Hyperparameters optimization XGBoost for network intrusion detection using CSE-CIC-IDS 2018 dataset

With the introduction of high-speed internet access, the demand for security and dependable networks has grown. In recent years, network attacks have gotten more complex and intense, making security a vital component of organizational information systems. Network intrusion detection systems (NIDS) h...

Full description

Saved in:
Bibliographic Details
Published inIAES international journal of artificial intelligence Vol. 13; no. 1; p. 817
Main Authors Chimphlee, Witcha, Chimphlee, Siriporn
Format Journal Article
LanguageEnglish
Published 01.03.2024
Online AccessGet full text
ISSN2089-4872
2252-8938
DOI10.11591/ijai.v13.i1.pp817-826

Cover

Abstract With the introduction of high-speed internet access, the demand for security and dependable networks has grown. In recent years, network attacks have gotten more complex and intense, making security a vital component of organizational information systems. Network intrusion detection systems (NIDS) have become an essential detection technology to protect data integrity and system availability against such attacks. NIDS is one of the most well-known areas of machine learning software in the security field, with machine learni ng algorithms constantly being developed to improve performance. This research focuses on detecting abnormalities in societal infiltration using the hyperparameters optimization XGBoost (HO-XGB) algorithm with the Communications Security Establishment-The Canadian Institute for Cybersecurity-Intrusion Detection System2018 (CSE-CIC-IDS2018) dataset to get the best potential results. When compared to typical machine learning methods published in the literature, HO-XGB outperforms them. The study shows that XGBoost outperforms other detection algorithms. We refined the HO-XGB model's hyperparameters, which included learning_rate, subsample, max_leaves, max_depth, gamma, colsample_bytree, min_child_weight, n_estimators, max_depth, and reg_alpha. The experimental findings reveal that HO-XGB1 outperforms multiple parameter settings for intrusion detection, effectively optimizing XGBoost's hyperparameters.
AbstractList With the introduction of high-speed internet access, the demand for security and dependable networks has grown. In recent years, network attacks have gotten more complex and intense, making security a vital component of organizational information systems. Network intrusion detection systems (NIDS) have become an essential detection technology to protect data integrity and system availability against such attacks. NIDS is one of the most well-known areas of machine learning software in the security field, with machine learni ng algorithms constantly being developed to improve performance. This research focuses on detecting abnormalities in societal infiltration using the hyperparameters optimization XGBoost (HO-XGB) algorithm with the Communications Security Establishment-The Canadian Institute for Cybersecurity-Intrusion Detection System2018 (CSE-CIC-IDS2018) dataset to get the best potential results. When compared to typical machine learning methods published in the literature, HO-XGB outperforms them. The study shows that XGBoost outperforms other detection algorithms. We refined the HO-XGB model's hyperparameters, which included learning_rate, subsample, max_leaves, max_depth, gamma, colsample_bytree, min_child_weight, n_estimators, max_depth, and reg_alpha. The experimental findings reveal that HO-XGB1 outperforms multiple parameter settings for intrusion detection, effectively optimizing XGBoost's hyperparameters.
Author Chimphlee, Siriporn
Chimphlee, Witcha
Author_xml – sequence: 1
  givenname: Witcha
  orcidid: 0000-0002-1857-2926
  surname: Chimphlee
  fullname: Chimphlee, Witcha
– sequence: 2
  givenname: Siriporn
  orcidid: 0000-0001-9030-6385
  surname: Chimphlee
  fullname: Chimphlee, Siriporn
BookMark eNqFkNFOwyAUhomZiXPuFQwvQC3QUki80Tq3JUu8mCbeEQrUoFtpADXz6e2qV954df6Tc77_4jsHk853FoBLnGcYlwJfuVflsg9MM4ezvue4QpywEzAlpCSIC8onQ865QAWvyBmYx-iaHGNBeCmqKdCrQ29Dr4La22RDhL5Pbu--VHK-g8_LW-9jgq0PsLPp04c36LoU3uPxagZCj3_D3r3AertA9bpG67stJDnm0Kikok0X4LRVu2jnv3MGnu4Xj_UKbR6W6_pmgzTBnKHWtIU21pTGYIVbJhpVCUuo4ZqKkhWMWl3YQjFBWKPJwFRNSxUzWueqbCidAfbTq4OPMdhW9sHtVThInMvRljzakoMt6bAcbcnB1gBe_wG1S6OBFJTb_Yd_A-mmeF0
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3462297
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.11591/ijai.v13.i1.pp817-826
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2252-8938
ExternalDocumentID 10_11591_ijai_v13_i1_pp817_826
GroupedDBID 8FE
8FG
AAKDD
AAYXX
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BGLVJ
BPHCQ
BVBZV
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
K6V
K7-
P62
PHGZM
PHGZT
PQQKQ
PROAC
RNS
ID FETCH-LOGICAL-c2186-fdf4cded5dd1a1f69ba79e23d8c3956463ec4e4a6926bc22187bf3a6dcc0a5b33
ISSN 2089-4872
IngestDate Tue Jul 01 03:27:31 EDT 2025
Thu Apr 24 23:09:55 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://creativecommons.org/licenses/by-sa/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2186-fdf4cded5dd1a1f69ba79e23d8c3956463ec4e4a6926bc22187bf3a6dcc0a5b33
ORCID 0000-0002-1857-2926
0000-0001-9030-6385
OpenAccessLink https://ijai.iaescore.com/index.php/IJAI/article/download/23581/13885
ParticipantIDs crossref_primary_10_11591_ijai_v13_i1_pp817_826
crossref_citationtrail_10_11591_ijai_v13_i1_pp817_826
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationTitle IAES international journal of artificial intelligence
PublicationYear 2024
SSID ssib011928597
ssib033899589
ssj0001341662
ssib044738854
Score 2.3274188
Snippet With the introduction of high-speed internet access, the demand for security and dependable networks has grown. In recent years, network attacks have gotten...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 817
Title Hyperparameters optimization XGBoost for network intrusion detection using CSE-CIC-IDS 2018 dataset
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2252-8938
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib044738854
  issn: 2089-4872
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: East & South Asia Database
  customDbUrl:
  eissn: 2252-8938
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001341662
  issn: 2089-4872
  databaseCode: BVBZV
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eastsouthasia
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2252-8938
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001341662
  issn: 2089-4872
  databaseCode: BENPR
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2252-8938
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001341662
  issn: 2089-4872
  databaseCode: 8FG
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdKd-HCN2IMkA_cKneJ7TjOcSuFFokJ0U30FjmOIwWxZOrHDvwD_Ns8x24StgoYh0aVK7-2fr-8D-f59xB6m0kGfkwpEgdZQTjcQAT8vCBgCUOtApEVTZeIT2didsE_LqPlYPCzV7W03WRj_WPvuZL_0SqMgV7tKdk7aLYVCgPwHvQLV9AwXP9JxzNIIleWvPvSFrWsRzXc_5f-YOVo-eG0rtebpo6wcsXelhxitbX7Y6PcbIzrEr51j_4XUzKZT8j83WIE3lqObOno2vy2cz8_mS4afoluC7FHPGF_n6ejKHs8n139QAnA8bz8X0sAi9r70aIEM1avqv52BOVdPZazWjSQCYEsyJlY48ZoBGY3cTQurdllt-DlbKh0hzlv2_Yosca9_KbK8XXIxiU4mStpnSzdQ6Z9w8m1pYdN0gOSUisnBTlpGaaNnBTk3EMHNBaCDtHB6fTs85edaQohEJZR98CVWVrCqCPq5zxmUvrIrNneg-hANO1s2wXx59Ptlx_v_RO90KgX45w_Qg98coJPHNIeo4GpnqCHu8Yf2PuBp0jfAB7uAw974GEAHvbAwy3wcAs83AAP94CHLfCwB94zdPF-ej6ZEd-tg2jb14wUecF1bvIoz0MVFiLJVJwYynKpGSThXDCjueFKJFRkmsKcOCuYErnWgYoyxp6jYVVX5gXCEINSA6sdFTLmScGlyWOhIbWAFwsKfYii3UKl2lPZ244q39M_a_cQHbfzrhyZy19mvLzzjCN0v7stXqEhrK55DXHrJnvjMfULgGCXkA
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperparameters+optimization+XGBoost+for+network+intrusion+detection+using+CSE-CIC-IDS+2018+dataset&rft.jtitle=IAES+international+journal+of+artificial+intelligence&rft.au=Chimphlee%2C+Witcha&rft.au=Chimphlee%2C+Siriporn&rft.date=2024-03-01&rft.issn=2089-4872&rft.eissn=2252-8938&rft.volume=13&rft.issue=1&rft.spage=817&rft_id=info:doi/10.11591%2Fijai.v13.i1.pp817-826&rft.externalDBID=n%2Fa&rft.externalDocID=10_11591_ijai_v13_i1_pp817_826
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2089-4872&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2089-4872&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2089-4872&client=summon