Hyperparameters optimization XGBoost for network intrusion detection using CSE-CIC-IDS 2018 dataset
With the introduction of high-speed internet access, the demand for security and dependable networks has grown. In recent years, network attacks have gotten more complex and intense, making security a vital component of organizational information systems. Network intrusion detection systems (NIDS) h...
Saved in:
Published in | IAES international journal of artificial intelligence Vol. 13; no. 1; p. 817 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
01.03.2024
|
Online Access | Get full text |
ISSN | 2089-4872 2252-8938 |
DOI | 10.11591/ijai.v13.i1.pp817-826 |
Cover
Abstract | With the introduction of high-speed internet access, the demand for security and dependable networks has grown. In recent years, network attacks have gotten more complex and intense, making security a vital component of organizational information systems. Network intrusion detection systems (NIDS) have become an essential detection technology to protect data integrity and system availability against such attacks. NIDS is one of the most well-known areas of machine learning software in the security field, with machine learni ng algorithms constantly being developed to improve performance. This research focuses on detecting abnormalities in societal infiltration using the hyperparameters optimization XGBoost (HO-XGB) algorithm with the Communications Security Establishment-The Canadian Institute for Cybersecurity-Intrusion Detection System2018 (CSE-CIC-IDS2018) dataset to get the best potential results. When compared to typical machine learning methods published in the literature, HO-XGB outperforms them. The study shows that XGBoost outperforms other detection algorithms. We refined the HO-XGB model's hyperparameters, which included learning_rate, subsample, max_leaves, max_depth, gamma, colsample_bytree, min_child_weight, n_estimators, max_depth, and reg_alpha. The experimental findings reveal that HO-XGB1 outperforms multiple parameter settings for intrusion detection, effectively optimizing XGBoost's hyperparameters. |
---|---|
AbstractList | With the introduction of high-speed internet access, the demand for security and dependable networks has grown. In recent years, network attacks have gotten more complex and intense, making security a vital component of organizational information systems. Network intrusion detection systems (NIDS) have become an essential detection technology to protect data integrity and system availability against such attacks. NIDS is one of the most well-known areas of machine learning software in the security field, with machine learni ng algorithms constantly being developed to improve performance. This research focuses on detecting abnormalities in societal infiltration using the hyperparameters optimization XGBoost (HO-XGB) algorithm with the Communications Security Establishment-The Canadian Institute for Cybersecurity-Intrusion Detection System2018 (CSE-CIC-IDS2018) dataset to get the best potential results. When compared to typical machine learning methods published in the literature, HO-XGB outperforms them. The study shows that XGBoost outperforms other detection algorithms. We refined the HO-XGB model's hyperparameters, which included learning_rate, subsample, max_leaves, max_depth, gamma, colsample_bytree, min_child_weight, n_estimators, max_depth, and reg_alpha. The experimental findings reveal that HO-XGB1 outperforms multiple parameter settings for intrusion detection, effectively optimizing XGBoost's hyperparameters. |
Author | Chimphlee, Siriporn Chimphlee, Witcha |
Author_xml | – sequence: 1 givenname: Witcha orcidid: 0000-0002-1857-2926 surname: Chimphlee fullname: Chimphlee, Witcha – sequence: 2 givenname: Siriporn orcidid: 0000-0001-9030-6385 surname: Chimphlee fullname: Chimphlee, Siriporn |
BookMark | eNqFkNFOwyAUhomZiXPuFQwvQC3QUki80Tq3JUu8mCbeEQrUoFtpADXz6e2qV954df6Tc77_4jsHk853FoBLnGcYlwJfuVflsg9MM4ezvue4QpywEzAlpCSIC8onQ865QAWvyBmYx-iaHGNBeCmqKdCrQ29Dr4La22RDhL5Pbu--VHK-g8_LW-9jgq0PsLPp04c36LoU3uPxagZCj3_D3r3AertA9bpG67stJDnm0Kikok0X4LRVu2jnv3MGnu4Xj_UKbR6W6_pmgzTBnKHWtIU21pTGYIVbJhpVCUuo4ZqKkhWMWl3YQjFBWKPJwFRNSxUzWueqbCidAfbTq4OPMdhW9sHtVThInMvRljzakoMt6bAcbcnB1gBe_wG1S6OBFJTb_Yd_A-mmeF0 |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3462297 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.11591/ijai.v13.i1.pp817-826 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2252-8938 |
ExternalDocumentID | 10_11591_ijai_v13_i1_pp817_826 |
GroupedDBID | 8FE 8FG AAKDD AAYXX ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BGLVJ BPHCQ BVBZV CCPQU CITATION DWQXO GNUQQ HCIFZ K6V K7- P62 PHGZM PHGZT PQQKQ PROAC RNS |
ID | FETCH-LOGICAL-c2186-fdf4cded5dd1a1f69ba79e23d8c3956463ec4e4a6926bc22187bf3a6dcc0a5b33 |
ISSN | 2089-4872 |
IngestDate | Tue Jul 01 03:27:31 EDT 2025 Thu Apr 24 23:09:55 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://creativecommons.org/licenses/by-sa/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2186-fdf4cded5dd1a1f69ba79e23d8c3956463ec4e4a6926bc22187bf3a6dcc0a5b33 |
ORCID | 0000-0002-1857-2926 0000-0001-9030-6385 |
OpenAccessLink | https://ijai.iaescore.com/index.php/IJAI/article/download/23581/13885 |
ParticipantIDs | crossref_primary_10_11591_ijai_v13_i1_pp817_826 crossref_citationtrail_10_11591_ijai_v13_i1_pp817_826 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-01 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | IAES international journal of artificial intelligence |
PublicationYear | 2024 |
SSID | ssib011928597 ssib033899589 ssj0001341662 ssib044738854 |
Score | 2.3274188 |
Snippet | With the introduction of high-speed internet access, the demand for security and dependable networks has grown. In recent years, network attacks have gotten... |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
StartPage | 817 |
Title | Hyperparameters optimization XGBoost for network intrusion detection using CSE-CIC-IDS 2018 dataset |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2252-8938 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib044738854 issn: 2089-4872 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: East & South Asia Database customDbUrl: eissn: 2252-8938 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001341662 issn: 2089-4872 databaseCode: BVBZV dateStart: 20170101 isFulltext: true titleUrlDefault: https://search.proquest.com/eastsouthasia providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Database Suite (ProQuest) customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2252-8938 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001341662 issn: 2089-4872 databaseCode: BENPR dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2252-8938 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001341662 issn: 2089-4872 databaseCode: 8FG dateStart: 20170101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdKd-HCN2IMkA_cKneJ7TjOcSuFFokJ0U30FjmOIwWxZOrHDvwD_Ns8x24StgoYh0aVK7-2fr-8D-f59xB6m0kGfkwpEgdZQTjcQAT8vCBgCUOtApEVTZeIT2didsE_LqPlYPCzV7W03WRj_WPvuZL_0SqMgV7tKdk7aLYVCgPwHvQLV9AwXP9JxzNIIleWvPvSFrWsRzXc_5f-YOVo-eG0rtebpo6wcsXelhxitbX7Y6PcbIzrEr51j_4XUzKZT8j83WIE3lqObOno2vy2cz8_mS4afoluC7FHPGF_n6ejKHs8n139QAnA8bz8X0sAi9r70aIEM1avqv52BOVdPZazWjSQCYEsyJlY48ZoBGY3cTQurdllt-DlbKh0hzlv2_Yosca9_KbK8XXIxiU4mStpnSzdQ6Z9w8m1pYdN0gOSUisnBTlpGaaNnBTk3EMHNBaCDtHB6fTs85edaQohEJZR98CVWVrCqCPq5zxmUvrIrNneg-hANO1s2wXx59Ptlx_v_RO90KgX45w_Qg98coJPHNIeo4GpnqCHu8Yf2PuBp0jfAB7uAw974GEAHvbAwy3wcAs83AAP94CHLfCwB94zdPF-ej6ZEd-tg2jb14wUecF1bvIoz0MVFiLJVJwYynKpGSThXDCjueFKJFRkmsKcOCuYErnWgYoyxp6jYVVX5gXCEINSA6sdFTLmScGlyWOhIbWAFwsKfYii3UKl2lPZ244q39M_a_cQHbfzrhyZy19mvLzzjCN0v7stXqEhrK55DXHrJnvjMfULgGCXkA |
linkProvider | ProQuest |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperparameters+optimization+XGBoost+for+network+intrusion+detection+using+CSE-CIC-IDS+2018+dataset&rft.jtitle=IAES+international+journal+of+artificial+intelligence&rft.au=Chimphlee%2C+Witcha&rft.au=Chimphlee%2C+Siriporn&rft.date=2024-03-01&rft.issn=2089-4872&rft.eissn=2252-8938&rft.volume=13&rft.issue=1&rft.spage=817&rft_id=info:doi/10.11591%2Fijai.v13.i1.pp817-826&rft.externalDBID=n%2Fa&rft.externalDocID=10_11591_ijai_v13_i1_pp817_826 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2089-4872&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2089-4872&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2089-4872&client=summon |