Learning-Based Optimization Algorithms for Routing Problems: Bibliometric Analysis and Literature Review

Learning-based optimization (LBO) algorithms have exhibited considerable advantages in solving routing problems. In this study, 831 papers published over two decades (2003-2024) are retrieved from the Web of Science database. This work aims to build extensive knowledge maps of LBO algorithms for rou...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on intelligent transportation systems Vol. 25; no. 11; pp. 15273 - 15290
Main Authors Zhou, Guanghui, Li, Xiaoyi, Li, Dengyuhui, Bian, Junsong
Format Journal Article
LanguageEnglish
Published IEEE 01.11.2024
Subjects
Online AccessGet full text
ISSN1524-9050
1558-0016
DOI10.1109/TITS.2024.3438788

Cover

Abstract Learning-based optimization (LBO) algorithms have exhibited considerable advantages in solving routing problems. In this study, 831 papers published over two decades (2003-2024) are retrieved from the Web of Science database. This work aims to build extensive knowledge maps of LBO algorithms for routing problems by using a scientometric review of new developments and global trends. Prolific journals, conferences, authors, and institutions are discussed in the statistical analysis. The overall trend of LBO algorithms for routing problems is growing, and it is dominated by China and the USA. Collaboration network, co-citation analysis, and emerging trend analysis are developed to identify major disciplines of LBO algorithms for routing problems. Different emphases on the research field in operations research and computer science communities are identified respectively. Studies on LBO algorithms are reviewed from the perspectives of supervised learning (SL), unsupervised learning (UL), and reinforcement learning (RL). The major characteristics and limitations of LBO algorithms in each category are discussed. Dependence on sample labels and cluster numbers restricts the practical application of SL and UL to routing problems. Meanwhile, RL approaches, such as the deep Q-network, which exhibit fast convergence and computational efficiency, have elicited widespread attention in recent years. This study provides meaningful guidance and future direction to designing LBO algorithms for routing problems.
AbstractList Learning-based optimization (LBO) algorithms have exhibited considerable advantages in solving routing problems. In this study, 831 papers published over two decades (2003-2024) are retrieved from the Web of Science database. This work aims to build extensive knowledge maps of LBO algorithms for routing problems by using a scientometric review of new developments and global trends. Prolific journals, conferences, authors, and institutions are discussed in the statistical analysis. The overall trend of LBO algorithms for routing problems is growing, and it is dominated by China and the USA. Collaboration network, co-citation analysis, and emerging trend analysis are developed to identify major disciplines of LBO algorithms for routing problems. Different emphases on the research field in operations research and computer science communities are identified respectively. Studies on LBO algorithms are reviewed from the perspectives of supervised learning (SL), unsupervised learning (UL), and reinforcement learning (RL). The major characteristics and limitations of LBO algorithms in each category are discussed. Dependence on sample labels and cluster numbers restricts the practical application of SL and UL to routing problems. Meanwhile, RL approaches, such as the deep Q-network, which exhibit fast convergence and computational efficiency, have elicited widespread attention in recent years. This study provides meaningful guidance and future direction to designing LBO algorithms for routing problems.
Author Li, Dengyuhui
Li, Xiaoyi
Bian, Junsong
Zhou, Guanghui
Author_xml – sequence: 1
  givenname: Guanghui
  orcidid: 0000-0002-1145-5268
  surname: Zhou
  fullname: Zhou, Guanghui
  email: zhouguanghui@ucas.edu.cn
  organization: School of Economics and Management and the MOE Social Science Laboratory of Digital Economic Forecasts and Policy Simulation, University of Chinese Academy of Sciences, Beijing, China
– sequence: 2
  givenname: Xiaoyi
  orcidid: 0009-0004-1508-6641
  surname: Li
  fullname: Li, Xiaoyi
  email: lixiaoyi22@mails.ucas.edu.cn
  organization: School of Economics and Management and the MOE Social Science Laboratory of Digital Economic Forecasts and Policy Simulation, University of Chinese Academy of Sciences, Beijing, China
– sequence: 3
  givenname: Dengyuhui
  orcidid: 0000-0002-0943-0280
  surname: Li
  fullname: Li, Dengyuhui
  email: lidengyuhui19@mails.ucas.edu.cn
  organization: School of Economics and Management and the MOE Social Science Laboratory of Digital Economic Forecasts and Policy Simulation, University of Chinese Academy of Sciences, Beijing, China
– sequence: 4
  givenname: Junsong
  surname: Bian
  fullname: Bian, Junsong
  email: jason.bian@rennes-sb.com
  organization: Department of Supply Chain Management and Information Systems, Rennes School of Business, Rennes, France
BookMark eNpNkF9rwjAUxcNwMHX7AIM95AvU5TZNm-5NZX-EgsO555KmiWa0jSRxw336tejDnu7hcs6B85ugUWc7hdA9kBkAyR-3q-3HLCZxMqMJ5RnnV2gMjPGIEEhHg46TKCeM3KCJ91_9N2EAY7QvlHCd6XbRQnhV4_UhmNb8imBsh-fNzjoT9q3H2jq8scfQO_G7s1WjWv-EF6ZqjG1VcEbieSeakzcei67GhQnKiXB0Cm_Ut1E_t-hai8aru8udos-X5-3yLSrWr6vlvIhkDDxEQAFEyrNUC860rvpFVV7HstLAIKVSMplUHLJEV3Gts1pIWkuVg2RcE1ZzOkVw7pXOeu-ULg_OtMKdSiDlgKocUJUDqvKCqs88nDNGKfXPnyacc0b_AKk6afo
CODEN ITISFG
Cites_doi 10.1109/IJCNN.2017.7966405
10.1109/SMC.2017.8122633
10.1007/s10489-021-02750-3
10.1109/TNN.2008.2005605
10.1155/2016/2720630
10.1109/TITS.2021.3096829
10.1080/00207543.2021.2013566
10.1007/s12351-020-00600-7
10.1016/j.eswa.2022.118740
10.1016/j.trc.2020.01.019
10.1016/j.ejor.2014.08.030
10.1080/00207543.2015.1043403
10.1002/net.21864
10.1016/j.ejor.2021.06.021
10.1109/TITS.2022.3168987
10.1109/IJCNN52387.2021.9534010
10.1145/3394486.3403356
10.1016/j.ejor.2008.03.023
10.1016/j.eswa.2020.114240
10.1109/JAS.2022.105677
10.1162/neco.1997.9.8.1735
10.1109/TCYB.2020.2977661
10.48550/arXiv.1312.6114
10.1109/3477.484436
10.1016/j.cor.2007.01.025
10.1016/j.trc.2021.103285
10.1016/j.ejor.2022.07.015
10.1007/BF00992698
10.1007/s00521-015-1901-4
10.1007/978-0-387-84858-7
10.1016/j.neucom.2018.05.079
10.1057/jors.1992.88
10.1109/TCYB.2021.3089179
10.1016/S0305-0548(98)00071-9
10.1080/00207543.2021.1919780
10.1016/j.ejor.2022.02.022
10.1016/j.eswa.2019.06.023
10.1016/j.knosys.2020.106244
10.1007/978-3-031-08011-1_14
10.1109/TITS.2021.3056120
10.1109/TASE.2022.3181512
10.1007/s10489-021-02610-0
10.1007/s10489-021-02920-3
10.1287/ijoc.2021.1110
10.1287/trsc.36.1.21.570
10.1007/BF02098286
10.1016/j.ejor.2014.01.005
10.1609/aaai.v30i1.10295
10.1287/trsc.1050.0135
10.1016/j.trc.2020.102861
10.1016/S0305-0548(99)00146-X
10.1016/0377-2217(94)00289-4
10.1109/4235.585892
10.1016/j.eswa.2022.116814
10.1609/aaai.v31i1.11170
10.1109/TITS.2016.2521779
10.1609/aaai.v36i9.21236
10.1016/j.cor.2018.06.004
10.1137/1.9780898718515
10.1016/j.tre.2021.102496
10.1016/j.knosys.2023.110367
10.1561/2200000086
10.1287/trsc.2021.1095
10.1007/BF00115009
10.1109/TCYB.2021.3069942
10.1287/trsc.2017.0767
10.1016/j.trc.2022.103981
10.1109/TNNLS.2021.3060187
10.1109/TEVC.2002.804323
10.1016/j.trc.2018.09.010
10.21236/ADA126957
10.1016/j.ejor.2022.12.009
10.1016/j.trc.2016.01.013
10.1109/TITS.2020.3023958
10.1109/tnn.1998.712192
10.1007/978-3-030-16194-1_9
10.1145/3319619.3321988
10.1007/s10489-022-03456-w
10.1109/GLOBECOM38437.2019.9013786
10.1609/icaps.v30i1.6685
10.1287/trsc.2013.0472
10.1002/net.21965
10.1109/IJCNN.2005.1555942
10.1016/j.cor.2022.105769
10.1016/j.ejor.2016.04.059
10.1016/j.trc.2023.104057
10.1287/trsc.2023.0107
10.1016/j.trb.2021.08.015
10.1016/j.cie.2016.01.016
10.1016/j.ins.2022.06.056
10.1126/science.aaa8415
10.1109/TITS.2024.3352143
10.1287/trsc.1030.0056
10.1109/TITS.2023.3334976
10.1287/trsc.2022.1152
10.1016/B978-1-55860-307-3.50037-X
10.1016/j.engappai.2023.105954
10.48550/ARXIV.1706.03762
10.1109/SMC.2016.7844421
10.1287/trsc.1080.0238
10.1007/978-1-4842-4470-8_15
10.1287/opre.45.3.395
10.1016/j.knosys.2022.109976
10.1145/3219819.3219993
10.1109/MSP.2017.2743240
10.1109/TCYB.2019.2950779
10.1016/j.trb.2017.04.006
10.1007/978-3-030-04167-0_22
10.1016/0377-2217(95)00050-X
10.1109/TITS.2020.3003163
10.1016/j.ejor.2010.03.045
10.1109/tai.2024.3453230
10.1016/j.trc.2018.04.018
10.1287/mnsc.6.1.80
10.1016/j.cor.2005.08.002
10.1007/978-3-319-93031-2_12
10.1016/B978-1-55860-377-6.50039-6
10.1007/s13676-018-0124-0
10.1016/j.cor.2022.105772
10.1609/aaai.v34i02.5531
10.5772/9385
10.1162/neco.1989.1.3.295
10.1287/trsc.2016.0719
10.1016/j.ibusrev.2005.05.003
10.1126/science.153.3731.34
10.1109/TITS.2019.2909109
10.1016/j.eswa.2020.113959
10.1016/j.eswa.2022.118812
10.1609/aaai.v33i01.33011443
10.1016/j.eswa.2022.119035
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TITS.2024.3438788
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 15290
ExternalDocumentID 10_1109_TITS_2024_3438788
10648885
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 72071195; 91538113; 71402176
  funderid: 10.13039/501100001809
– fundername: Youth Innovation Promotion Association, Chinese Academy of Sciences
  grantid: 2019171
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
ZY4
AAYXX
CITATION
ID FETCH-LOGICAL-c218t-1311a6876fa85ffb024b9d2cbf15163cc5c4b8174fb2df7dac3dce91c58f05d83
IEDL.DBID RIE
ISSN 1524-9050
IngestDate Wed Oct 01 05:03:21 EDT 2025
Wed Aug 27 03:06:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c218t-1311a6876fa85ffb024b9d2cbf15163cc5c4b8174fb2df7dac3dce91c58f05d83
ORCID 0000-0002-0943-0280
0009-0004-1508-6641
0000-0002-1145-5268
PageCount 18
ParticipantIDs crossref_primary_10_1109_TITS_2024_3438788
ieee_primary_10648885
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References Mnih (ref128) 2013
Joshi (ref72) 2019
ref59
ref53
Delarue (ref56)
ref52
ref55
ref54
Mnih (ref135)
ref51
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
Hildebrandt (ref50) 2021
ref8
ref7
ref9
ref4
ref3
ref5
Jiang (ref36)
ref100
ref101
ref40
ref35
ref34
ref37
Applegate (ref6) 2011
ref31
Chen (ref145)
ref148
ref30
ref33
ref146
ref32
ref147
Bello (ref38) 2016
ref153
ref151
ref152
ref150
ref24
Battaglia (ref77) 2018
ref26
ref25
Gao (ref142) 2020
ref20
Toth (ref21) 2002
Khalil (ref58)
ref22
ref28
ref27
ref29
Vinyals (ref64)
ref13
ref12
ref15
Lillicrap (ref149) 2015
ref14
ref129
ref97
ref126
ref96
ref127
ref11
ref99
ref124
ref10
ref98
ref125
ref17
ref16
ref19
ref18
ref93
ref92
ref134
ref131
ref94
ref132
ref130
ref91
ref90
ref89
ref139
ref86
ref137
ref85
ref138
ref88
ref87
ref82
ref144
ref81
Wang (ref133)
ref84
ref83
ref143
Nazari (ref39)
ref140
Kool (ref57) 2018
ref141
Bertsekas (ref23) 2012; 1
ref79
Bresson (ref78) 2017
ref109
ref106
ref107
ref75
ref104
ref74
ref105
ref102
ref76
ref103
Bertsekas (ref108) 1996
ref2
ref1
ref71
ref111
ref70
ref112
ref73
Wu (ref80) 2016
ref110
Falkner (ref136) 2020
ref68
ref119
ref67
ref117
ref69
ref118
ref115
ref63
ref116
ref66
ref113
ref65
Kohonen (ref95) 2012
ref114
ref60
ref122
ref123
ref62
ref120
ref61
ref121
References_xml – ident: ref98
  doi: 10.1109/IJCNN.2017.7966405
– ident: ref90
  doi: 10.1109/SMC.2017.8122633
– ident: ref132
  doi: 10.1007/s10489-021-02750-3
– year: 2018
  ident: ref77
  article-title: Relational inductive biases, deep learning, and graph networks
  publication-title: arXiv:1806.01261
– ident: ref76
  doi: 10.1109/TNN.2008.2005605
– ident: ref97
  doi: 10.1155/2016/2720630
– ident: ref119
  doi: 10.1109/TITS.2021.3096829
– start-page: 1
  volume-title: Proc. Adv. Neural Inf. Proces. Syst.
  ident: ref39
  article-title: Reinforcement learning for solving the vehicle routing problem
– volume-title: Self-Organizing Maps
  year: 2012
  ident: ref95
– ident: ref34
  doi: 10.1080/00207543.2021.2013566
– ident: ref40
  doi: 10.1007/s12351-020-00600-7
– year: 2019
  ident: ref72
  article-title: An efficient graph convolutional network technique for the travelling salesman problem
  publication-title: arXiv:1906.01227
– ident: ref3
  doi: 10.1016/j.eswa.2022.118740
– ident: ref87
  doi: 10.1016/j.trc.2020.01.019
– ident: ref16
  doi: 10.1016/j.ejor.2014.08.030
– ident: ref61
  doi: 10.1080/00207543.2015.1043403
– ident: ref22
  doi: 10.1002/net.21864
– ident: ref46
  doi: 10.1016/j.ejor.2021.06.021
– ident: ref82
  doi: 10.1109/TITS.2022.3168987
– ident: ref54
  doi: 10.1109/IJCNN52387.2021.9534010
– ident: ref79
  doi: 10.1145/3394486.3403356
– ident: ref24
  doi: 10.1016/j.ejor.2008.03.023
– ident: ref153
  doi: 10.1016/j.eswa.2020.114240
– volume: 1
  volume-title: Dynamic Programming and Optimal Control
  year: 2012
  ident: ref23
– ident: ref41
  doi: 10.1109/JAS.2022.105677
– ident: ref81
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref84
  doi: 10.1109/TCYB.2020.2977661
– ident: ref100
  doi: 10.48550/arXiv.1312.6114
– start-page: 609
  volume-title: Proc. Adv. Neural Inf. Proces. Syst.
  ident: ref56
  article-title: Reinforcement learning with combinatorial actions: An application to vehicle routing
– ident: ref30
  doi: 10.1109/3477.484436
– year: 2016
  ident: ref80
  article-title: Google’s neural machine translation system: Bridging the gap between human and machine translation
  publication-title: arXiv:1609.08144
– ident: ref92
  doi: 10.1016/j.cor.2007.01.025
– ident: ref5
  doi: 10.1016/j.trc.2021.103285
– ident: ref107
  doi: 10.1016/j.ejor.2022.07.015
– year: 2013
  ident: ref128
  article-title: Playing Atari with deep reinforcement learning
  publication-title: arXiv:1312.5602
– ident: ref121
  doi: 10.1007/BF00992698
– ident: ref93
  doi: 10.1007/s00521-015-1901-4
– ident: ref86
  doi: 10.1007/978-0-387-84858-7
– ident: ref99
  doi: 10.1016/j.neucom.2018.05.079
– ident: ref12
  doi: 10.1057/jors.1992.88
– ident: ref140
  doi: 10.1109/TCYB.2021.3089179
– ident: ref18
  doi: 10.1016/S0305-0548(98)00071-9
– ident: ref4
  doi: 10.1080/00207543.2021.1919780
– ident: ref10
  doi: 10.1016/j.ejor.2022.02.022
– ident: ref89
  doi: 10.1016/j.eswa.2019.06.023
– ident: ref139
  doi: 10.1016/j.knosys.2020.106244
– ident: ref114
  doi: 10.1007/978-3-031-08011-1_14
– ident: ref144
  doi: 10.1109/TITS.2021.3056120
– ident: ref27
  doi: 10.1109/TASE.2022.3181512
– ident: ref134
  doi: 10.1007/s10489-021-02610-0
– ident: ref101
  doi: 10.1007/s10489-021-02920-3
– ident: ref73
  doi: 10.1287/ijoc.2021.1110
– ident: ref110
  doi: 10.1287/trsc.36.1.21.570
– ident: ref69
  doi: 10.1007/BF02098286
– ident: ref15
  doi: 10.1016/j.ejor.2014.01.005
– volume-title: The Traveling Salesman Problem
  year: 2011
  ident: ref6
– ident: ref131
  doi: 10.1609/aaai.v30i1.10295
– ident: ref28
  doi: 10.1287/trsc.1050.0135
– ident: ref138
  doi: 10.1016/j.trc.2020.102861
– ident: ref109
  doi: 10.1016/S0305-0548(99)00146-X
– ident: ref14
  doi: 10.1016/0377-2217(94)00289-4
– ident: ref123
  doi: 10.1109/4235.585892
– start-page: 1995
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref133
  article-title: Dueling network architectures for deep reinforcement learning
– year: 2017
  ident: ref78
  article-title: Residual gated graph ConvNets
  publication-title: arXiv:1711.07553
– year: 2015
  ident: ref149
  article-title: Continuous control with deep reinforcement learning
  publication-title: arXiv:1509.02971
– ident: ref45
  doi: 10.1016/j.eswa.2022.116814
– ident: ref124
  doi: 10.1609/aaai.v31i1.11170
– year: 2018
  ident: ref57
  article-title: Attention, learn to solve routing problems!
  publication-title: arXiv:1803.08475
– ident: ref111
  doi: 10.1109/TITS.2016.2521779
– ident: ref146
  doi: 10.1609/aaai.v36i9.21236
– volume-title: Neuro-Dynamic Programming
  year: 1996
  ident: ref108
– ident: ref150
  doi: 10.1016/j.cor.2018.06.004
– volume-title: The Vehicle Routing Problem
  year: 2002
  ident: ref21
  doi: 10.1137/1.9780898718515
– ident: ref106
  doi: 10.1016/j.tre.2021.102496
– ident: ref130
  doi: 10.1016/j.knosys.2023.110367
– ident: ref102
  doi: 10.1561/2200000086
– ident: ref74
  doi: 10.1287/trsc.2021.1095
– ident: ref117
  doi: 10.1007/BF00115009
– ident: ref31
  doi: 10.1109/TCYB.2021.3069942
– ident: ref105
  doi: 10.1287/trsc.2017.0767
– ident: ref147
  doi: 10.1016/j.trc.2022.103981
– ident: ref120
  doi: 10.1109/TNNLS.2021.3060187
– ident: ref32
  doi: 10.1109/TEVC.2002.804323
– ident: ref112
  doi: 10.1016/j.trc.2018.09.010
– ident: ref20
  doi: 10.21236/ADA126957
– ident: ref47
  doi: 10.1016/j.ejor.2022.12.009
– ident: ref29
  doi: 10.1016/j.trc.2016.01.013
– year: 2016
  ident: ref38
  article-title: Neural combinatorial optimization with reinforcement learning
  publication-title: arXiv:1611.09940
– ident: ref52
  doi: 10.1109/TITS.2020.3023958
– ident: ref60
  doi: 10.1109/tnn.1998.712192
– ident: ref115
  doi: 10.1007/978-3-030-16194-1_9
– ident: ref53
  doi: 10.1145/3319619.3321988
– ident: ref148
  doi: 10.1007/s10489-022-03456-w
– ident: ref88
  doi: 10.1109/GLOBECOM38437.2019.9013786
– ident: ref118
  doi: 10.1609/icaps.v30i1.6685
– ident: ref17
  doi: 10.1287/trsc.2013.0472
– ident: ref1
  doi: 10.1002/net.21965
– ident: ref75
  doi: 10.1109/IJCNN.2005.1555942
– ident: ref63
  doi: 10.1016/j.cor.2022.105769
– year: 2020
  ident: ref142
  article-title: Learn to design the heuristics for vehicle routing problem
  publication-title: arXiv:2002.08539
– ident: ref13
  doi: 10.1016/j.ejor.2016.04.059
– start-page: 1548
  volume-title: Proc. Int. Joint Conf. Auton. Agents Multiagent Syst.
  ident: ref36
  article-title: Solving 3D bin packing problem via multimodal deep reinforcement learning
– start-page: 1928
  volume-title: Proc. Int. Conf. Mach. Learn. (ICML)
  ident: ref135
  article-title: Asynchronous methods for deep reinforcement learning
– start-page: 6351
  volume-title: Proc. Adv. Neural Inf. Proces. Syst.
  ident: ref58
  article-title: Learning combinatorial optimization algorithms over graphs
– ident: ref2
  doi: 10.1016/j.trc.2023.104057
– ident: ref83
  doi: 10.1287/trsc.2023.0107
– ident: ref129
  doi: 10.1016/j.trb.2021.08.015
– ident: ref152
  doi: 10.1016/j.cie.2016.01.016
– ident: ref125
  doi: 10.1016/j.ins.2022.06.056
– ident: ref68
  doi: 10.1126/science.aaa8415
– ident: ref137
  doi: 10.1109/TITS.2024.3352143
– ident: ref9
  doi: 10.1287/trsc.1030.0056
– ident: ref42
  doi: 10.1109/TITS.2023.3334976
– ident: ref49
  doi: 10.1287/trsc.2022.1152
– ident: ref67
  doi: 10.1016/B978-1-55860-307-3.50037-X
– ident: ref127
  doi: 10.1016/j.engappai.2023.105954
– ident: ref66
  doi: 10.48550/ARXIV.1706.03762
– ident: ref96
  doi: 10.1109/SMC.2016.7844421
– ident: ref62
  doi: 10.1287/trsc.1080.0238
– ident: ref65
  doi: 10.1007/978-1-4842-4470-8_15
– ident: ref25
  doi: 10.1287/opre.45.3.395
– ident: ref43
  doi: 10.1016/j.knosys.2022.109976
– ident: ref141
  doi: 10.1145/3219819.3219993
– ident: ref116
  doi: 10.1109/MSP.2017.2743240
– ident: ref71
  doi: 10.1109/TCYB.2019.2950779
– ident: ref26
  doi: 10.1016/j.trb.2017.04.006
– ident: ref35
  doi: 10.1007/978-3-030-04167-0_22
– year: 2020
  ident: ref136
  article-title: Learning to solve vehicle routing problems with time windows through joint attention
  publication-title: arXiv:2006.09100
– ident: ref8
  doi: 10.1016/0377-2217(95)00050-X
– ident: ref143
  doi: 10.1109/TITS.2020.3003163
– ident: ref11
  doi: 10.1016/j.ejor.2010.03.045
– ident: ref126
  doi: 10.1109/tai.2024.3453230
– ident: ref104
  doi: 10.1016/j.trc.2018.04.018
– ident: ref7
  doi: 10.1287/mnsc.6.1.80
– ident: ref19
  doi: 10.1016/j.cor.2005.08.002
– ident: ref48
  doi: 10.1007/978-3-319-93031-2_12
– ident: ref122
  doi: 10.1016/B978-1-55860-377-6.50039-6
– ident: ref151
  doi: 10.1007/s13676-018-0124-0
– start-page: 2692
  volume-title: Proc. Adv. Neural Inf. Proces. Syst.
  ident: ref64
  article-title: Pointer networks
– ident: ref94
  doi: 10.1016/j.cor.2022.105772
– ident: ref113
  doi: 10.1609/aaai.v34i02.5531
– ident: ref70
  doi: 10.5772/9385
– volume-title: Proc. Adv. Neural Inf. Proces. Syst.
  ident: ref145
  article-title: Learning to perform local rewriting for combinatorial optimization
– ident: ref85
  doi: 10.1162/neco.1989.1.3.295
– year: 2021
  ident: ref50
  article-title: Where the action is: Let’s make reinforcement learning for stochastic dynamic vehicle routing problems work!
  publication-title: arXiv:2103.00507
– ident: ref55
  doi: 10.1287/trsc.2016.0719
– ident: ref59
  doi: 10.1016/j.ibusrev.2005.05.003
– ident: ref103
  doi: 10.1126/science.153.3731.34
– ident: ref51
  doi: 10.1109/TITS.2019.2909109
– ident: ref33
  doi: 10.1016/j.eswa.2020.113959
– ident: ref44
  doi: 10.1016/j.eswa.2022.118812
– ident: ref37
  doi: 10.1609/aaai.v33i01.33011443
– ident: ref91
  doi: 10.1016/j.eswa.2022.119035
SSID ssj0014511
Score 2.4510424
Snippet Learning-based optimization (LBO) algorithms have exhibited considerable advantages in solving routing problems. In this study, 831 papers published over two...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 15273
SubjectTerms Bibliometric analysis
Bibliometrics
Classification algorithms
Collaboration
Heuristic algorithms
learning-based optimization (LBO) algorithm
literature review
Optimization
reinforcement learning
Routing
routing problem
Title Learning-Based Optimization Algorithms for Routing Problems: Bibliometric Analysis and Literature Review
URI https://ieeexplore.ieee.org/document/10648885
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore Digital Library
  customDbUrl:
  eissn: 1558-0016
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014511
  issn: 1524-9050
  databaseCode: RIE
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5sT3rwWbG-2IMnIbF5bB7eWrFUkSrYQm9hn22xTaVNL_56Z3eTWgTBWwgbWGZmd2Yy832D0I2ksRLEo06QMEhQhOQO9TTdnWC-0A4yVKbLtx_1huHziIxKsLrBwkgpTfOZdPWjqeWLBV_rX2VwwiOwt4TUUC1OIgvW2pQMNNGWIUf1QydtkaqE6bXSu8HT4B1SQT90gzBIYjNl5ccJbU1VMU6le4D61XZsL8mHuy6Yy79-MTX-e7-HaL8ML3Hb2sMR2pH5MdrbIh08QZOSUnXsdMCDCfwKl8a8RGPi9my8WE6LyXyFIZrFul8IVuI3O3ZmdY87UzbTiH1N7I8rRhNMc4FfNgTN2BYcGmjYfRw89Jxy3oLDwdHrqfSeRyO4HhVNiFIMBMZS4XOmICyIAs4JD1kCKYwCPapYUB4ILlOPk0S1iEiCU1TPF7k8Qzj2OYRS0ldS8TCiAiyFRgIS4pTIlNO4iW4rBWSfllYjM-lIK820tjKtrazUVhM1tGy3Flqxnv_x_gLt6s8tYvAS1YvlWl5B6FCwa2My3267w4c
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4oHtSDT4z43IMnkyJtd_vwBkYCimgiJNyafQKRh4Fy8dc7uy1ITEy8Nc2m2czM7sx05vsGoRvFQi2pyxw_4pCgSCUc5hq6O8k9aRwk0bbLtx00uuSpR3s5WN1iYZRStvlMlc2jreXLqViYX2VwwgOwt4huoi1KCKEZXGtVNDBUW5Ye1SNOXKHLIqZbie86zc47JIMeKfvEj0I7Z-XHDa3NVbFupb6P2ssNZd0kH-VFysvi6xdX4793fID28gATVzOLOEQbanKEdtdoB4_RICdV7Ts18GESv8K1Mc7xmLg66k9nw3QwnmOIZ7HpGIKV-C0bPDO_x7UhHxnMvqH2x0tOE8wmErdWFM04KzkUUbf-2HloOPnEBUeAqzdz6V2XBXBBahZRrTkIjMfSE1xDYBD4QlBBeARJjAZN6lAy4UuhYlfQSFeojPwTVJhMJ-oU4dATEEwpTystSMAk2AoLJKTEMVWxYGEJ3S4VkHxmxBqJTUgqcWK0lRhtJbm2SqhoZLu2MBPr2R_vr9F2o_PSSlrN9vM52jGfyvCDF6iQzhbqEgKJlF9Z8_kG1k3G1A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning-Based+Optimization+Algorithms+for+Routing+Problems%3A+Bibliometric+Analysis+and+Literature+Review&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Zhou%2C+Guanghui&rft.au=Li%2C+Xiaoyi&rft.au=Li%2C+Dengyuhui&rft.au=Bian%2C+Junsong&rft.date=2024-11-01&rft.pub=IEEE&rft.issn=1524-9050&rft.volume=25&rft.issue=11&rft.spage=15273&rft.epage=15290&rft_id=info:doi/10.1109%2FTITS.2024.3438788&rft.externalDocID=10648885
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon