Deep Networks as Denoising Algorithms: Sample-Efficient Learning of Diffusion Models in High-Dimensional Graphical Models
We investigate the efficiency of deep neural networks for approximating scoring functions in diffusion-based generative modeling. While existing approximation theories leverage the smoothness of score functions, they suffer from the curse of dimensionality for intrinsically high-dimensional data. Th...
Saved in:
| Published in | IEEE transactions on information theory Vol. 71; no. 4; pp. 2930 - 2954 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
IEEE
01.04.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9448 1557-9654 |
| DOI | 10.1109/TIT.2025.3535923 |
Cover
| Abstract | We investigate the efficiency of deep neural networks for approximating scoring functions in diffusion-based generative modeling. While existing approximation theories leverage the smoothness of score functions, they suffer from the curse of dimensionality for intrinsically high-dimensional data. This limitation is pronounced in graphical models such as Markov random fields, where the approximation efficiency of score functions remains unestablished. To address this, we note score functions can often be well-approximated in graphical models through variational inference denoising algorithms. Furthermore, these algorithms can be efficiently represented by neural networks. We demonstrate this through examples, including Ising models, conditional Ising models, restricted Boltzmann machines, and sparse encoding models. Combined with off-the-shelf discretization error bounds for diffusion-based sampling, we provide an efficient sample complexity bound for diffusion-based generative modeling when the score function is learned by deep neural networks. |
|---|---|
| AbstractList | We investigate the efficiency of deep neural networks for approximating scoring functions in diffusion-based generative modeling. While existing approximation theories leverage the smoothness of score functions, they suffer from the curse of dimensionality for intrinsically high-dimensional data. This limitation is pronounced in graphical models such as Markov random fields, where the approximation efficiency of score functions remains unestablished. To address this, we note score functions can often be well-approximated in graphical models through variational inference denoising algorithms. Furthermore, these algorithms can be efficiently represented by neural networks. We demonstrate this through examples, including Ising models, conditional Ising models, restricted Boltzmann machines, and sparse encoding models. Combined with off-the-shelf discretization error bounds for diffusion-based sampling, we provide an efficient sample complexity bound for diffusion-based generative modeling when the score function is learned by deep neural networks. |
| Author | Wu, Yuchen Mei, Song |
| Author_xml | – sequence: 1 givenname: Song orcidid: 0000-0003-1713-2408 surname: Mei fullname: Mei, Song email: songmei@berkeley.edu organization: Department of Statistics, Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, CA, USA – sequence: 2 givenname: Yuchen orcidid: 0000-0002-9538-4558 surname: Wu fullname: Wu, Yuchen email: wuyc14@wharton.upenn.edu organization: Department of Statistics and Data Science, Wharton School, University of Pennsylvania, Philadelphia, PA, USA |
| BookMark | eNpNkD1PwzAQhi0EEm1hZ2DwH0jxR5zYbFVb2koFBsocucm5NSR2ZAeh_nsStQPT3el93hueMbp23gFCD5RMKSXqabfZTRlhYsoFF4rxKzSiQuSJykR6jUaEUJmoNJW3aBzjV3-mgrIROi0AWvwG3a8P3xHriBfgvI3WHfCsPvhgu2MTn_GHbtoakqUxtrTgOrwFHdxAeYMX1pifaL3Dr76COmLr8NoejsnCNuCGQNd4FXR7tGW_naE7dGN0HeH-Mifo82W5m6-T7ftqM59tk5LRvEsUVxrSnKg9LQmncr9PwQieE1apquKZyogmjFVGZmVFmCKMSiWlAqGIKXPNJ4ic_5bBxxjAFG2wjQ6ngpJiUFf06opBXXFR11cezxULAP9wKXJOc_4HiWJtHA |
| CODEN | IETTAW |
| Cites_doi | 10.1109/CVPR52688.2022.01042 10.1080/01621459.2017.1285773 10.1145/383952.384042 10.1214/aoms/1177706964 10.1137/0222066 10.1080/14786437708235992 10.1073/pnas.1802705116 10.1016/S0893-6080(09)80018-X 10.1109/ICCV.2015.179 10.1017/S0962492900002919 10.1093/acprof:oso/9780198570837.001.0001 10.1109/18.256500 10.1109/FOCS54457.2022.00038 10.1007/s00039-013-0214-y 10.5555/3104322.3104374 10.24963/ijcai.2023/751 10.1109/CVPR.2018.00196 10.1561/2200000001 10.1007/BF02551274 10.1007/s00039-018-0461-z 10.1109/TPAMI.2023.3261988 10.1561/2200000092 10.1017/9781108627771 10.1214/23-aop1675 10.1109/CVPR.2016.90 10.1007/s00440-009-0240-8 10.1088/1742-5468/ab4bbb 10.1007/s00365-010-9105-8 10.1073/pnas.0909892106 10.1023/A:1007665907178 10.1109/FOCS.2017.39 10.1145/1273496.1273577 10.1214/20-aop1443 10.1007/s00440-018-0845-x 10.1016/j.neunet.2017.07.002 10.1109/ALLERTON.2016.7852290 10.1145/1553374.1553505 10.1103/PhysRevLett.35.1792 10.1145/3501714.3501727 10.1007/3-540-45435-7_4 10.1007/s00440-021-01085-x 10.1109/MSP.2020.3016905 10.1016/0893-6080(89)90020-8 10.1016/j.aim.2016.05.017 10.1109/TSP.2017.2708040 10.1017/S0962492921000052 10.1088/0305-4470/15/6/035 10.1109/ISIT54713.2023.10206572 10.1088/1742-5468/acf8ba 10.1016/j.anihpb.2005.04.001 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TIT.2025.3535923 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1557-9654 |
| EndPage | 2954 |
| ExternalDocumentID | 10_1109_TIT_2025_3535923 10857317 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Office of Naval Research (ONR) grantid: N00014-24-S-B001 – fundername: Amazon Research Award funderid: 10.13039/100000006 – fundername: NSF grantid: DMS-2210827; CCF-2315725 – fundername: Faculty Early Career Development Program (CAREER) grantid: DMS-2339904 – fundername: Google Research Scholar Award |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACGOD ACIWK AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 VJK AAYXX CITATION |
| ID | FETCH-LOGICAL-c217t-939ae4709b1c0318bb4ef53702d9dd36960a022df86cd02902189889e590fc7a3 |
| IEDL.DBID | RIE |
| ISSN | 0018-9448 |
| IngestDate | Wed Oct 01 06:40:26 EDT 2025 Wed Aug 27 01:38:45 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c217t-939ae4709b1c0318bb4ef53702d9dd36960a022df86cd02902189889e590fc7a3 |
| ORCID | 0000-0003-1713-2408 0000-0002-9538-4558 |
| PageCount | 25 |
| ParticipantIDs | crossref_primary_10_1109_TIT_2025_3535923 ieee_primary_10857317 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-01 |
| PublicationDateYYYYMMDD | 2025-04-01 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on information theory |
| PublicationTitleAbbrev | TIT |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref56 Chen (ref23) 2023 Liu (ref77) 2022 ref58 ref53 ref52 Austin (ref7) Celentano (ref85) 2021 Talagrand (ref47) 2003; 46 Marwah (ref78) Sohl-Dickstein (ref1) ref51 Chen (ref60) Bai (ref75) 2023 Popov (ref8) ref42 Chen (ref15) ref41 Fan (ref38) 2022 ref43 Giannou (ref76) 2023 Hoogeboom (ref89); 162 ref49 Papyan (ref96) 2017; 18 Marwah (ref79) Song (ref3) Eldan (ref63) Geman (ref24) Dhariwal (ref5); 34 DeVore (ref73) 2021; 30 ref35 Yuan (ref20) 2023 Ramesh (ref6) 2022 ref37 Chen (ref98) ref31 Cybenko (ref64) 1989; 2 Pinkus (ref67) 1999; 8 ref30 ref33 ref32 Ho (ref2); 33 ref39 Montanari (ref55) 2023 Ghorbani (ref36) Wainwright (ref40) 2019 Blei (ref82) 2017; 112 Eldan (ref44) 2018; 28 Lee (ref16) ref26 ref25 Minka (ref81) 2013 ref21 Hornik (ref65) 1989; 2 ref28 Celentano (ref86) 2023 ref27 Mukherjee (ref46) 2021; 23 ref29 Sherrington (ref34) 1975; 35 Bach (ref72) 2014; 18 Ma (ref97) (ref9) 2022 Chen (ref61) ref13 Benton (ref18) 2023 Chatterjee (ref48) 2010; 148 ref99 ref10 Vignac (ref90) 2022 Oko (ref22) 2023 Ghio (ref102) 2023 Shah (ref19) 2023 Wei (ref74) ref93 Blei (ref57) 2003; 3 ref92 ref95 ref94 ref88 ref87 Chen (ref14) 2022 Yang (ref12) 2022 Montanari (ref54) 2023 Yarotsky (ref70) 2017; 94 Chen (ref62) 2023 ref84 ref83 ref80 ref104 ref105 Hornik (ref66) 1993; 6 ref103 Saharia (ref11); 35 Yu (ref100) 2023 Liu (ref59) 2022 ref71 Niu (ref91) DeVore (ref68) 2011; 33 Yu (ref101) 2023 Song (ref4) 2020 E (ref69) 2019 Jain (ref45); 75 Li (ref17) 2023 Wu (ref50) 2023 |
| References_xml | – year: 2023 ident: ref19 article-title: Learning mixtures of Gaussians using the DDPM objective publication-title: arXiv:2307.01178 – start-page: 2984 volume-title: Proc. Conf. Learn. Theory ident: ref60 article-title: Improved analysis for a proximal algorithm for sampling – year: 2023 ident: ref76 article-title: Looped transformers as programmable computers publication-title: arXiv:2301.13196 – start-page: 4462 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref61 article-title: Restoration-degradation beyond linear diffusions: A non-asymptotic analysis for DDIM-type samplers – ident: ref10 doi: 10.1109/CVPR52688.2022.01042 – volume: 112 start-page: 859 issue: 518 year: 2017 ident: ref82 article-title: Variational inference: A review for statisticians publication-title: J. Amer. Stat. Assoc. doi: 10.1080/01621459.2017.1285773 – year: 2023 ident: ref23 article-title: Score approximation, estimation and distribution recovery of diffusion models on low-dimensional data publication-title: arXiv:2302.07194 – year: 2023 ident: ref55 article-title: Sampling, diffusions, and stochastic localization publication-title: arXiv:2305.10690 – ident: ref26 doi: 10.1145/383952.384042 – ident: ref27 doi: 10.1214/aoms/1177706964 – volume: 18 start-page: 629 issue: 1 year: 2014 ident: ref72 article-title: Breaking the curse of dimensionality with convex neural networks publication-title: J. Mach. Learn. Res. – start-page: 946 volume-title: Proc. Int. Conf. Algorithmic Learn. Theory ident: ref16 article-title: Convergence of score-based generative modeling for general data distributions – ident: ref33 doi: 10.1137/0222066 – ident: ref35 doi: 10.1080/14786437708235992 – volume: 46 volume-title: Spin Glasses: A Challenge for Mathematicians: Cavity and Mean Field Models year: 2003 ident: ref47 – start-page: 4246 volume-title: Proc. ICM ident: ref63 article-title: Analysis of high-dimensional distributions using pathwise methods – year: 2013 ident: ref81 article-title: Expectation propagation for approximate Bayesian inference publication-title: arXiv:1301.2294 – start-page: 11918 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref3 article-title: Generative modeling by estimating gradients of the data distribution – volume: 33 start-page: 6840 volume-title: Proc. NIPS ident: ref2 article-title: Denoising diffusion probabilistic models – volume: 23 start-page: 13703 issue: 1 year: 2021 ident: ref46 article-title: Variational inference in high-dimensional linear regression publication-title: J. Mach. Learn. Res. – start-page: 1202 volume-title: Proc. 30th ACM Int. Conf. Inf. Knowl. Manage. ident: ref97 article-title: A unified view on graph neural networks as graph signal denoising – year: 2022 ident: ref6 article-title: Hierarchical text-conditional image generation with CLIP latents publication-title: arXiv:2204.06125 – start-page: 8599 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref8 article-title: Grad-TTS: A diffusion probabilistic model for text-to-speech – year: 2023 ident: ref62 article-title: The probability flow ODE is provably fast publication-title: arXiv:2305.11798 – ident: ref87 doi: 10.1073/pnas.1802705116 – volume: 3 start-page: 993 year: 2003 ident: ref57 article-title: Latent Dirichlet allocation publication-title: J. Mach. Learn. Res. – start-page: 2221 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref36 article-title: An instability in variational inference for topic models – volume: 6 start-page: 1069 issue: 8 year: 1993 ident: ref66 article-title: Some new results on neural network approximation publication-title: Neural Netw. doi: 10.1016/S0893-6080(09)80018-X – year: 2023 ident: ref100 article-title: White-box transformers via sparse rate reduction publication-title: arXiv:2306.01129 – ident: ref94 doi: 10.1109/ICCV.2015.179 – year: 2023 ident: ref50 article-title: Thouless–Anderson-palmer equations for the multi-species Sherrington–Kirkpatrick model publication-title: arXiv:2308.09099 – volume: 8 start-page: 143 year: 1999 ident: ref67 article-title: Approximation theory of the MLP model in neural networks publication-title: Acta Numerica doi: 10.1017/S0962492900002919 – ident: ref32 doi: 10.1093/acprof:oso/9780198570837.001.0001 – volume: 162 start-page: 8867 volume-title: Proc. 39th Int. Conf. Mach. Learn. ident: ref89 article-title: Equivariant diffusion for molecule generation in 3D – ident: ref71 doi: 10.1109/18.256500 – ident: ref31 doi: 10.1109/FOCS54457.2022.00038 – start-page: 4735 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref15 article-title: Improved analysis of score-based generative modeling: User-friendly bounds under minimal smoothness assumptions – start-page: 24139 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref79 article-title: Neural network approximations of PDEs beyond linearity: A representational perspective – ident: ref53 doi: 10.1007/s00039-013-0214-y – year: 2019 ident: ref69 article-title: The Barron space and the flow-induced function spaces for neural network models publication-title: arXiv:1906.08039 – year: 2023 ident: ref102 article-title: Sampling with flows, diffusion and autoregressive neural networks: A spin-glass perspective publication-title: arXiv:2308.14085 – start-page: 12071 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref74 article-title: Statistically meaningful approximation: A case study on approximating Turing machines with transformers – ident: ref93 doi: 10.5555/3104322.3104374 – ident: ref92 doi: 10.24963/ijcai.2023/751 – year: 2020 ident: ref4 article-title: Score-based generative modeling through stochastic differential equations publication-title: arXiv:2011.13456 – year: 2023 ident: ref18 article-title: Nearly d-linear convergence bounds for diffusion models via stochastic localization publication-title: arXiv:2308.03686 – ident: ref95 doi: 10.1109/CVPR.2018.00196 – ident: ref28 doi: 10.1561/2200000001 – volume: 2 start-page: 303 issue: 4 year: 1989 ident: ref64 article-title: Approximation by superpositions of a sigmoidal function publication-title: Math. Control, Signals, Syst. doi: 10.1007/BF02551274 – year: 2023 ident: ref20 article-title: Reward-directed conditional diffusion: Provable distribution estimation and reward improvement publication-title: arXiv:2307.07055 – volume: 28 start-page: 1548 issue: 6 year: 2018 ident: ref44 article-title: Gaussian-width gradient complexity, reverse log-Sobolev inequalities and nonlinear large deviations publication-title: Geometric Funct. Anal. doi: 10.1007/s00039-018-0461-z – start-page: 2 volume-title: Proc. Int. Congr. Mathematicians ident: ref24 article-title: Markov random field image models and their applications to computer vision – ident: ref13 doi: 10.1109/TPAMI.2023.3261988 – year: 2022 ident: ref77 article-title: Transformers learn shortcuts to automata publication-title: arXiv:2210.10749 – ident: ref84 doi: 10.1561/2200000092 – volume-title: High-Dimensional Statistics: A Non-Asymptotic Viewpoint year: 2019 ident: ref40 doi: 10.1017/9781108627771 – start-page: 9079 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref98 article-title: Theoretical linear convergence of unfolded ISTA and its practical weights and thresholds – ident: ref52 doi: 10.1214/23-aop1675 – volume: 34 start-page: 8780 volume-title: Proc. NIPS ident: ref5 article-title: Diffusion models beat GANs on image synthesis – start-page: 17981 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref7 article-title: Structured denoising diffusion models in discrete state-spaces – ident: ref30 doi: 10.1109/CVPR.2016.90 – year: 2022 ident: ref38 article-title: TAP equations for orthogonally invariant spin glasses at high temperature publication-title: arXiv:2202.09325 – volume: 148 start-page: 567 issue: 3 year: 2010 ident: ref48 article-title: Spin glasses and Stein’s method publication-title: Probab. Theory Rel. Fields doi: 10.1007/s00440-009-0240-8 – year: 2023 ident: ref22 article-title: Diffusion models are minimax optimal distribution estimators publication-title: arXiv:2303.01861 – year: 2022 ident: ref12 article-title: Diffusion models: A comprehensive survey of methods and applications publication-title: arXiv:2209.00796 – ident: ref104 doi: 10.1088/1742-5468/ab4bbb – volume-title: OpenAI Announces DALL-E 2 year: 2022 ident: ref9 – volume: 33 start-page: 125 issue: 1 year: 2011 ident: ref68 article-title: Approximation of functions of few variables in high dimensions publication-title: Constructive Approximation doi: 10.1007/s00365-010-9105-8 – year: 2023 ident: ref17 article-title: Towards faster non-asymptotic convergence for diffusion-based generative models publication-title: arXiv:2306.09251 – ident: ref83 doi: 10.1073/pnas.0909892106 – volume: 18 start-page: 2887 issue: 1 year: 2017 ident: ref96 article-title: Convolutional neural networks analyzed via convolutional sparse coding publication-title: J. Mach. Learn. Res. – year: 2022 ident: ref90 article-title: DiGress: Discrete denoising diffusion for graph generation publication-title: arXiv:2209.14734 – year: 2021 ident: ref85 article-title: Local convexity of the TAP free energy and AMP convergence for Z2-synchronization publication-title: arXiv:2106.11428 – ident: ref29 doi: 10.1023/A:1007665907178 – ident: ref41 doi: 10.1109/FOCS.2017.39 – ident: ref58 doi: 10.1145/1273496.1273577 – ident: ref37 doi: 10.1214/20-aop1443 – ident: ref51 doi: 10.1007/s00440-018-0845-x – volume: 35 start-page: 36479 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref11 article-title: Photorealistic text-to-image diffusion models with deep language understanding – volume: 94 start-page: 103 year: 2017 ident: ref70 article-title: Error bounds for approximations with deep ReLU networks publication-title: Neural Netw. doi: 10.1016/j.neunet.2017.07.002 – ident: ref88 doi: 10.1109/ALLERTON.2016.7852290 – start-page: 15044 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref78 article-title: Parametric complexity bounds for approximating PDEs with neural networks – ident: ref25 doi: 10.1145/1553374.1553505 – volume: 35 start-page: 1792 issue: 26 year: 1975 ident: ref34 article-title: Solvable model of a spin-glass publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.35.1792 – volume: 75 start-page: 1326 volume-title: Proc. Conf. Learn. Theory ident: ref45 article-title: The mean-field approximation: Information inequalities, algorithms, and complexity – ident: ref80 doi: 10.1145/3501714.3501727 – year: 2023 ident: ref86 article-title: Mean-field variational inference with the TAP free energy: Geometric and statistical properties in linear models publication-title: arXiv:2311.08442 – ident: ref39 doi: 10.1007/3-540-45435-7_4 – ident: ref105 doi: 10.1007/s00440-021-01085-x – ident: ref42 doi: 10.1109/MSP.2020.3016905 – year: 2023 ident: ref101 article-title: Emergence of segmentation with minimalistic white-box transformers publication-title: arXiv:2308.16271 – volume: 2 start-page: 359 issue: 5 year: 1989 ident: ref65 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Netw. doi: 10.1016/0893-6080(89)90020-8 – ident: ref43 doi: 10.1016/j.aim.2016.05.017 – year: 2023 ident: ref54 article-title: Posterior sampling in high dimension via diffusion processes publication-title: arXiv:2304.11449 – ident: ref99 doi: 10.1109/TSP.2017.2708040 – year: 2022 ident: ref59 article-title: Let us build bridges: Understanding and extending diffusion generative models publication-title: arXiv:2208.14699 – start-page: 4474 volume-title: Proc. Int. Conf. Artif. Intell. Statist. ident: ref91 article-title: Permutation invariant graph generation via score-based generative modeling – volume: 30 start-page: 327 year: 2021 ident: ref73 article-title: Neural network approximation publication-title: Acta Numerica doi: 10.1017/S0962492921000052 – ident: ref103 doi: 10.1088/0305-4470/15/6/035 – start-page: 2256 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref1 article-title: Deep unsupervised learning using nonequilibrium thermodynamics – ident: ref56 doi: 10.1109/ISIT54713.2023.10206572 – year: 2022 ident: ref14 article-title: Sampling is as easy as learning the score: Theory for diffusion models with minimal data assumptions publication-title: arXiv:2209.11215 – ident: ref21 doi: 10.1088/1742-5468/acf8ba – ident: ref49 doi: 10.1016/j.anihpb.2005.04.001 – year: 2023 ident: ref75 article-title: Transformers as statisticians: Provable in-context learning with in-context algorithm selection publication-title: arXiv:2306.04637 |
| SSID | ssj0014512 |
| Score | 2.4982872 |
| Snippet | We investigate the efficiency of deep neural networks for approximating scoring functions in diffusion-based generative modeling. While existing approximation... |
| SourceID | crossref ieee |
| SourceType | Index Database Publisher |
| StartPage | 2930 |
| SubjectTerms | Approximation algorithms Computational modeling Diffusion model Diffusion models graphical model Graphical models Inference algorithms Mathematical models Noise reduction residual neural network Residual neural networks Risk minimization |
| Title | Deep Networks as Denoising Algorithms: Sample-Efficient Learning of Diffusion Models in High-Dimensional Graphical Models |
| URI | https://ieeexplore.ieee.org/document/10857317 |
| Volume | 71 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9654 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014512 issn: 0018-9448 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELaACQaeRbzlgYXBbRrHcY4N0ZaHRBeKxBbFsQ0VJUE0HeDX44tTVJCQ2KLEUSzfOb7n9xFyGocyllnXMq4BWBRGmoFIFOM2AaOkkbIGcb0bxtcP0e2jeGya1eteGGNMXXxm2nhZ5_J1mc8wVNbBSnnpDrxlsiyT2DdrfacMItH10OBdt4Od0zHPSQbQGd2MnCcYijYXXEDIf5xBC6Qq9Zky2CDD-Wx8KclLe1apdv75C6jx39PdJOuNdUkvvDpskSVTbJONOXMDbTbyNllbgCHcIR89Y97o0BeET2k2pT1TlGOMItCLyVP5Pq6eX6fn9D5DKGHWr1En3KdpA876REtLe2NrZxh6o0ivNpnScUGxiIT1kD_AY3_QK4THRrVoBrXIw6A_urxmDSUDy53vUjHgkJlIBqC6Of4OlIqMFVwGoQatkRswyJxVoG0S5zoIAS0ISJzYBQQ2lxnfJStFWZg9QhMRxhKy0HJhIgU2izHFC6By90ArtU_O5kJK3zzyRlp7LAGkTqApCjRtBLpPWrj8C-P8yh_8cf-QrOLrvgLniKxU7zNz7IyLSp3USvUFUR_LKQ |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5ROLQcyqNUpQ_wgUsPXrKxHWd6Q11gaWEvXSRuURzbsCpNEJs90F9fT5yttpUq9RYlVmJ5xvE8vw_gKEt1psuh58IicplKy1HlhgufozPaad2BuF5NsvG1_HKjbvpm9a4XxjnXFZ-5AV12uXzbVAsKlR1TpbwOB94z2FBSShXbtX4nDaQaRnDwYdjDwe1YZiUTPJ5eTIMvmKqBUEJhKv44hVZoVbpT5WwLJsv5xGKS74NFawbVz7-gGv97wtvwsrcv2UlUiB1Yc_UubC25G1i_lXdhcwWI8BU8jZx7YJNYEj5n5ZyNXN3MKI7ATu5vm8dZe_dj_ol9KwlMmJ92uBPh06yHZ71ljWejmfcLCr4xIli7n7NZzaiMhI-IQSCif7BzAsgmxegH7cH12en085j3pAy8Ct5Ly1Fg6aRO0Awr-iEYI51XQiepRWuJHTApg11gfZ5VNkmRbAjMg-AVJr7SpXgN63VTuzfAcpVmGsvUC-WkQV9mlORFNFV4YI3Zh49LIRUPEXuj6HyWBIsg0IIEWvQC3Yc9Wv6VcXHl3_7j_iE8H0-vLovLi8nXd_CCXhXrcd7Devu4cB-CqdGag07BfgEfvs52 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Networks+as+Denoising+Algorithms%3A+Sample-Efficient+Learning+of+Diffusion+Models+in+High-Dimensional+Graphical+Models&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Mei%2C+Song&rft.au=Wu%2C+Yuchen&rft.date=2025-04-01&rft.pub=IEEE&rft.issn=0018-9448&rft.volume=71&rft.issue=4&rft.spage=2930&rft.epage=2954&rft_id=info:doi/10.1109%2FTIT.2025.3535923&rft.externalDocID=10857317 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon |