Hybrid gene selection method based on mutual information technique and dragonfly optimization algorithm

One of the most prevalent problems with big data is that many of the features are irrelevant. Gene selection has been shown to improve the outcomes of many algorithms, but it is a difficult task in microarray data mining because most microarray datasets have only a few hundred records but thousands...

Full description

Saved in:
Bibliographic Details
Published inEastern-European journal of enterprise technologies Vol. 3; no. 3 (111); pp. 64 - 69
Main Authors Mahmood, Sarah Ghanim, Karyakos, Raed Sabeeh, Yacoob, Ilham M.
Format Journal Article
LanguageEnglish
Published 30.06.2021
Online AccessGet full text
ISSN1729-3774
1729-4061
1729-4061
DOI10.15587/1729-4061.2021.233382

Cover

Abstract One of the most prevalent problems with big data is that many of the features are irrelevant. Gene selection has been shown to improve the outcomes of many algorithms, but it is a difficult task in microarray data mining because most microarray datasets have only a few hundred records but thousands of variables. This type of dataset increases the chances of discovering incorrect predictions due to chance. Finding the most relevant genes is generally the most difficult part of creating a reliable classification model. Irrelevant and duplicated attributes have a negative impact on categorization algorithms’ accuracy. Many Machine Learning-based Gene Selection methods have been explored in the literature, with the aim of improving dimensionality reduction precision. Gene selection is a technique for extracting the most relevant data from a series of datasets. The classification method, which can be used in machine learning, pattern recognition, and signal processing, will benefit from further developments in the Gene selection technique. The goal of the feature selection is to select the smallest subset of features but carrying as much information about the class as possible. This paper models the gene selection approach as a binary-based optimization algorithm in discrete space, which directs binary dragonfly optimization algorithm «BDA» and verifies it in a chosen fitness function utilizing precision of the dataset’s k-nearest neighbors’ classifier. The experimental results revealed that the proposed algorithm, dubbed MI-BDA, in terms of precision of results as measured by cost of calculations and classification accuracy, it outperforms other algorithms
AbstractList One of the most prevalent problems with big data is that many of the features are irrelevant. Gene selection has been shown to improve the outcomes of many algorithms, but it is a difficult task in microarray data mining because most microarray datasets have only a few hundred records but thousands of variables. This type of dataset increases the chances of discovering incorrect predictions due to chance. Finding the most relevant genes is generally the most difficult part of creating a reliable classification model. Irrelevant and duplicated attributes have a negative impact on categorization algorithms’ accuracy. Many Machine Learning-based Gene Selection methods have been explored in the literature, with the aim of improving dimensionality reduction precision. Gene selection is a technique for extracting the most relevant data from a series of datasets. The classification method, which can be used in machine learning, pattern recognition, and signal processing, will benefit from further developments in the Gene selection technique. The goal of the feature selection is to select the smallest subset of features but carrying as much information about the class as possible. This paper models the gene selection approach as a binary-based optimization algorithm in discrete space, which directs binary dragonfly optimization algorithm «BDA» and verifies it in a chosen fitness function utilizing precision of the dataset’s k-nearest neighbors’ classifier. The experimental results revealed that the proposed algorithm, dubbed MI-BDA, in terms of precision of results as measured by cost of calculations and classification accuracy, it outperforms other algorithms
Author Yacoob, Ilham M.
Karyakos, Raed Sabeeh
Mahmood, Sarah Ghanim
Author_xml – sequence: 1
  givenname: Sarah Ghanim
  orcidid: 0000-0002-0574-985X
  surname: Mahmood
  fullname: Mahmood, Sarah Ghanim
– sequence: 2
  givenname: Raed Sabeeh
  orcidid: 0000-0002-2278-7938
  surname: Karyakos
  fullname: Karyakos, Raed Sabeeh
– sequence: 3
  givenname: Ilham M.
  surname: Yacoob
  fullname: Yacoob, Ilham M.
BookMark eNqNkN1KwzAUgINMcOpeQfICnflpmha8kaFOGHij1yVNTrtIm8w0Q-rTu67DC2_05vxxvgPnu0Qz5x0gdEPJkgqRy1sqWZGkJKNLRtghcM5zdobmP_PZqeZSphdo0ffvhBDKmeApnaNmPVTBGtyAA9xDCzpa73AHcesNrlQPBo_9Pu5Vi62rfejUcSWC3jr7sQesnMEmqMa7uh2w30Xb2a9pSbWNDzZuu2t0Xqu2h8UpX6G3x4fX1TrZvDw9r-43iWY0Z4lO61SQvKhSWSjBlMlFVXPFJZNE8VxoloOBIuMCUsJ1YYqMGcXgAIMkNfArJKe7e7dTw6dq23IXbKfCUFJSHpWVo45yVFOOyspJ2YHMJlIH3_cB6v-Dd79AbePx_RiUbf_CvwGcNYVH
CitedBy_id crossref_primary_10_1007_s00521_022_07661_z
crossref_primary_10_1016_j_sciaf_2023_e02012
crossref_primary_10_2478_amns_2024_2452
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.15587/1729-4061.2021.233382
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1729-4061
EndPage 69
ExternalDocumentID 10.15587/1729-4061.2021.233382
10_15587_1729_4061_2021_233382
GroupedDBID .4S
5VS
AAFWJ
AAYXX
ADBBV
AEGXH
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BCNDV
CITATION
EDO
EOJEC
ITG
ITH
KQ8
OBODZ
RNS
TUS
9MQ
ADTOC
UNPAY
ID FETCH-LOGICAL-c2182-c4f45089b479a52ad85bf3a37270a385c28ede9635e403c9d962da2e218e70fe3
IEDL.DBID UNPAY
ISSN 1729-3774
1729-4061
IngestDate Sun Oct 26 02:28:14 EDT 2025
Tue Jul 01 02:11:22 EDT 2025
Thu Apr 24 23:06:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3 (111)
Language English
License http://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2182-c4f45089b479a52ad85bf3a37270a385c28ede9635e403c9d962da2e218e70fe3
ORCID 0000-0002-0574-985X
0000-0002-2278-7938
OpenAccessLink https://proxy.k.utb.cz/login?url=http://journals.uran.ua/eejet/article/download/233382/234376
PageCount 6
ParticipantIDs unpaywall_primary_10_15587_1729_4061_2021_233382
crossref_primary_10_15587_1729_4061_2021_233382
crossref_citationtrail_10_15587_1729_4061_2021_233382
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-30
PublicationDateYYYYMMDD 2021-06-30
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-30
  day: 30
PublicationDecade 2020
PublicationTitle Eastern-European journal of enterprise technologies
PublicationYear 2021
SSID ssj0001325341
Score 2.1810365
Snippet One of the most prevalent problems with big data is that many of the features are irrelevant. Gene selection has been shown to improve the outcomes of many...
SourceID unpaywall
crossref
SourceType Open Access Repository
Enrichment Source
Index Database
StartPage 64
Title Hybrid gene selection method based on mutual information technique and dragonfly optimization algorithm
URI http://journals.uran.ua/eejet/article/download/233382/234376
UnpaywallVersion publishedVersion
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1729-4061
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001325341
  issn: 1729-3774
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB4S59D20Hdp-gh76FWWug9ZewylwbQQWqghPRQx-5D7cOTgWBTn12dGWpuUHvq4SFqxI9B-u5oZtN83AK-8isgat1nlLGZ64sqsijZmGHVp-E9fOWyQPS2nM_3uzJztwbasYhrAy3FHX-pxh3mM3ylDT6OYBxaQX2LIpaLUStJJ0wLZh4PSUCQ-goPZ6Yfjzz0HUlpaO70Ic3_NfisRhI2pJvnuJqWIkg79837xTbe69gI3P3GxuOFwTu7Bly1tZ9hn8mPcrd3YX_2u4vhf73If7qZIVBwPHR_AXmwfwp0b-oSPYD7dMKFL0CSL4rKvmEMwiqHqtGAHGAS3OyahiKTB2nfZScMKbIMIK5wz_WQjlvSFOk_UT4GL-XL1bf31_DHMTt5-ejPNUmWGzLPie-Z1oymys05PLBqJoTKuUagoGCpQVcbLKoZIa9tEXShvgy1lQBnJOE6KJqonMGqXbXwKAjVyGKpDUI0ONmCQrxvjPBYOnbfqEMwWk9on2XKunrGoOX1hLGvGsmYsa8ayHsbzEPKd3cUg3PFHi2IH-V-aPPt3k-dwm1vDlsMXMFqvuviS4pq1O4L99x-rozSJrwF-w_EZ
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswEB2kzqHtIemKJl3AQ6-yVC6yeAyKBkYOQQ81kB4KYbjIXRw5cCwUztdnRqKNFD10uUiiwBEgPlIzA_G9AXjrVUTWuM0qZzHTE1dmVbQxw6hLw3_6ymGD7Hk5nemzC3OxB9uyimkAr8cdfanHHeYxfqcMPY1iHlhAfokhl4pSK0knTQvkHuyXhiLxEezPzj-efO45kNLS2ulFmPtr9luJIGxMNcl3NylFlHTon_eLb7rftVe4-YmLxR2Hc3oIX7a0nWGfyY9xt3Zjf_O7iuN_vcsjOEiRqDgZOj6Gvdg-gYd39Amfwny6YUKXoEkWxXVfMYdgFEPVacEOMAhud0xCEUmDte-yk4YV2AYRVjhn-slGLOkLdZmonwIX8-Xq2_rr5TOYnX749H6apcoMmWfF98zrRlNkZ52eWDQSQ2Vco1BRMFSgqoyXVQyR1raJulDeBlvKgDKScZwUTVTPYdQu2_gCBGrkMFSHoBodbMAg3zXGeSwcOm_VEZgtJrVPsuVcPWNRc_rCWNaMZc1Y1oxlPYznEeQ7u6tBuOOPFsUO8r80Of53k5fwgFvDlsNXMFqvuvia4pq1e5Om7y3djvAk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+gene+selection+method+based+on+mutual+information+technique+and+dragonfly+optimization+algorithm&rft.jtitle=Eastern-European+journal+of+enterprise+technologies&rft.au=Mahmood%2C+Sarah+Ghanim&rft.au=Karyakos%2C+Raed+Sabeeh&rft.au=Yacoob%2C+Ilham+M.&rft.date=2021-06-30&rft.issn=1729-3774&rft.eissn=1729-4061&rft.volume=3&rft.issue=3+%28111%29&rft.spage=64&rft.epage=69&rft_id=info:doi/10.15587%2F1729-4061.2021.233382&rft.externalDBID=n%2Fa&rft.externalDocID=10_15587_1729_4061_2021_233382
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1729-3774&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1729-3774&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1729-3774&client=summon