Improving the segmentation of the vertebrae using a multi-stage machine learning algorithm

The health of the spine is an integral part of human health because the spine itself plays one of the key roles in human health, and diseases such as osteoporosis, vertebral injuries, herniated intervertebral discs, and other diseases can not only complicate a person's life but also have seriou...

Full description

Saved in:
Bibliographic Details
Published inRadìoelektronnì ì komp'ûternì sistemi (Online) Vol. 2024; no. 4; pp. 83 - 90
Main Author Koniukhov, Vladyslav
Format Journal Article
LanguageEnglish
Published National Aerospace University «Kharkiv Aviation Institute 21.11.2024
Subjects
Online AccessGet full text
ISSN1814-4225
2663-2012
2663-2012
DOI10.32620/reks.2024.4.07

Cover

Abstract The health of the spine is an integral part of human health because the spine itself plays one of the key roles in human health, and diseases such as osteoporosis, vertebral injuries, herniated intervertebral discs, and other diseases can not only complicate a person's life but also have serious consequences. The use of X-ray images to diagnose spinal diseases plays a key role in diagnosis. Diagnosis of diseases with the help of X-rays is the most popular and cheapest option for patients to detect pathologies and diseases. The subjects of this article are algorithms for the segmentation of X-ray images of various qualities. The aim is to research the possibility of improving segmentation of vertebrae:  Th8, Th9, Th10, Th11 using a multi-stage method of segmentation of the spine using machine learning to improve the accuracy of automation of vertebrae segmentation. Task: train a neural network that will segment the incoming X-ray image and produce a mask of the area of four vertebrae at the output; train a neural network that will segment each vertebra in the area found at the previous stage; cut out a section with one vertebra and train a neural network that will segment it; create an algorithm that, based on three previously trained neural networks, will segment vertebrae on an X-ray image. The following methods were used: a multi-stage approach using machine learning. The following results were obtained: thanks to segmentation in several stages, it was possible to reduce the region of interest, thereby removing unnecessary background when using segmentation. Using this algorithm for 48 vertebrae, an average improvement in segmentation accuracy of 4.83% was obtained. Conclusions. In this research, a multi-stage algorithm was proposed, and an improvement in the accuracy of segmentation of X-ray images in the lateral projection, namely the accuracy of all four vertebrae: Th8, Th9, Th10, Th11 - was obtained. The results demonstrate that the use of this method gives a better result than the usual segmentation of the input image.
AbstractList The health of the spine is an integral part of human health because the spine itself plays one of the key roles in human health, and diseases such as osteoporosis, vertebral injuries, herniated intervertebral discs, and other diseases can not only complicate a person's life but also have serious consequences. The use of X-ray images to diagnose spinal diseases plays a key role in diagnosis. Diagnosis of diseases with the help of X-rays is the most popular and cheapest option for patients to detect pathologies and diseases. The subjects of this article are algorithms for the segmentation of X-ray images of various qualities. The aim is to research the possibility of improving segmentation of vertebrae:  Th8, Th9, Th10, Th11 using a multi-stage method of segmentation of the spine using machine learning to improve the accuracy of automation of vertebrae segmentation. Task: train a neural network that will segment the incoming X-ray image and produce a mask of the area of four vertebrae at the output; train a neural network that will segment each vertebra in the area found at the previous stage; cut out a section with one vertebra and train a neural network that will segment it; create an algorithm that, based on three previously trained neural networks, will segment vertebrae on an X-ray image. The following methods were used: a multi-stage approach using machine learning. The following results were obtained: thanks to segmentation in several stages, it was possible to reduce the region of interest, thereby removing unnecessary background when using segmentation. Using this algorithm for 48 vertebrae, an average improvement in segmentation accuracy of 4.83% was obtained. Conclusions. In this research, a multi-stage algorithm was proposed, and an improvement in the accuracy of segmentation of X-ray images in the lateral projection, namely the accuracy of all four vertebrae: Th8, Th9, Th10, Th11 - was obtained. The results demonstrate that the use of this method gives a better result than the usual segmentation of the input image.
Author Koniukhov, Vladyslav
Author_xml – sequence: 1
  givenname: Vladyslav
  orcidid: 0009-0007-0256-1388
  surname: Koniukhov
  fullname: Koniukhov, Vladyslav
BookMark eNqFkD1PwzAURS0EEqV0Zs0fSGs_O7EzooqPSpVYYGGxHPslTUniyk6L-u9pU8TK9KT77jnDvSPXve-RkAdG5xxyoIuAX3EOFMRczKm8IhPIc54CZXBNJkwxkQqA7JbMYtxSSkHJjEk1IZ-rbhf8oenrZNhgErHusB_M0Pg-8dWYHTAMWAaDyT6eeybp9u3QpHEwNSadsZumx6RFE_rx3dY-NMOmuyc3lWkjzn7vlHw8P70vX9P128tq-bhOLTApU6lKDmWeAZRS5VaioY7JImOltY474QpnhMWi5KoCp3iuuLJZhVwySVlZ8ClZXbzOm63ehaYz4ai9afQY-FBrE4bGtqgZQ6jyQkBhjSiAK4pZ5ipVOUVPdnZy0Ytr3-_M8du07Z-QUT1Orc9T6_PUWmgqT8jigtjgYwxY_Uv8AFa1hCM
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.32620/reks.2024.4.07
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2663-2012
EndPage 90
ExternalDocumentID oai_doaj_org_article_11e2f69429ca492380e55df8fd808f21
10.32620/reks.2024.4.07
10_32620_reks_2024_4_07
GroupedDBID 9MQ
AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
ADTOC
UNPAY
ID FETCH-LOGICAL-c2177-78b32b6522b786c7ea0d17951bccd3d4d9da4ce9b38f2d836838c5fe371701b93
IEDL.DBID UNPAY
ISSN 1814-4225
2663-2012
IngestDate Fri Oct 03 12:50:33 EDT 2025
Mon Sep 15 08:22:51 EDT 2025
Tue Jul 01 04:08:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License cc-by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2177-78b32b6522b786c7ea0d17951bccd3d4d9da4ce9b38f2d836838c5fe371701b93
ORCID 0009-0007-0256-1388
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.32620/reks.2024.4.07
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_11e2f69429ca492380e55df8fd808f21
unpaywall_primary_10_32620_reks_2024_4_07
crossref_primary_10_32620_reks_2024_4_07
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-21
PublicationDateYYYYMMDD 2024-11-21
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-21
  day: 21
PublicationDecade 2020
PublicationTitle Radìoelektronnì ì komp'ûternì sistemi (Online)
PublicationYear 2024
Publisher National Aerospace University «Kharkiv Aviation Institute
Publisher_xml – name: National Aerospace University «Kharkiv Aviation Institute
SSID ssj0002875178
ssib044757823
ssib052605930
ssib038076033
Score 2.2773578
Snippet The health of the spine is an integral part of human health because the spine itself plays one of the key roles in human health, and diseases such as...
SourceID doaj
unpaywall
crossref
SourceType Open Website
Open Access Repository
Index Database
StartPage 83
SubjectTerms artificial intelligence
image recognition
image segmentation, computer vision
machine learning
neural network
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqLpQDAgrqUkA-cGgPgfgRxzkCAq2Q6KkroV6i2B5vW3azaLsI8e-ZccIqNy4c4zxG-TLxzNgz3zB26jxZ8TxmufQYoChQmfNaZV4Ir6NoZBGowPnupxlP9O19cT9o9UU5YR09cAfcuRAgo6lw2vQNkYnZHAq838ZgcxtTCbnMbTUIplCTiEXdDPbniNUOTeH6uCAv_q0H4L-0xFQWIk3baPF0plHLOx4gRYTt50t4IGpvqc_0GTWeHZiwxPS_xTaf2sfm5bmZzQbm6WaHbfd-Jb_o3meXfYJ2j20N2Aa_sN_rBQSOXh__D9N5X3jU8kVMY9ScmXaSgVM-_JQ3PCUcZuhCToHPU-Il8L7TBJ6eTRfLv6s_8302ubn-dTXO-tYKmccYpMxK65R0Bp0vV1rjS2jygL9mIZz3QQUdqtBoD5VTiHGwylhlKS9NlcTf7ip1wDbaRQtfGQcRYw5QGBBKB5CNjgYMhU0ow0k7Yt_f0KofOwaNGiOPBGxNwNYEbK3rvByxS0JzfRlRX6cBVIi6V4j6PYUYsR_rb_GewMOPEPiNfaYHUoGiFEdsY7V8gmP0VFbuJCnlK6pX3xE
  priority: 102
  providerName: Directory of Open Access Journals
Title Improving the segmentation of the vertebrae using a multi-stage machine learning algorithm
URI https://doi.org/10.32620/reks.2024.4.07
https://doaj.org/article/11e2f69429ca492380e55df8fd808f21
UnpaywallVersion publishedVersion
Volume 2024
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2663-2012
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002875178
  issn: 2663-2012
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2663-2012
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib044757823
  issn: 1814-4225
  databaseCode: M~E
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB5V6aH0AJSHSIHKBw5w2LB-rNc5FkQVVWrVA5FaLqu1PQ6oyaYKiSr49cxstlGKkIDbymutrZmxZr71zDcAb3xgL56nLFeBAIpGnflgdBakDCbJWhWRC5zPzu1obE4vi8uOJIlrYbbu7zVzpb9f4DWzaiszMAOuGt-1BQXdPdgdn18cXzGcctJkRrXtVcnbaNK7VGsSnz994Z7_aWn692Fv1dzUP27r6XTLt5w8gtHdrtYpJdeD1dIPws_fCBv_YduP4WEXX4rjtUEcwA42T2B_i3XwKXzZ_EgQFP2J7ziZdQVIjZindoybNPONMgrOi5-IWrSJhxmFkhMUszYBE0XXcYJeTyfzxbfl19kzGJ98-vxxlHUtFrJAWKTMSue18paCMF86G0qs80hHtJA-hKijicNYm4BDr11S0WnrtOP8NF0yj7sf6ufQa-YNvgCBMqUcsbAotYmoapMsWoZPtIZXrg9v7wRf3ayZNCpCIK24KhZXxeKqTJWXffjAitlMYwrsdoBEXHUniqALqmSH5E9DzSxzLseCDMul6HLarOzDu41a_7bg4X_MfQkP-JnrEZV8Bb3lYoWvKTBZ-qMW0B91pvkLNo3d8w
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB6h9AA9UJ4ibUE-cIDDhvVjvc6xRVQREhUHIhUuq7U9DlWTTZUmqtpf35nNNgoICbitvNbamhlrvlnPfAPw1gf24nnKchUoQNGoMx-MzoKUwSRZqyJygfOXUzsam89nxVlHksS1MFv395q50j8s8IJZtZUZmAFXje_YgkB3D3bGp1-PvnM45aTJjGrbq5K30aR3qdYkPn_6wi_-p6Xp34WHq-ayvrmup9Mt33KyB6P7Xa1TSi4Gq6UfhNvfCBv_YdtP4HGHL8XR2iCewgNsnsHuFuvgc_ix-ZEgCP2JK5zMugKkRsxTO8ZNmvlGGQXnxU9ELdrEw4yg5ATFrE3ARNF1nKDX08l8cb78OXsB45NP3z6Osq7FQhYoFimz0nmtvCUQ5ktnQ4l1HumIFtKHEHU0cRhrE3DotUsqOm2ddpyfpkvmcfdD_RJ6zbzBVyBQppQjFhalNhFVbZJFy-ETreGV68O7e8FXl2smjYoikFZcFYurYnFVpsrLPhyzYjbTmAK7HSARV92JotAFVbJD8qehZpY5l2NBhuVSdDltVvbh_Uatf1tw_z_mHsAjfuZ6RCUPobdcrPA1AZOlf9MZ5R0IW9z-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+the+segmentation+of+the+vertebrae+using+a+multi-stage+machine+learning+algorithm&rft.jtitle=Rad%C3%ACoelektronn%C3%AC+%C3%AC+komp%27%C3%BBtern%C3%AC+sistemi+%28Online%29&rft.au=Koniukhov%2C+Vladyslav&rft.date=2024-11-21&rft.issn=1814-4225&rft.eissn=2663-2012&rft.volume=2024&rft.issue=4&rft.spage=83&rft.epage=90&rft_id=info:doi/10.32620%2Freks.2024.4.07&rft.externalDBID=n%2Fa&rft.externalDocID=10_32620_reks_2024_4_07
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1814-4225&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1814-4225&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1814-4225&client=summon