Artificial Neural Network prediction model for MRR in WEDM of WC-Co
The studied work aimed to develop the predictive models of removal rate of WC-Co composite material in WEDM. Back prorogation algorithm of ANN is used to predict the MRR in WEDM of WC-Co. The training and testing data were collected by performing WEDM experiments on work piece material of WC-Co as p...
        Saved in:
      
    
          | Published in | Materials today : proceedings Vol. 72; pp. 1650 - 1656 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        2023
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2214-7853 2214-7853  | 
| DOI | 10.1016/j.matpr.2022.09.444 | 
Cover
| Abstract | The studied work aimed to develop the predictive models of removal rate of WC-Co composite material in WEDM. Back prorogation algorithm of ANN is used to predict the MRR in WEDM of WC-Co. The training and testing data were collected by performing WEDM experiments on work piece material of WC-Co as per FCC composite design, containing five control factors like peak current, wire tension, pulse on-duration, servo voltage and pulse off-duration, and material removal rate were considered as the performance measure. ANN model has been developed with less than 0.05 error and correlation coefficient R2 of testing-0.95871 and validation-0.9968 to forecast the value of MRR. | 
    
|---|---|
| AbstractList | The studied work aimed to develop the predictive models of removal rate of WC-Co composite material in WEDM. Back prorogation algorithm of ANN is used to predict the MRR in WEDM of WC-Co. The training and testing data were collected by performing WEDM experiments on work piece material of WC-Co as per FCC composite design, containing five control factors like peak current, wire tension, pulse on-duration, servo voltage and pulse off-duration, and material removal rate were considered as the performance measure. ANN model has been developed with less than 0.05 error and correlation coefficient R2 of testing-0.95871 and validation-0.9968 to forecast the value of MRR. | 
    
| Author | Dharmadhikari, H.M. Sable, Yogesh  | 
    
| Author_xml | – sequence: 1 givenname: Yogesh surname: Sable fullname: Sable, Yogesh email: yssablejnec@gmail.com organization: Department of Mechanical Engineering, Jawaharlal Nehru Engineering College, Aurangabad 431005, MS, India – sequence: 2 givenname: H.M. surname: Dharmadhikari fullname: Dharmadhikari, H.M. organization: Department of Mechanical Engineering, Marathwada Institute of Technology, Aurangabad 431005, MS, India  | 
    
| BookMark | eNqFkMlOwzAURS1UJErpF7DxDyR4yuAFiyqUQWpBqkBdWo7zLLmkceUYEH9P2rJALGB17-Y8vXvO0ajzHSB0SUlKCc2vNulWx11IGWEsJTIVQpygMWNUJEWZ8dGPfoamfb8hhNAsJyXNx6iaheisM063-BHewiHihw-veBegcSY63-Gtb6DF1ge8XK2w6_B6frPE3uJ1lVT-Ap1a3fYw_c4JermdP1f3yeLp7qGaLRLDaBmTzLKM17qAhpY1B8u04URYkpcgRVGyLJeiqeu6McC5tCDzIiu5FDUp6sIUjE-QPN41wfd9AKuMi3r_YAzatYoStReiNuogRO2FKCLVIGRg-S92F9xWh89_qOsjBcOsdwdB9cZBZwYxAUxUjXd_8l8xtXwa | 
    
| CitedBy_id | crossref_primary_10_1177_09544089241296722 crossref_primary_10_1007_s00170_023_12476_w crossref_primary_10_1016_j_matpr_2023_08_352  | 
    
| Cites_doi | 10.1016/j.precisioneng.2021.08.018 10.1007/s13198-020-00990-z 10.1016/j.mspro.2014.07.205 10.1007/s00170-010-2653-z 10.1081/AMP-200055033 10.1016/j.procir.2013.01.003 10.15373/2249555X/MAY2013/66 10.1007/s00170-004-2203-7 10.1080/10426910903365760 10.1109/INECCE.2011.5953887  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2022 | 
    
| Copyright_xml | – notice: 2022 | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.matpr.2022.09.444 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| EISSN | 2214-7853 | 
    
| EndPage | 1656 | 
    
| ExternalDocumentID | 10_1016_j_matpr_2022_09_444 S2214785322062666  | 
    
| GroupedDBID | --M .~1 0R~ 1~. 4.4 457 4G. 5VS 7-5 8P~ AABXZ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FYGXN GBLVA HZ~ KOM M41 NCXOZ O9- OAUVE P-8 P-9 PC. ROL SPC SPCBC SSM SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABJNI ACLOT ACVFH ADCNI ADVLN AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS  | 
    
| ID | FETCH-LOGICAL-c218t-5f253ba7ed18b3ef2ac304f068e947825694dbbbdce339fe96758394b07b7c723 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 2214-7853 | 
    
| IngestDate | Wed Oct 01 03:37:32 EDT 2025 Thu Apr 24 22:58:42 EDT 2025 Sat Feb 24 15:48:36 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | ANN Material removal rate WC-Co WEDM  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c218t-5f253ba7ed18b3ef2ac304f068e947825694dbbbdce339fe96758394b07b7c723 | 
    
| PageCount | 7 | 
    
| ParticipantIDs | crossref_citationtrail_10_1016_j_matpr_2022_09_444 crossref_primary_10_1016_j_matpr_2022_09_444 elsevier_sciencedirect_doi_10_1016_j_matpr_2022_09_444  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023 2023-00-00  | 
    
| PublicationDateYYYYMMDD | 2023-01-01 | 
    
| PublicationDate_xml | – year: 2023 text: 2023  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Materials today : proceedings | 
    
| PublicationYear | 2023 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Prajapati, Patel, Asal (b0040) 2011; 3 Nourbaksh, Rajurkar, Malshe, Cao (b0065) 2013; 5 Ganapathy, Balasubramanian, Vasanth, Thulasiraman (b0095) 2020 Lalwani, Sharma, Pruncu, Unune (b0100) 2020; 4 Machining Process Based on a Combined Artificial Neural Network and Particle Swarm Optimization Algorithm, Scientia Iranica, Sharif University of Technology, vol. 27, no. 3, 2020, pp.1206–1217. Ahmad, Praveen, Prateek, Kalyani, Ranganath, Mishra, Akhtar (b0030) 2018; 6 Panda, Bhoi (b0080) 2005; 20 Patowari, Saha, Mishra (b0115) 2010; 51 Surya, Vinay Kumar, Keshavamurthy, Ugrasen, Ravindra (b0090) 2017; 4 Somashekhar, Ramachandran, Mathew (b0075) 2010; 25 Ugrasen, Ravindra, Naveen Prakash, Keshavamurthy (b0010) 2014; 6 Phate, Toney (b0005) 2019; 22 Alduroobi, Ubaid, Tawfiq, Elias (b0070) 2020; 11 All India Manufacturing Technology, Design and Research Conference(AIMTDR 2014), IIT Guwahati, Assam, India, pp. 152 – 1-4. Trias Andromeda, AzliYahya, Nor Hisham, Kamal Khalil, Ade Erawan, Predicting Material Removal Rate of Electrical Discharge Machining (EDM) Using Artificial Neural Network for High I Mahapatra, Patnaik (b0035) 2006; 13 Quarto (b0060) 2022; 73 Quarto, D’Urso, Giardini, Maccarini, Carminati (b0105) 2021 Sarkar, Mitra, Bhattacharyya (b0110) 2006; 27 M. Azadi Moghaddam, F. Kolahan, Modeling and Optimization of the Electrical Discharge. Current, in: International Conference on Electrical, Control and Computer Engineering, Pahang, Malaysia, June 21–22, 2011, pp. 259–262. OnurGuven, Kaya, YigitKazancoglu, Kulekci (b0025) 2010; 44 Yahaya, Andromeda, Baharom, Rahim, Mahmud (b0020) 2011; 1 Sagbas, Kahraman, Esme (b0045) 2012; 25 V. Balasubramaniam, N. Baskar, C. Sathiya Narayanan, Optimization of Electrical Discharge Machining Parameters Using Artificial Neural Network with Different Electrodes, in: 5th International & 26 Sagbas (10.1016/j.matpr.2022.09.444_b0045) 2012; 25 Quarto (10.1016/j.matpr.2022.09.444_b0105) 2021 OnurGuven (10.1016/j.matpr.2022.09.444_b0025) 2010; 44 Mahapatra (10.1016/j.matpr.2022.09.444_b0035) 2006; 13 Sarkar (10.1016/j.matpr.2022.09.444_b0110) 2006; 27 Ugrasen (10.1016/j.matpr.2022.09.444_b0010) 2014; 6 Alduroobi (10.1016/j.matpr.2022.09.444_b0070) 2020; 11 Somashekhar (10.1016/j.matpr.2022.09.444_b0075) 2010; 25 Panda (10.1016/j.matpr.2022.09.444_b0080) 2005; 20 Phate (10.1016/j.matpr.2022.09.444_b0005) 2019; 22 Quarto (10.1016/j.matpr.2022.09.444_b0060) 2022; 73 Lalwani (10.1016/j.matpr.2022.09.444_b0100) 2020; 4 10.1016/j.matpr.2022.09.444_b0055 Nourbaksh (10.1016/j.matpr.2022.09.444_b0065) 2013; 5 Prajapati (10.1016/j.matpr.2022.09.444_b0040) 2011; 3 Surya (10.1016/j.matpr.2022.09.444_b0090) 2017; 4 10.1016/j.matpr.2022.09.444_b0050 10.1016/j.matpr.2022.09.444_b0085 Patowari (10.1016/j.matpr.2022.09.444_b0115) 2010; 51 Ahmad (10.1016/j.matpr.2022.09.444_b0030) 2018; 6 Ganapathy (10.1016/j.matpr.2022.09.444_b0095) 2020 10.1016/j.matpr.2022.09.444_b0015 Yahaya (10.1016/j.matpr.2022.09.444_b0020) 2011; 1  | 
    
| References_xml | – volume: 73 start-page: 63 year: 2022 end-page: 70 ident: b0060 article-title: GianlucaD’Urso and Claudio Giardini, Micro-EDM Optimization ThroughParticle Swarm Algorithm and Artificial Neural Network, Elsevier publication-title: J. Precis. Eng. – volume: 13 start-page: 494 year: 2006 end-page: 502 ident: b0035 article-title: Optimization of Wire Electrical Discharge Machining (WEDM) Process Parameters Using Genetic Algorithm publication-title: Indian J. Eng. Mater. Sci. – volume: 25 start-page: 467 year: 2010 end-page: 475 ident: b0075 article-title: Optimization of Material Removal Rate in Micro-EDM Using Artificial Neural Network and Genetic Algorithms, Taylor and Francis publication-title: Mater. Manuf. Process. – reference: Current, in: International Conference on Electrical, Control and Computer Engineering, Pahang, Malaysia, June 21–22, 2011, pp. 259–262. – year: 2020 ident: b0095 article-title: Comparative Investigation of Artificial Neural Network (ANN) and Response Surface Methodology (RSM) Expection in EDM Parameters,Elsevier publication-title: Mater. Today: Proc. – volume: 4 start-page: 1 year: 2020 end-page: 21 ident: b0100 article-title: Reponse Surface Methodology and Artificial Neural Network- Based Models for Predicting Performance of Wire Electrical Discharge Machining of Inconel 718 Alloy publication-title: J. Manuf. Mater. Process. (MDPI) – volume: 25 year: 2012 ident: b0045 article-title: Optimization of Wire Electrical Discharge Machining Process Using Taguchi Method and Back Propagation Neural Network publication-title: J. Eng. Arch. Faculty EskişehirOsmangazi Univ. – reference: Trias Andromeda, AzliYahya, Nor Hisham, Kamal Khalil, Ade Erawan, Predicting Material Removal Rate of Electrical Discharge Machining (EDM) Using Artificial Neural Network for High I – volume: 27 start-page: 501 year: 2006 end-page: 508 ident: b0110 article-title: Parametric Optimization of Wire Electrical Discharge Machining of γ Titanium Aluminide Alloy Through an Artificial Neural Network Model, Springer publication-title: Int. J. Manuf. Technol. – reference: M. Azadi Moghaddam, F. Kolahan, Modeling and Optimization of the Electrical Discharge. – volume: 6 start-page: 312 year: 2018 end-page: 317 ident: b0030 article-title: Modelling and Optimization of Process Parameters Affecting Machining Involved in Electric Discharge Machining by GA-ANN publication-title: Int. J. Adv. Res. Innovat. – start-page: 1 year: 2021 end-page: 12 ident: b0105 article-title: A Comparison Between Finite Element Model (FEM) Simulation and an Integrated Artificial Neural Network (ANN)- Partical Swarm Optimization (PSO) Approach to Forecast Performance of Micro Electro Discharge Machining (Micro-EDM) Drilling publication-title: Micromachines(MDPI) – volume: 11 start-page: 1314 year: 2020 end-page: 1338 ident: b0070 article-title: Wire EDM process optimization for machining AISI 1045 steel by use of Taguchi method, artificial neural network and analysis of variances publication-title: Int. J. Syst. Assur. Eng. Manag. – volume: 4 start-page: 203 year: 2017 end-page: 212 ident: b0090 article-title: Prediction of Machining Characteristics Using Artificial Neural Network in Wire EDM of Al7075 based In-situ Composite, Elsevier publication-title: Mater. Today: Proc. – volume: 22 start-page: 468 year: 2019 end-page: 476 ident: b0005 article-title: Modeling and prediction of WEDM performance parameters for Al/SiCpMMC using dimensional analysis and artificial neural network, Elsevier publication-title: Eng. Sci. Technol. Int. J. – volume: 6 start-page: 1752 year: 2014 end-page: 1760 ident: b0010 article-title: Process Optimization and Estimation of Machining Performances Using Artificial Neural Network in Wire EDM, Elsevier publication-title: Procedia Mater. Sci. – reference: V. Balasubramaniam, N. Baskar, C. Sathiya Narayanan, Optimization of Electrical Discharge Machining Parameters Using Artificial Neural Network with Different Electrodes, in: 5th International & 26 – volume: 1 start-page: 298 year: 2011 end-page: 302 ident: b0020 article-title: Material Removal Rate Prediction of Electrical Discharge Machining Process Using Artificial Neural Network, ACADEMIA publication-title: J. Mech. Eng. Automat. – volume: 51 start-page: 627 year: 2010 end-page: 638 ident: b0115 article-title: Artificial Neural Network Model in Surface Modification by EDM Using Tungsten- Copper Powder Metallurgy Sintered Electrodes, Springer publication-title: Int. J. Manuf. Technol. – volume: 5 start-page: 13 year: 2013 end-page: 18 ident: b0065 article-title: Wire Electro- Discharge Machining of Titanium Alloy, Elsevier publication-title: Proceddia CIRP – volume: 3 start-page: 217 year: 2011 end-page: 218 ident: b0040 article-title: Prediction of Process Parameters of Wire EDM for AISI A2 Using ANNPrediction of Process Parameters of Wire EDM for AISI A2 Using ANN publication-title: IJAR – volume: 44 start-page: 147 year: 2010 ident: b0025 article-title: Comparative Modelling of Wire Electrical Discharge Machining (WEDM) Process Using Back Propagation (BPN) and General Regression Neural Networks (GRNN) publication-title: J. Mater. Technol. – volume: 20 start-page: 645 year: 2005 end-page: 672 ident: b0080 article-title: Artificial Neural Network Prediction of Material Removal Rate in Electro Discharge Maching, Taylor and Francis publication-title: Mater. Manuf. Process. – reference: All India Manufacturing Technology, Design and Research Conference(AIMTDR 2014), IIT Guwahati, Assam, India, pp. 152 – 1-4. – reference: Machining Process Based on a Combined Artificial Neural Network and Particle Swarm Optimization Algorithm, Scientia Iranica, Sharif University of Technology, vol. 27, no. 3, 2020, pp.1206–1217. – volume: 22 start-page: 468 year: 2019 ident: 10.1016/j.matpr.2022.09.444_b0005 article-title: Modeling and prediction of WEDM performance parameters for Al/SiCpMMC using dimensional analysis and artificial neural network, Elsevier publication-title: Eng. Sci. Technol. Int. J. – volume: 6 start-page: 312 issue: 4 year: 2018 ident: 10.1016/j.matpr.2022.09.444_b0030 article-title: Modelling and Optimization of Process Parameters Affecting Machining Involved in Electric Discharge Machining by GA-ANN publication-title: Int. J. Adv. Res. Innovat. – volume: 73 start-page: 63 year: 2022 ident: 10.1016/j.matpr.2022.09.444_b0060 article-title: GianlucaD’Urso and Claudio Giardini, Micro-EDM Optimization ThroughParticle Swarm Algorithm and Artificial Neural Network, Elsevier publication-title: J. Precis. Eng. doi: 10.1016/j.precisioneng.2021.08.018 – volume: 25 issue: 1 year: 2012 ident: 10.1016/j.matpr.2022.09.444_b0045 article-title: Optimization of Wire Electrical Discharge Machining Process Using Taguchi Method and Back Propagation Neural Network publication-title: J. Eng. Arch. Faculty EskişehirOsmangazi Univ. – volume: 11 start-page: 1314 issue: 6 year: 2020 ident: 10.1016/j.matpr.2022.09.444_b0070 article-title: Wire EDM process optimization for machining AISI 1045 steel by use of Taguchi method, artificial neural network and analysis of variances publication-title: Int. J. Syst. Assur. Eng. Manag. doi: 10.1007/s13198-020-00990-z – volume: 6 start-page: 1752 year: 2014 ident: 10.1016/j.matpr.2022.09.444_b0010 article-title: Process Optimization and Estimation of Machining Performances Using Artificial Neural Network in Wire EDM, Elsevier publication-title: Procedia Mater. Sci. doi: 10.1016/j.mspro.2014.07.205 – volume: 4 start-page: 203 year: 2017 ident: 10.1016/j.matpr.2022.09.444_b0090 article-title: Prediction of Machining Characteristics Using Artificial Neural Network in Wire EDM of Al7075 based In-situ Composite, Elsevier publication-title: Mater. Today: Proc. – volume: 51 start-page: 627 issue: 5-8 year: 2010 ident: 10.1016/j.matpr.2022.09.444_b0115 article-title: Artificial Neural Network Model in Surface Modification by EDM Using Tungsten- Copper Powder Metallurgy Sintered Electrodes, Springer publication-title: Int. J. Manuf. Technol. doi: 10.1007/s00170-010-2653-z – volume: 20 start-page: 645 year: 2005 ident: 10.1016/j.matpr.2022.09.444_b0080 article-title: Artificial Neural Network Prediction of Material Removal Rate in Electro Discharge Maching, Taylor and Francis publication-title: Mater. Manuf. Process. doi: 10.1081/AMP-200055033 – volume: 5 start-page: 13 year: 2013 ident: 10.1016/j.matpr.2022.09.444_b0065 article-title: Wire Electro- Discharge Machining of Titanium Alloy, Elsevier publication-title: Proceddia CIRP doi: 10.1016/j.procir.2013.01.003 – ident: 10.1016/j.matpr.2022.09.444_b0015 – volume: 3 start-page: 217 issue: 5 year: 2011 ident: 10.1016/j.matpr.2022.09.444_b0040 article-title: Prediction of Process Parameters of Wire EDM for AISI A2 Using ANNPrediction of Process Parameters of Wire EDM for AISI A2 Using ANN publication-title: IJAR doi: 10.15373/2249555X/MAY2013/66 – volume: 27 start-page: 501 year: 2006 ident: 10.1016/j.matpr.2022.09.444_b0110 article-title: Parametric Optimization of Wire Electrical Discharge Machining of γ Titanium Aluminide Alloy Through an Artificial Neural Network Model, Springer publication-title: Int. J. Manuf. Technol. doi: 10.1007/s00170-004-2203-7 – volume: 1 start-page: 298 year: 2011 ident: 10.1016/j.matpr.2022.09.444_b0020 article-title: Material Removal Rate Prediction of Electrical Discharge Machining Process Using Artificial Neural Network, ACADEMIA publication-title: J. Mech. Eng. Automat. – volume: 25 start-page: 467 issue: 6 year: 2010 ident: 10.1016/j.matpr.2022.09.444_b0075 article-title: Optimization of Material Removal Rate in Micro-EDM Using Artificial Neural Network and Genetic Algorithms, Taylor and Francis publication-title: Mater. Manuf. Process. doi: 10.1080/10426910903365760 – ident: 10.1016/j.matpr.2022.09.444_b0085 doi: 10.1109/INECCE.2011.5953887 – year: 2020 ident: 10.1016/j.matpr.2022.09.444_b0095 article-title: Comparative Investigation of Artificial Neural Network (ANN) and Response Surface Methodology (RSM) Expection in EDM Parameters,Elsevier publication-title: Mater. Today: Proc. – ident: 10.1016/j.matpr.2022.09.444_b0050 – volume: 4 start-page: 1 issue: 44 year: 2020 ident: 10.1016/j.matpr.2022.09.444_b0100 article-title: Reponse Surface Methodology and Artificial Neural Network- Based Models for Predicting Performance of Wire Electrical Discharge Machining of Inconel 718 Alloy publication-title: J. Manuf. Mater. Process. (MDPI) – volume: 13 start-page: 494 year: 2006 ident: 10.1016/j.matpr.2022.09.444_b0035 article-title: Optimization of Wire Electrical Discharge Machining (WEDM) Process Parameters Using Genetic Algorithm publication-title: Indian J. Eng. Mater. Sci. – start-page: 1 year: 2021 ident: 10.1016/j.matpr.2022.09.444_b0105 article-title: A Comparison Between Finite Element Model (FEM) Simulation and an Integrated Artificial Neural Network (ANN)- Partical Swarm Optimization (PSO) Approach to Forecast Performance of Micro Electro Discharge Machining (Micro-EDM) Drilling publication-title: Micromachines(MDPI) – volume: 44 start-page: 147 issue: 3 year: 2010 ident: 10.1016/j.matpr.2022.09.444_b0025 article-title: Comparative Modelling of Wire Electrical Discharge Machining (WEDM) Process Using Back Propagation (BPN) and General Regression Neural Networks (GRNN) publication-title: J. Mater. Technol. – ident: 10.1016/j.matpr.2022.09.444_b0055  | 
    
| SSID | ssj0001560816 | 
    
| Score | 2.2082286 | 
    
| Snippet | The studied work aimed to develop the predictive models of removal rate of WC-Co composite material in WEDM. Back prorogation algorithm of ANN is used to... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 1650 | 
    
| SubjectTerms | ANN Material removal rate WC-Co WEDM  | 
    
| Title | Artificial Neural Network prediction model for MRR in WEDM of WC-Co | 
    
| URI | https://dx.doi.org/10.1016/j.matpr.2022.09.444 | 
    
| Volume | 72 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 2214-7853 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001560816 issn: 2214-7853 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 2214-7853 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001560816 issn: 2214-7853 databaseCode: ACRLP dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 2214-7853 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001560816 issn: 2214-7853 databaseCode: .~1 dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 2214-7853 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001560816 issn: 2214-7853 databaseCode: AIKHN dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2214-7853 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001560816 issn: 2214-7853 databaseCode: AKRWK dateStart: 20140101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5DL15EUXH-GDl4NK5N06Y5jroxle0wHdstLL9gIlsZ8-rfbl7a-gNkB0-lJQ_Kl_C-1_Tl-xC60YwboYwgJo41YcZRsmC5IU7F3EE9HXE4nDwaZ8Mpe5yn8xYqmrMw0FZZ5_4qp4dsXT_p1mh2y-Wy-0zBYsezDaWRr8ozkN1mjIOLwd1H_L3P4ik9Dw6oMJ5AQCM-FNq8fF1Ygi4opaB3yhj7m6B-kM7gCB3W1SLuVS90jFp2dYIKuK2EHzBoa4RLaObG5Qb-uwDWOFjcYF-S4tFkgpcrPOvfj_Da4VlBivUpmg76L8WQ1F4IRHsS3pLU0TRRC25NnKvEOrrQScRclOVWeBR84SKYUUoZbZNEOCvgQyARTEVccc1pcob2VuuVPUfY01amHHNUe2qOoZswi1wGHhyx8ZOVthFtAJC6FgoHv4o32XSEvcqAmgTUZCSkR62Nbr-CykonY_fwrEFW_ppu6TP5rsCL_wZeogNwiq92T67Q3nbzbq99PbFVnbBgOmi_9_A0HH8CMSfH6Q | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5zHvQiioq_zcGjcW2aNu1R6sbUdYe5sd3CkjQwka6MefVvNy9t_QGyg6fS0gflS3jfl_TlfQjdKMZ1InVCtO8rwrShZM5iTYz0uQE97XE4nJwNo_6EPc3CWQulzVkYKKusc3-V0122rp90ajQ75WLReaFgsWPZhlLPqvIo2kLbLKQcVmB3H_73Rovl9NhZoEIAgYim-5Cr87LCsITGoJRCw1PG2N8M9YN1evtor5aL-L76ogPUyotDlMJt1fkBQ3MNd3HV3LhcwY8XABs7jxtsNSnORiO8KPC0-5DhpcHTlKTLIzTpdcdpn9RmCERZFl6T0NAwkHOeaz-WQW7oXAUeM14U54mFwSqXhGkppVZ5ECQmT2AlECRMelxyxWlwjNrFsshPELa8FUnDDFWWm30oJ4w8E4EJh6_taIWniDYACFV3CgfDijfRlIS9CoeaANSElwiL2im6_Qoqq0YZm1-PGmTFr_EWNpVvCjz7b-A12umPs4EYPA6fz9Eu2MZXWykXqL1eveeXVlys5ZWbPJ8MPMl- | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Neural+Network+prediction+model+for+MRR+in+WEDM+of+WC-Co&rft.jtitle=Materials+today+%3A+proceedings&rft.au=Sable%2C+Yogesh&rft.au=Dharmadhikari%2C+H.M.&rft.date=2023&rft.pub=Elsevier+Ltd&rft.issn=2214-7853&rft.eissn=2214-7853&rft.volume=72&rft.spage=1650&rft.epage=1656&rft_id=info:doi/10.1016%2Fj.matpr.2022.09.444&rft.externalDocID=S2214785322062666 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-7853&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-7853&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-7853&client=summon |