Learning-Based Optimization Algorithms for Routing Problems: Bibliometric Analysis and Literature Review
Learning-based optimization (LBO) algorithms have exhibited considerable advantages in solving routing problems. In this study, 831 papers published over two decades (2003-2024) are retrieved from the Web of Science database. This work aims to build extensive knowledge maps of LBO algorithms for rou...
        Saved in:
      
    
          | Published in | IEEE transactions on intelligent transportation systems Vol. 25; no. 11; pp. 15273 - 15290 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            IEEE
    
        01.11.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1524-9050 1558-0016  | 
| DOI | 10.1109/TITS.2024.3438788 | 
Cover
| Abstract | Learning-based optimization (LBO) algorithms have exhibited considerable advantages in solving routing problems. In this study, 831 papers published over two decades (2003-2024) are retrieved from the Web of Science database. This work aims to build extensive knowledge maps of LBO algorithms for routing problems by using a scientometric review of new developments and global trends. Prolific journals, conferences, authors, and institutions are discussed in the statistical analysis. The overall trend of LBO algorithms for routing problems is growing, and it is dominated by China and the USA. Collaboration network, co-citation analysis, and emerging trend analysis are developed to identify major disciplines of LBO algorithms for routing problems. Different emphases on the research field in operations research and computer science communities are identified respectively. Studies on LBO algorithms are reviewed from the perspectives of supervised learning (SL), unsupervised learning (UL), and reinforcement learning (RL). The major characteristics and limitations of LBO algorithms in each category are discussed. Dependence on sample labels and cluster numbers restricts the practical application of SL and UL to routing problems. Meanwhile, RL approaches, such as the deep Q-network, which exhibit fast convergence and computational efficiency, have elicited widespread attention in recent years. This study provides meaningful guidance and future direction to designing LBO algorithms for routing problems. | 
    
|---|---|
| AbstractList | Learning-based optimization (LBO) algorithms have exhibited considerable advantages in solving routing problems. In this study, 831 papers published over two decades (2003-2024) are retrieved from the Web of Science database. This work aims to build extensive knowledge maps of LBO algorithms for routing problems by using a scientometric review of new developments and global trends. Prolific journals, conferences, authors, and institutions are discussed in the statistical analysis. The overall trend of LBO algorithms for routing problems is growing, and it is dominated by China and the USA. Collaboration network, co-citation analysis, and emerging trend analysis are developed to identify major disciplines of LBO algorithms for routing problems. Different emphases on the research field in operations research and computer science communities are identified respectively. Studies on LBO algorithms are reviewed from the perspectives of supervised learning (SL), unsupervised learning (UL), and reinforcement learning (RL). The major characteristics and limitations of LBO algorithms in each category are discussed. Dependence on sample labels and cluster numbers restricts the practical application of SL and UL to routing problems. Meanwhile, RL approaches, such as the deep Q-network, which exhibit fast convergence and computational efficiency, have elicited widespread attention in recent years. This study provides meaningful guidance and future direction to designing LBO algorithms for routing problems. | 
    
| Author | Li, Dengyuhui Li, Xiaoyi Bian, Junsong Zhou, Guanghui  | 
    
| Author_xml | – sequence: 1 givenname: Guanghui orcidid: 0000-0002-1145-5268 surname: Zhou fullname: Zhou, Guanghui email: zhouguanghui@ucas.edu.cn organization: School of Economics and Management and the MOE Social Science Laboratory of Digital Economic Forecasts and Policy Simulation, University of Chinese Academy of Sciences, Beijing, China – sequence: 2 givenname: Xiaoyi orcidid: 0009-0004-1508-6641 surname: Li fullname: Li, Xiaoyi email: lixiaoyi22@mails.ucas.edu.cn organization: School of Economics and Management and the MOE Social Science Laboratory of Digital Economic Forecasts and Policy Simulation, University of Chinese Academy of Sciences, Beijing, China – sequence: 3 givenname: Dengyuhui orcidid: 0000-0002-0943-0280 surname: Li fullname: Li, Dengyuhui email: lidengyuhui19@mails.ucas.edu.cn organization: School of Economics and Management and the MOE Social Science Laboratory of Digital Economic Forecasts and Policy Simulation, University of Chinese Academy of Sciences, Beijing, China – sequence: 4 givenname: Junsong surname: Bian fullname: Bian, Junsong email: jason.bian@rennes-sb.com organization: Department of Supply Chain Management and Information Systems, Rennes School of Business, Rennes, France  | 
    
| BookMark | eNpNkF9rwjAUxcNwMHX7AIM95AvU5TZNm-5NZX-EgsO555KmiWa0jSRxw336tejDnu7hcs6B85ugUWc7hdA9kBkAyR-3q-3HLCZxMqMJ5RnnV2gMjPGIEEhHg46TKCeM3KCJ91_9N2EAY7QvlHCd6XbRQnhV4_UhmNb8imBsh-fNzjoT9q3H2jq8scfQO_G7s1WjWv-EF6ZqjG1VcEbieSeakzcei67GhQnKiXB0Cm_Ut1E_t-hai8aru8udos-X5-3yLSrWr6vlvIhkDDxEQAFEyrNUC860rvpFVV7HstLAIKVSMplUHLJEV3Gts1pIWkuVg2RcE1ZzOkVw7pXOeu-ULg_OtMKdSiDlgKocUJUDqvKCqs88nDNGKfXPnyacc0b_AKk6afo | 
    
| CODEN | ITISFG | 
    
| Cites_doi | 10.1109/IJCNN.2017.7966405 10.1109/SMC.2017.8122633 10.1007/s10489-021-02750-3 10.1109/TNN.2008.2005605 10.1155/2016/2720630 10.1109/TITS.2021.3096829 10.1080/00207543.2021.2013566 10.1007/s12351-020-00600-7 10.1016/j.eswa.2022.118740 10.1016/j.trc.2020.01.019 10.1016/j.ejor.2014.08.030 10.1080/00207543.2015.1043403 10.1002/net.21864 10.1016/j.ejor.2021.06.021 10.1109/TITS.2022.3168987 10.1109/IJCNN52387.2021.9534010 10.1145/3394486.3403356 10.1016/j.ejor.2008.03.023 10.1016/j.eswa.2020.114240 10.1109/JAS.2022.105677 10.1162/neco.1997.9.8.1735 10.1109/TCYB.2020.2977661 10.48550/arXiv.1312.6114 10.1109/3477.484436 10.1016/j.cor.2007.01.025 10.1016/j.trc.2021.103285 10.1016/j.ejor.2022.07.015 10.1007/BF00992698 10.1007/s00521-015-1901-4 10.1007/978-0-387-84858-7 10.1016/j.neucom.2018.05.079 10.1057/jors.1992.88 10.1109/TCYB.2021.3089179 10.1016/S0305-0548(98)00071-9 10.1080/00207543.2021.1919780 10.1016/j.ejor.2022.02.022 10.1016/j.eswa.2019.06.023 10.1016/j.knosys.2020.106244 10.1007/978-3-031-08011-1_14 10.1109/TITS.2021.3056120 10.1109/TASE.2022.3181512 10.1007/s10489-021-02610-0 10.1007/s10489-021-02920-3 10.1287/ijoc.2021.1110 10.1287/trsc.36.1.21.570 10.1007/BF02098286 10.1016/j.ejor.2014.01.005 10.1609/aaai.v30i1.10295 10.1287/trsc.1050.0135 10.1016/j.trc.2020.102861 10.1016/S0305-0548(99)00146-X 10.1016/0377-2217(94)00289-4 10.1109/4235.585892 10.1016/j.eswa.2022.116814 10.1609/aaai.v31i1.11170 10.1109/TITS.2016.2521779 10.1609/aaai.v36i9.21236 10.1016/j.cor.2018.06.004 10.1137/1.9780898718515 10.1016/j.tre.2021.102496 10.1016/j.knosys.2023.110367 10.1561/2200000086 10.1287/trsc.2021.1095 10.1007/BF00115009 10.1109/TCYB.2021.3069942 10.1287/trsc.2017.0767 10.1016/j.trc.2022.103981 10.1109/TNNLS.2021.3060187 10.1109/TEVC.2002.804323 10.1016/j.trc.2018.09.010 10.21236/ADA126957 10.1016/j.ejor.2022.12.009 10.1016/j.trc.2016.01.013 10.1109/TITS.2020.3023958 10.1109/tnn.1998.712192 10.1007/978-3-030-16194-1_9 10.1145/3319619.3321988 10.1007/s10489-022-03456-w 10.1109/GLOBECOM38437.2019.9013786 10.1609/icaps.v30i1.6685 10.1287/trsc.2013.0472 10.1002/net.21965 10.1109/IJCNN.2005.1555942 10.1016/j.cor.2022.105769 10.1016/j.ejor.2016.04.059 10.1016/j.trc.2023.104057 10.1287/trsc.2023.0107 10.1016/j.trb.2021.08.015 10.1016/j.cie.2016.01.016 10.1016/j.ins.2022.06.056 10.1126/science.aaa8415 10.1109/TITS.2024.3352143 10.1287/trsc.1030.0056 10.1109/TITS.2023.3334976 10.1287/trsc.2022.1152 10.1016/B978-1-55860-307-3.50037-X 10.1016/j.engappai.2023.105954 10.48550/ARXIV.1706.03762 10.1109/SMC.2016.7844421 10.1287/trsc.1080.0238 10.1007/978-1-4842-4470-8_15 10.1287/opre.45.3.395 10.1016/j.knosys.2022.109976 10.1145/3219819.3219993 10.1109/MSP.2017.2743240 10.1109/TCYB.2019.2950779 10.1016/j.trb.2017.04.006 10.1007/978-3-030-04167-0_22 10.1016/0377-2217(95)00050-X 10.1109/TITS.2020.3003163 10.1016/j.ejor.2010.03.045 10.1109/tai.2024.3453230 10.1016/j.trc.2018.04.018 10.1287/mnsc.6.1.80 10.1016/j.cor.2005.08.002 10.1007/978-3-319-93031-2_12 10.1016/B978-1-55860-377-6.50039-6 10.1007/s13676-018-0124-0 10.1016/j.cor.2022.105772 10.1609/aaai.v34i02.5531 10.5772/9385 10.1162/neco.1989.1.3.295 10.1287/trsc.2016.0719 10.1016/j.ibusrev.2005.05.003 10.1126/science.153.3731.34 10.1109/TITS.2019.2909109 10.1016/j.eswa.2020.113959 10.1016/j.eswa.2022.118812 10.1609/aaai.v33i01.33011443 10.1016/j.eswa.2022.119035  | 
    
| ContentType | Journal Article | 
    
| DBID | 97E RIA RIE AAYXX CITATION  | 
    
| DOI | 10.1109/TITS.2024.3438788 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Electronic Library (IEL) CrossRef  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1558-0016 | 
    
| EndPage | 15290 | 
    
| ExternalDocumentID | 10_1109_TITS_2024_3438788 10648885  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 72071195; 91538113; 71402176 funderid: 10.13039/501100001809 – fundername: Youth Innovation Promotion Association, Chinese Academy of Sciences grantid: 2019171 funderid: 10.13039/501100001809  | 
    
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS ZY4 AAYXX CITATION  | 
    
| ID | FETCH-LOGICAL-c218t-1311a6876fa85ffb024b9d2cbf15163cc5c4b8174fb2df7dac3dce91c58f05d83 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 1524-9050 | 
    
| IngestDate | Wed Oct 01 05:03:21 EDT 2025 Wed Aug 27 03:06:51 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 11 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c218t-1311a6876fa85ffb024b9d2cbf15163cc5c4b8174fb2df7dac3dce91c58f05d83 | 
    
| ORCID | 0000-0002-0943-0280 0009-0004-1508-6641 0000-0002-1145-5268  | 
    
| PageCount | 18 | 
    
| ParticipantIDs | crossref_primary_10_1109_TITS_2024_3438788 ieee_primary_10648885  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-11-01 | 
    
| PublicationDateYYYYMMDD | 2024-11-01 | 
    
| PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | IEEE transactions on intelligent transportation systems | 
    
| PublicationTitleAbbrev | TITS | 
    
| PublicationYear | 2024 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| References | Mnih (ref128) 2013 Joshi (ref72) 2019 ref59 ref53 Delarue (ref56) ref52 ref55 ref54 Mnih (ref135) ref51 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 Hildebrandt (ref50) 2021 ref8 ref7 ref9 ref4 ref3 ref5 Jiang (ref36) ref100 ref101 ref40 ref35 ref34 ref37 Applegate (ref6) 2011 ref31 Chen (ref145) ref148 ref30 ref33 ref146 ref32 ref147 Bello (ref38) 2016 ref153 ref151 ref152 ref150 ref24 Battaglia (ref77) 2018 ref26 ref25 Gao (ref142) 2020 ref20 Toth (ref21) 2002 Khalil (ref58) ref22 ref28 ref27 ref29 Vinyals (ref64) ref13 ref12 ref15 Lillicrap (ref149) 2015 ref14 ref129 ref97 ref126 ref96 ref127 ref11 ref99 ref124 ref10 ref98 ref125 ref17 ref16 ref19 ref18 ref93 ref92 ref134 ref131 ref94 ref132 ref130 ref91 ref90 ref89 ref139 ref86 ref137 ref85 ref138 ref88 ref87 ref82 ref144 ref81 Wang (ref133) ref84 ref83 ref143 Nazari (ref39) ref140 Kool (ref57) 2018 ref141 Bertsekas (ref23) 2012; 1 ref79 Bresson (ref78) 2017 ref109 ref106 ref107 ref75 ref104 ref74 ref105 ref102 ref76 ref103 Bertsekas (ref108) 1996 ref2 ref1 ref71 ref111 ref70 ref112 ref73 Wu (ref80) 2016 ref110 Falkner (ref136) 2020 ref68 ref119 ref67 ref117 ref69 ref118 ref115 ref63 ref116 ref66 ref113 ref65 Kohonen (ref95) 2012 ref114 ref60 ref122 ref123 ref62 ref120 ref61 ref121  | 
    
| References_xml | – ident: ref98 doi: 10.1109/IJCNN.2017.7966405 – ident: ref90 doi: 10.1109/SMC.2017.8122633 – ident: ref132 doi: 10.1007/s10489-021-02750-3 – year: 2018 ident: ref77 article-title: Relational inductive biases, deep learning, and graph networks publication-title: arXiv:1806.01261 – ident: ref76 doi: 10.1109/TNN.2008.2005605 – ident: ref97 doi: 10.1155/2016/2720630 – ident: ref119 doi: 10.1109/TITS.2021.3096829 – start-page: 1 volume-title: Proc. Adv. Neural Inf. Proces. Syst. ident: ref39 article-title: Reinforcement learning for solving the vehicle routing problem – volume-title: Self-Organizing Maps year: 2012 ident: ref95 – ident: ref34 doi: 10.1080/00207543.2021.2013566 – ident: ref40 doi: 10.1007/s12351-020-00600-7 – year: 2019 ident: ref72 article-title: An efficient graph convolutional network technique for the travelling salesman problem publication-title: arXiv:1906.01227 – ident: ref3 doi: 10.1016/j.eswa.2022.118740 – ident: ref87 doi: 10.1016/j.trc.2020.01.019 – ident: ref16 doi: 10.1016/j.ejor.2014.08.030 – ident: ref61 doi: 10.1080/00207543.2015.1043403 – ident: ref22 doi: 10.1002/net.21864 – ident: ref46 doi: 10.1016/j.ejor.2021.06.021 – ident: ref82 doi: 10.1109/TITS.2022.3168987 – ident: ref54 doi: 10.1109/IJCNN52387.2021.9534010 – ident: ref79 doi: 10.1145/3394486.3403356 – ident: ref24 doi: 10.1016/j.ejor.2008.03.023 – ident: ref153 doi: 10.1016/j.eswa.2020.114240 – volume: 1 volume-title: Dynamic Programming and Optimal Control year: 2012 ident: ref23 – ident: ref41 doi: 10.1109/JAS.2022.105677 – ident: ref81 doi: 10.1162/neco.1997.9.8.1735 – ident: ref84 doi: 10.1109/TCYB.2020.2977661 – ident: ref100 doi: 10.48550/arXiv.1312.6114 – start-page: 609 volume-title: Proc. Adv. Neural Inf. Proces. Syst. ident: ref56 article-title: Reinforcement learning with combinatorial actions: An application to vehicle routing – ident: ref30 doi: 10.1109/3477.484436 – year: 2016 ident: ref80 article-title: Google’s neural machine translation system: Bridging the gap between human and machine translation publication-title: arXiv:1609.08144 – ident: ref92 doi: 10.1016/j.cor.2007.01.025 – ident: ref5 doi: 10.1016/j.trc.2021.103285 – ident: ref107 doi: 10.1016/j.ejor.2022.07.015 – year: 2013 ident: ref128 article-title: Playing Atari with deep reinforcement learning publication-title: arXiv:1312.5602 – ident: ref121 doi: 10.1007/BF00992698 – ident: ref93 doi: 10.1007/s00521-015-1901-4 – ident: ref86 doi: 10.1007/978-0-387-84858-7 – ident: ref99 doi: 10.1016/j.neucom.2018.05.079 – ident: ref12 doi: 10.1057/jors.1992.88 – ident: ref140 doi: 10.1109/TCYB.2021.3089179 – ident: ref18 doi: 10.1016/S0305-0548(98)00071-9 – ident: ref4 doi: 10.1080/00207543.2021.1919780 – ident: ref10 doi: 10.1016/j.ejor.2022.02.022 – ident: ref89 doi: 10.1016/j.eswa.2019.06.023 – ident: ref139 doi: 10.1016/j.knosys.2020.106244 – ident: ref114 doi: 10.1007/978-3-031-08011-1_14 – ident: ref144 doi: 10.1109/TITS.2021.3056120 – ident: ref27 doi: 10.1109/TASE.2022.3181512 – ident: ref134 doi: 10.1007/s10489-021-02610-0 – ident: ref101 doi: 10.1007/s10489-021-02920-3 – ident: ref73 doi: 10.1287/ijoc.2021.1110 – ident: ref110 doi: 10.1287/trsc.36.1.21.570 – ident: ref69 doi: 10.1007/BF02098286 – ident: ref15 doi: 10.1016/j.ejor.2014.01.005 – volume-title: The Traveling Salesman Problem year: 2011 ident: ref6 – ident: ref131 doi: 10.1609/aaai.v30i1.10295 – ident: ref28 doi: 10.1287/trsc.1050.0135 – ident: ref138 doi: 10.1016/j.trc.2020.102861 – ident: ref109 doi: 10.1016/S0305-0548(99)00146-X – ident: ref14 doi: 10.1016/0377-2217(94)00289-4 – ident: ref123 doi: 10.1109/4235.585892 – start-page: 1995 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref133 article-title: Dueling network architectures for deep reinforcement learning – year: 2017 ident: ref78 article-title: Residual gated graph ConvNets publication-title: arXiv:1711.07553 – year: 2015 ident: ref149 article-title: Continuous control with deep reinforcement learning publication-title: arXiv:1509.02971 – ident: ref45 doi: 10.1016/j.eswa.2022.116814 – ident: ref124 doi: 10.1609/aaai.v31i1.11170 – year: 2018 ident: ref57 article-title: Attention, learn to solve routing problems! publication-title: arXiv:1803.08475 – ident: ref111 doi: 10.1109/TITS.2016.2521779 – ident: ref146 doi: 10.1609/aaai.v36i9.21236 – volume-title: Neuro-Dynamic Programming year: 1996 ident: ref108 – ident: ref150 doi: 10.1016/j.cor.2018.06.004 – volume-title: The Vehicle Routing Problem year: 2002 ident: ref21 doi: 10.1137/1.9780898718515 – ident: ref106 doi: 10.1016/j.tre.2021.102496 – ident: ref130 doi: 10.1016/j.knosys.2023.110367 – ident: ref102 doi: 10.1561/2200000086 – ident: ref74 doi: 10.1287/trsc.2021.1095 – ident: ref117 doi: 10.1007/BF00115009 – ident: ref31 doi: 10.1109/TCYB.2021.3069942 – ident: ref105 doi: 10.1287/trsc.2017.0767 – ident: ref147 doi: 10.1016/j.trc.2022.103981 – ident: ref120 doi: 10.1109/TNNLS.2021.3060187 – ident: ref32 doi: 10.1109/TEVC.2002.804323 – ident: ref112 doi: 10.1016/j.trc.2018.09.010 – ident: ref20 doi: 10.21236/ADA126957 – ident: ref47 doi: 10.1016/j.ejor.2022.12.009 – ident: ref29 doi: 10.1016/j.trc.2016.01.013 – year: 2016 ident: ref38 article-title: Neural combinatorial optimization with reinforcement learning publication-title: arXiv:1611.09940 – ident: ref52 doi: 10.1109/TITS.2020.3023958 – ident: ref60 doi: 10.1109/tnn.1998.712192 – ident: ref115 doi: 10.1007/978-3-030-16194-1_9 – ident: ref53 doi: 10.1145/3319619.3321988 – ident: ref148 doi: 10.1007/s10489-022-03456-w – ident: ref88 doi: 10.1109/GLOBECOM38437.2019.9013786 – ident: ref118 doi: 10.1609/icaps.v30i1.6685 – ident: ref17 doi: 10.1287/trsc.2013.0472 – ident: ref1 doi: 10.1002/net.21965 – ident: ref75 doi: 10.1109/IJCNN.2005.1555942 – ident: ref63 doi: 10.1016/j.cor.2022.105769 – year: 2020 ident: ref142 article-title: Learn to design the heuristics for vehicle routing problem publication-title: arXiv:2002.08539 – ident: ref13 doi: 10.1016/j.ejor.2016.04.059 – start-page: 1548 volume-title: Proc. Int. Joint Conf. Auton. Agents Multiagent Syst. ident: ref36 article-title: Solving 3D bin packing problem via multimodal deep reinforcement learning – start-page: 1928 volume-title: Proc. Int. Conf. Mach. Learn. (ICML) ident: ref135 article-title: Asynchronous methods for deep reinforcement learning – start-page: 6351 volume-title: Proc. Adv. Neural Inf. Proces. Syst. ident: ref58 article-title: Learning combinatorial optimization algorithms over graphs – ident: ref2 doi: 10.1016/j.trc.2023.104057 – ident: ref83 doi: 10.1287/trsc.2023.0107 – ident: ref129 doi: 10.1016/j.trb.2021.08.015 – ident: ref152 doi: 10.1016/j.cie.2016.01.016 – ident: ref125 doi: 10.1016/j.ins.2022.06.056 – ident: ref68 doi: 10.1126/science.aaa8415 – ident: ref137 doi: 10.1109/TITS.2024.3352143 – ident: ref9 doi: 10.1287/trsc.1030.0056 – ident: ref42 doi: 10.1109/TITS.2023.3334976 – ident: ref49 doi: 10.1287/trsc.2022.1152 – ident: ref67 doi: 10.1016/B978-1-55860-307-3.50037-X – ident: ref127 doi: 10.1016/j.engappai.2023.105954 – ident: ref66 doi: 10.48550/ARXIV.1706.03762 – ident: ref96 doi: 10.1109/SMC.2016.7844421 – ident: ref62 doi: 10.1287/trsc.1080.0238 – ident: ref65 doi: 10.1007/978-1-4842-4470-8_15 – ident: ref25 doi: 10.1287/opre.45.3.395 – ident: ref43 doi: 10.1016/j.knosys.2022.109976 – ident: ref141 doi: 10.1145/3219819.3219993 – ident: ref116 doi: 10.1109/MSP.2017.2743240 – ident: ref71 doi: 10.1109/TCYB.2019.2950779 – ident: ref26 doi: 10.1016/j.trb.2017.04.006 – ident: ref35 doi: 10.1007/978-3-030-04167-0_22 – year: 2020 ident: ref136 article-title: Learning to solve vehicle routing problems with time windows through joint attention publication-title: arXiv:2006.09100 – ident: ref8 doi: 10.1016/0377-2217(95)00050-X – ident: ref143 doi: 10.1109/TITS.2020.3003163 – ident: ref11 doi: 10.1016/j.ejor.2010.03.045 – ident: ref126 doi: 10.1109/tai.2024.3453230 – ident: ref104 doi: 10.1016/j.trc.2018.04.018 – ident: ref7 doi: 10.1287/mnsc.6.1.80 – ident: ref19 doi: 10.1016/j.cor.2005.08.002 – ident: ref48 doi: 10.1007/978-3-319-93031-2_12 – ident: ref122 doi: 10.1016/B978-1-55860-377-6.50039-6 – ident: ref151 doi: 10.1007/s13676-018-0124-0 – start-page: 2692 volume-title: Proc. Adv. Neural Inf. Proces. Syst. ident: ref64 article-title: Pointer networks – ident: ref94 doi: 10.1016/j.cor.2022.105772 – ident: ref113 doi: 10.1609/aaai.v34i02.5531 – ident: ref70 doi: 10.5772/9385 – volume-title: Proc. Adv. Neural Inf. Proces. Syst. ident: ref145 article-title: Learning to perform local rewriting for combinatorial optimization – ident: ref85 doi: 10.1162/neco.1989.1.3.295 – year: 2021 ident: ref50 article-title: Where the action is: Let’s make reinforcement learning for stochastic dynamic vehicle routing problems work! publication-title: arXiv:2103.00507 – ident: ref55 doi: 10.1287/trsc.2016.0719 – ident: ref59 doi: 10.1016/j.ibusrev.2005.05.003 – ident: ref103 doi: 10.1126/science.153.3731.34 – ident: ref51 doi: 10.1109/TITS.2019.2909109 – ident: ref33 doi: 10.1016/j.eswa.2020.113959 – ident: ref44 doi: 10.1016/j.eswa.2022.118812 – ident: ref37 doi: 10.1609/aaai.v33i01.33011443 – ident: ref91 doi: 10.1016/j.eswa.2022.119035  | 
    
| SSID | ssj0014511 | 
    
| Score | 2.4510424 | 
    
| Snippet | Learning-based optimization (LBO) algorithms have exhibited considerable advantages in solving routing problems. In this study, 831 papers published over two... | 
    
| SourceID | crossref ieee  | 
    
| SourceType | Index Database Publisher  | 
    
| StartPage | 15273 | 
    
| SubjectTerms | Bibliometric analysis Bibliometrics Classification algorithms Collaboration Heuristic algorithms learning-based optimization (LBO) algorithm literature review Optimization reinforcement learning Routing routing problem  | 
    
| Title | Learning-Based Optimization Algorithms for Routing Problems: Bibliometric Analysis and Literature Review | 
    
| URI | https://ieeexplore.ieee.org/document/10648885 | 
    
| Volume | 25 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore Digital Library customDbUrl: eissn: 1558-0016 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014511 issn: 1524-9050 databaseCode: RIE dateStart: 20000101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5sT3rwWbG-2IMnIbF5bB7eWrFUkSrYQm9hn22xTaVNL_56Z3eTWgTBWwgbWGZmd2Yy832D0I2ksRLEo06QMEhQhOQO9TTdnWC-0A4yVKbLtx_1huHziIxKsLrBwkgpTfOZdPWjqeWLBV_rX2VwwiOwt4TUUC1OIgvW2pQMNNGWIUf1QydtkaqE6bXSu8HT4B1SQT90gzBIYjNl5ccJbU1VMU6le4D61XZsL8mHuy6Yy79-MTX-e7-HaL8ML3Hb2sMR2pH5MdrbIh08QZOSUnXsdMCDCfwKl8a8RGPi9my8WE6LyXyFIZrFul8IVuI3O3ZmdY87UzbTiH1N7I8rRhNMc4FfNgTN2BYcGmjYfRw89Jxy3oLDwdHrqfSeRyO4HhVNiFIMBMZS4XOmICyIAs4JD1kCKYwCPapYUB4ILlOPk0S1iEiCU1TPF7k8Qzj2OYRS0ldS8TCiAiyFRgIS4pTIlNO4iW4rBWSfllYjM-lIK820tjKtrazUVhM1tGy3Flqxnv_x_gLt6s8tYvAS1YvlWl5B6FCwa2My3267w4c | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4oHtSDT4z43IMnkyJtd_vwBkYCimgiJNyafQKRh4Fy8dc7uy1ITEy8Nc2m2czM7sx05vsGoRvFQi2pyxw_4pCgSCUc5hq6O8k9aRwk0bbLtx00uuSpR3s5WN1iYZRStvlMlc2jreXLqViYX2VwwgOwt4huoi1KCKEZXGtVNDBUW5Ye1SNOXKHLIqZbie86zc47JIMeKfvEj0I7Z-XHDa3NVbFupb6P2ssNZd0kH-VFysvi6xdX4793fID28gATVzOLOEQbanKEdtdoB4_RICdV7Ts18GESv8K1Mc7xmLg66k9nw3QwnmOIZ7HpGIKV-C0bPDO_x7UhHxnMvqH2x0tOE8wmErdWFM04KzkUUbf-2HloOPnEBUeAqzdz6V2XBXBBahZRrTkIjMfSE1xDYBD4QlBBeARJjAZN6lAy4UuhYlfQSFeojPwTVJhMJ-oU4dATEEwpTystSMAk2AoLJKTEMVWxYGEJ3S4VkHxmxBqJTUgqcWK0lRhtJbm2SqhoZLu2MBPr2R_vr9F2o_PSSlrN9vM52jGfyvCDF6iQzhbqEgKJlF9Z8_kG1k3G1A | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning-Based+Optimization+Algorithms+for+Routing+Problems%3A+Bibliometric+Analysis+and+Literature+Review&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Zhou%2C+Guanghui&rft.au=Li%2C+Xiaoyi&rft.au=Li%2C+Dengyuhui&rft.au=Bian%2C+Junsong&rft.date=2024-11-01&rft.pub=IEEE&rft.issn=1524-9050&rft.volume=25&rft.issue=11&rft.spage=15273&rft.epage=15290&rft_id=info:doi/10.1109%2FTITS.2024.3438788&rft.externalDocID=10648885 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon |