end-page: 18
  ident: b0065
  article-title: Wire Electro- Discharge Machining of Titanium Alloy, Elsevier
  publication-title: Proceddia CIRP
– volume: 3
  start-page: 217
  year: 2011
  end-page: 218
  ident: b0040
  article-title: Prediction of Process Parameters of Wire EDM for AISI A2 Using ANNPrediction of Process Parameters of Wire EDM for AISI A2 Using ANN
  publication-title: IJAR
– volume: 44
  start-page: 147
  year: 2010
  ident: b0025
  article-title: Comparative Modelling of Wire Electrical Discharge Machining (WEDM) Process Using Back Propagation (BPN) and General Regression Neural Networks (GRNN)
  publication-title: J. Mater. Technol.
– volume: 20
  start-page: 645
  year: 2005
  end-page: 672
  ident: b0080
  article-title: Artificial Neural Network Prediction of Material Removal Rate in Electro Discharge Maching, Taylor and Francis
  publication-title: Mater. Manuf. Process.
– reference: All India Manufacturing Technology, Design and Research Conference(AIMTDR 2014), IIT Guwahati, Assam, India, pp. 152 – 1-4.
– reference: Machining Process Based on a Combined Artificial Neural Network and Particle Swarm Optimization Algorithm, Scientia Iranica, Sharif University of Technology, vol. 27, no. 3, 2020, pp.1206–1217.
– volume: 22
  start-page: 468
  year: 2019
  ident: 10.1016/j.matpr.2022.09.444_b0005
  article-title: Modeling and prediction of WEDM performance parameters for Al/SiCpMMC using dimensional analysis and artificial neural network, Elsevier
  publication-title: Eng. Sci. Technol. Int. J.
– volume: 6
  start-page: 312
  issue: 4
  year: 2018
  ident: 10.1016/j.matpr.2022.09.444_b0030
  article-title: Modelling and Optimization of Process Parameters Affecting Machining Involved in Electric Discharge Machining by GA-ANN
  publication-title: Int. J. Adv. Res. Innovat.
– volume: 73
  start-page: 63
  year: 2022
  ident: 10.1016/j.matpr.2022.09.444_b0060
  article-title: GianlucaD’Urso and Claudio Giardini, Micro-EDM Optimization ThroughParticle Swarm Algorithm and Artificial Neural Network, Elsevier
  publication-title: J. Precis. Eng.
  doi: 10.1016/j.precisioneng.2021.08.018
– volume: 25
  issue: 1
  year: 2012
  ident: 10.1016/j.matpr.2022.09.444_b0045
  article-title: Optimization of Wire Electrical Discharge Machining Process Using Taguchi Method and Back Propagation Neural Network
  publication-title: J. Eng. Arch. Faculty EskişehirOsmangazi Univ.
– volume: 11
  start-page: 1314
  issue: 6
  year: 2020
  ident: 10.1016/j.matpr.2022.09.444_b0070
  article-title: Wire EDM process optimization for machining AISI 1045 steel by use of Taguchi method, artificial neural network and analysis of variances
  publication-title: Int. J. Syst. Assur. Eng. Manag.
  doi: 10.1007/s13198-020-00990-z
– volume: 6
  start-page: 1752
  year: 2014
  ident: 10.1016/j.matpr.2022.09.444_b0010
  article-title: Process Optimization and Estimation of Machining Performances Using Artificial Neural Network in Wire EDM, Elsevier
  publication-title: Procedia Mater. Sci.
  doi: 10.1016/j.mspro.2014.07.205
– volume: 4
  start-page: 203
  year: 2017
  ident: 10.1016/j.matpr.2022.09.444_b0090
  article-title: Prediction of Machining Characteristics Using Artificial Neural Network in Wire EDM of Al7075 based In-situ Composite, Elsevier
  publication-title: Mater. Today: Proc.
– volume: 51
  start-page: 627
  issue: 5-8
  year: 2010
  ident: 10.1016/j.matpr.2022.09.444_b0115
  article-title: Artificial Neural Network Model in Surface Modification by EDM Using Tungsten- Copper Powder Metallurgy Sintered Electrodes, Springer
  publication-title: Int. J. Manuf. Technol.
  doi: 10.1007/s00170-010-2653-z
– volume: 20
  start-page: 645
  year: 2005
  ident: 10.1016/j.matpr.2022.09.444_b0080
  article-title: Artificial Neural Network Prediction of Material Removal Rate in Electro Discharge Maching, Taylor and Francis
  publication-title: Mater. Manuf. Process.
  doi: 10.1081/AMP-200055033
– volume: 5
  start-page: 13
  year: 2013
  ident: 10.1016/j.matpr.2022.09.444_b0065
  article-title: Wire Electro- Discharge Machining of Titanium Alloy, Elsevier
  publication-title: Proceddia CIRP
  doi: 10.1016/j.procir.2013.01.003
– ident: 10.1016/j.matpr.2022.09.444_b0015
– volume: 3
  start-page: 217
  issue: 5
  year: 2011
  ident: 10.1016/j.matpr.2022.09.444_b0040
  article-title: Prediction of Process Parameters of Wire EDM for AISI A2 Using ANNPrediction of Process Parameters of Wire EDM for AISI A2 Using ANN
  publication-title: IJAR
  doi: 10.15373/2249555X/MAY2013/66
– volume: 27
  start-page: 501
  year: 2006
  ident: 10.1016/j.matpr.2022.09.444_b0110
  article-title: Parametric Optimization of Wire Electrical Discharge Machining of γ Titanium Aluminide Alloy Through an Artificial Neural Network Model, Springer
  publication-title: Int. J. Manuf. Technol.
  doi: 10.1007/s00170-004-2203-7
– volume: 1
  start-page: 298
  year: 2011
  ident: 10.1016/j.matpr.2022.09.444_b0020
  article-title: Material Removal Rate Prediction of Electrical Discharge Machining Process Using Artificial Neural Network, ACADEMIA
  publication-title: J. Mech. Eng. Automat.
– volume: 25
  start-page: 467
  issue: 6
  year: 2010
  ident: 10.1016/j.matpr.2022.09.444_b0075
  article-title: Optimization of Material Removal Rate in Micro-EDM Using Artificial Neural Network and Genetic Algorithms, Taylor and Francis
  publication-title: Mater. Manuf. Process.
  doi: 10.1080/10426910903365760
– ident: 10.1016/j.matpr.2022.09.444_b0085
  doi: 10.1109/INECCE.2011.5953887
– year: 2020
  ident: 10.1016/j.matpr.2022.09.444_b0095
  article-title: Comparative Investigation of Artificial Neural Network (ANN) and Response Surface Methodology (RSM) Expection in EDM Parameters,Elsevier
  publication-title: Mater. Today: Proc.
– ident: 10.1016/j.matpr.2022.09.444_b0050
– volume: 4
  start-page: 1
  issue: 44
  year: 2020
  ident: 10.1016/j.matpr.2022.09.444_b0100
  article-title: Reponse Surface Methodology and Artificial Neural Network- Based Models for Predicting Performance of Wire Electrical Discharge Machining of Inconel 718 Alloy
  publication-title: J. Manuf. Mater. Process. (MDPI)
– volume: 13
  start-page: 494
  year: 2006
  ident: 10.1016/j.matpr.2022.09.444_b0035
  article-title: Optimization of Wire Electrical Discharge Machining (WEDM) Process Parameters Using Genetic Algorithm
  publication-title: Indian J. Eng. Mater. Sci.
– start-page: 1
  year: 2021
  ident: 10.1016/j.matpr.2022.09.444_b0105
  article-title: A Comparison Between Finite Element Model (FEM) Simulation and an Integrated Artificial Neural Network (ANN)- Partical Swarm Optimization (PSO) Approach to Forecast Performance of Micro Electro Discharge Machining (Micro-EDM) Drilling
  publication-title: Micromachines(MDPI)
– volume: 44
  start-page: 147
  issue: 3
  year: 2010
  ident: 10.1016/j.matpr.2022.09.444_b0025
  article-title: Comparative Modelling of Wire Electrical Discharge Machining (WEDM) Process Using Back Propagation (BPN) and General Regression Neural Networks (GRNN)
  publication-title: J. Mater. Technol.
– ident: 10.1016/j.matpr.2022.09.444_b0055
SSID ssj0001560816
Score 2.2082286
Snippet The studied work aimed to develop the predictive models of removal rate of WC-Co composite material in WEDM. Back prorogation algorithm of ANN is used to...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1650
SubjectTerms ANN
Material removal rate
WC-Co
WEDM
Title Artificial Neural Network prediction model for MRR in WEDM of WC-Co
URI https://dx.doi.org/10.1016/j.matpr.2022.09.444
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 2214-7853
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001560816
  issn: 2214-7853
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 2214-7853
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001560816
  issn: 2214-7853
  databaseCode: ACRLP
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 2214-7853
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001560816
  issn: 2214-7853
  databaseCode: .~1
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 2214-7853
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001560816
  issn: 2214-7853
  databaseCode: AIKHN
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2214-7853
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001560816
  issn: 2214-7853
  databaseCode: AKRWK
  dateStart: 20140101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5DL15EUXH-GDl4NK5N06Y5jroxle0wHdstLL9gIlsZ8-rfbl7a-gNkB0-lJQ_Kl_C-1_Tl-xC60YwboYwgJo41YcZRsmC5IU7F3EE9HXE4nDwaZ8Mpe5yn8xYqmrMw0FZZ5_4qp4dsXT_p1mh2y-Wy-0zBYsezDaWRr8ozkN1mjIOLwd1H_L3P4ik9Dw6oMJ5AQCM-FNq8fF1Ygi4opaB3yhj7m6B-kM7gCB3W1SLuVS90jFp2dYIKuK2EHzBoa4RLaObG5Qb-uwDWOFjcYF-S4tFkgpcrPOvfj_Da4VlBivUpmg76L8WQ1F4IRHsS3pLU0TRRC25NnKvEOrrQScRclOVWeBR84SKYUUoZbZNEOCvgQyARTEVccc1pcob2VuuVPUfY01amHHNUe2qOoZswi1wGHhyx8ZOVthFtAJC6FgoHv4o32XSEvcqAmgTUZCSkR62Nbr-CykonY_fwrEFW_ppu6TP5rsCL_wZeogNwiq92T67Q3nbzbq99PbFVnbBgOmi_9_A0HH8CMSfH6Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5zHvQiioq_zcGjcW2aNu1R6sbUdYe5sd3CkjQwka6MefVvNy9t_QGyg6fS0gflS3jfl_TlfQjdKMZ1InVCtO8rwrShZM5iTYz0uQE97XE4nJwNo_6EPc3CWQulzVkYKKusc3-V0122rp90ajQ75WLReaFgsWPZhlLPqvIo2kLbLKQcVmB3H_73Rovl9NhZoEIAgYim-5Cr87LCsITGoJRCw1PG2N8M9YN1evtor5aL-L76ogPUyotDlMJt1fkBQ3MNd3HV3LhcwY8XABs7jxtsNSnORiO8KPC0-5DhpcHTlKTLIzTpdcdpn9RmCERZFl6T0NAwkHOeaz-WQW7oXAUeM14U54mFwSqXhGkppVZ5ECQmT2AlECRMelxyxWlwjNrFsshPELa8FUnDDFWWm30oJ4w8E4EJh6_taIWniDYACFV3CgfDijfRlIS9CoeaANSElwiL2im6_Qoqq0YZm1-PGmTFr_EWNpVvCjz7b-A12umPs4EYPA6fz9Eu2MZXWykXqL1eveeXVlys5ZWbPJ8MPMl-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Neural+Network+prediction+model+for+MRR+in+WEDM+of+WC-Co&rft.jtitle=Materials+today+%3A+proceedings&rft.au=Sable%2C+Yogesh&rft.au=Dharmadhikari%2C+H.M.&rft.date=2023&rft.pub=Elsevier+Ltd&rft.issn=2214-7853&rft.eissn=2214-7853&rft.volume=72&rft.spage=1650&rft.epage=1656&rft_id=info:doi/10.1016%2Fj.matpr.2022.09.444&rft.externalDocID=S2214785322062666
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-7853&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-7853&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-7853&client=summon