Convolutional Neural Networks for Predicting Power Outages in Baghdad

Power outages are a common and persistent problem in Iraq, significantly impacting various aspects of life and business. These interruptions disrupt routine household tasks and hinder more complex technical operations in industries and services. Emphasizing the need for careful management and proact...

Full description

Saved in:
Bibliographic Details
Published inAl-Nahrain journal for engineering sciences Vol. 28; no. 2; pp. 212 - 223
Main Authors Jawad, Saja Jafar, Al-Shammari, Shaymaa. W.
Format Journal Article
LanguageEnglish
Published Al-Nahrain Journal for Engineering Sciences 19.07.2025
Subjects
Online AccessGet full text
ISSN2521-9154
2521-9162
DOI10.29194/NJES.28020212

Cover

Abstract Power outages are a common and persistent problem in Iraq, significantly impacting various aspects of life and business. These interruptions disrupt routine household tasks and hinder more complex technical operations in industries and services. Emphasizing the need for careful management and proactive solutions. This paper introduces a real-world time series dataset for Baghdad city, including historical outages, weather conditions (such as temperature), and power overloads, and analyzes the correlation among these parameters in different seasons. The research uses this dataset to train one-dimensional Convolutional Neural Networks (1D CNN) to find patterns and relationships that can accurately predict when power outages can happen in the long term and short term to improve the management of the Baghdad electricity grid through data-driven networks. This model was evaluated using performance metrics, and the results show that CNN is accurate in predicting outages in the short term with a Mean Absolute Error (MAE) of (0.0077), whereas, in the long term, it has achieved an MAE of (0.0775). These predictive models have the potential to facilitate the development of proactive measures aimed at reducing the impact of power outages by anticipating potential outages in advance. This research focuses on enhancing the reliability and efficiency of Baghdad's electricity supply, ultimately contributing to economic growth and stability.
AbstractList Power outages are a common and persistent problem in Iraq, significantly impacting various aspects of life and business. These interruptions disrupt routine household tasks and hinder more complex technical operations in industries and services. Emphasizing the need for careful management and proactive solutions. This paper introduces a real-world time series dataset for Baghdad city, including historical outages, weather conditions (such as temperature), and power overloads, and analyzes the correlation among these parameters in different seasons. The research uses this dataset to train one-dimensional Convolutional Neural Networks (1D CNN) to find patterns and relationships that can accurately predict when power outages can happen in the long term and short term to improve the management of the Baghdad electricity grid through data-driven networks. This model was evaluated using performance metrics, and the results show that CNN is accurate in predicting outages in the short term with a Mean Absolute Error (MAE) of (0.0077), whereas, in the long term, it has achieved an MAE of (0.0775). These predictive models have the potential to facilitate the development of proactive measures aimed at reducing the impact of power outages by anticipating potential outages in advance. This research focuses on enhancing the reliability and efficiency of Baghdad's electricity supply, ultimately contributing to economic growth and stability.
Author Al-Shammari, Shaymaa. W.
Jawad, Saja Jafar
Author_xml – sequence: 1
  givenname: Saja Jafar
  surname: Jawad
  fullname: Jawad, Saja Jafar
– sequence: 2
  givenname: Shaymaa. W.
  orcidid: 0000-0003-1720-5486
  surname: Al-Shammari
  fullname: Al-Shammari, Shaymaa. W.
BookMark eNo9kMtOAjEYRhuDiYhsXc8LgL1Pu1SCiiFAoq6bf3oZq-PUdAaJb6-CsjpfvsVZnHM0aFPrEbokeEo10fxq9TB_nFKFKaaEnqAhFZRMNJF0cNyCn6Fx18UKC1ZqrZgcovkstZ-p2fYxtdAUK7_Ne_S7lN-6IqRcbLJ30faxrYtN2vlcrLc91L4rYlvcQP3iwF2g0wBN58d_HKHn2_nT7H6yXN8tZtfLiaWkpBNFlSaBSo6BaxABa185pihY6pgNnkssqQBFRKmxLHEIKnDncCnBWU8qNkKLg9cleDUfOb5D_jIJotkfKdcGch9t4w3lpWYWyiCg4koS8IxrLz0EbQkX5Mc1PbhsTl2XfTj6CDb7pua3qflvyr4BQg5qrw
Cites_doi 10.52339/tjet.vi.767
10.3390/su151612622
10.1109/ACCESS.2019.2926137
10.1117/12.2655121
10.3390/en17061450
10.1109/ACCESS.2024.3400972
10.3390/en14164797
10.1109/ISIE.2017.8001465
10.1109/ACCESS.2021.3060290
10.3390/su152015001
10.1109/ACCESS.2021.3107954
10.37917/ijeee.18.1.14
10.3390/en16062919
10.3390/en15030750
10.1007/s40747-024-01380-9
10.21437/Interspeech.2016-123
10.1155/2020/1428104
10.3390/en16052283
10.3390/computers12050091
10.1088/1742-6596/1988/1/012039
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.29194/NJES.28020212
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2521-9162
EndPage 223
ExternalDocumentID oai_doaj_org_article_24793ca7f5ab4861ae349e6eaf9c1451
10_29194_NJES_28020212
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
ID FETCH-LOGICAL-c2172-82891f2640a49a5f09ebd382ac2d3cfe460625a815790670ff8f4dd076adce1b3
IEDL.DBID DOA
ISSN 2521-9154
IngestDate Wed Aug 27 01:01:24 EDT 2025
Thu Jul 24 02:17:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by-nc/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2172-82891f2640a49a5f09ebd382ac2d3cfe460625a815790670ff8f4dd076adce1b3
ORCID 0000-0003-1720-5486
OpenAccessLink https://doaj.org/article/24793ca7f5ab4861ae349e6eaf9c1451
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_24793ca7f5ab4861ae349e6eaf9c1451
crossref_primary_10_29194_NJES_28020212
PublicationCentury 2000
PublicationDate 2025-07-19
PublicationDateYYYYMMDD 2025-07-19
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-19
  day: 19
PublicationDecade 2020
PublicationTitle Al-Nahrain journal for engineering sciences
PublicationYear 2025
Publisher Al-Nahrain Journal for Engineering Sciences
Publisher_xml – name: Al-Nahrain Journal for Engineering Sciences
References 27645
27667
27646
27668
27665
27644
27666
27649
27647
27648
27660
27663
27664
27661
27662
27656
27657
27654
27655
27658
27659
27652
27653
27650
27651
References_xml – ident: 27644
  doi: 10.52339/tjet.vi.767
– ident: 27657
  doi: 10.3390/su151612622
– ident: 27653
  doi: 10.1109/ACCESS.2019.2926137
– ident: 27666
  doi: 10.1117/12.2655121
– ident: 27661
  doi: 10.3390/en17061450
– ident: 27660
  doi: 10.1109/ACCESS.2024.3400972
– ident: 27645
  doi: 10.3390/en14164797
– ident: 27665
– ident: 27663
– ident: 27667
– ident: 27649
  doi: 10.1109/ISIE.2017.8001465
– ident: 27652
  doi: 10.1109/ACCESS.2021.3060290
– ident: 27646
  doi: 10.3390/su152015001
– ident: 27651
  doi: 10.1109/ACCESS.2021.3107954
– ident: 27656
  doi: 10.37917/ijeee.18.1.14
– ident: 27655
  doi: 10.3390/su151612622
– ident: 27648
  doi: 10.3390/en16062919
– ident: 27659
  doi: 10.3390/en15030750
– ident: 27662
  doi: 10.1007/s40747-024-01380-9
– ident: 27664
  doi: 10.21437/Interspeech.2016-123
– ident: 27650
  doi: 10.1155/2020/1428104
– ident: 27658
  doi: 10.3390/en16052283
– ident: 27647
  doi: 10.3390/computers12050091
– ident: 27668
– ident: 27654
  doi: 10.1088/1742-6596/1988/1/012039
SSID ssib053799836
ssib044751952
ssj0002313533
Score 2.3013036
Snippet Power outages are a common and persistent problem in Iraq, significantly impacting various aspects of life and business. These interruptions disrupt routine...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 212
SubjectTerms Baghdad City
CNN
Deep Learning
Electricity Outage
Title Convolutional Neural Networks for Predicting Power Outages in Baghdad
URI https://doaj.org/article/24793ca7f5ab4861ae349e6eaf9c1451
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07a8MwEBYlUzuUPmn6wkOhkxtLlmxrbIJLCCQNtIFsRtaj7eKUPDr2t_dOdoI7deligxHCfCd039mn7yPkzhnnLCtFSDlzIZesDGVqRZjqVGKbrqqFtMeTZDjjo7mYt6y-sCeslgeugesx_PSjVeqEKnmWUGVjLm1ilZMaXWZx941k1CqmYCWhih2VYpe4RZxCWVE7e_s9GlhNLLzPPBPYowBEolZ0ZBKq-t5klL88sAyoFKPsV8ZqCfv7DPR0RA4b6hg81q98TPZsdUIOWoKCpyQfLKqvZjHBUFTe8Dff6r0KgKAG0yX-msFm52CKDmnB82YNe8oq-KiCvnp7N8qckdlT_joYho1RQqjRXwqPgkvqgNpEikslXCRtaeKMKc1MrJ3lUKUwoTIqUonncpzLHDcmShNltKVlfE461aKyFyRQKdOQ1rSAEHKFxUoWKeOUcwAhjV2X3G_BKD5rPYwC6ggPW4GwFVvYuqSPWO1GoY61fwDRLZroFn9F9_I_Jrki-wxde1EOU16Tznq5sTdAJdblrV81cB1_5z_n9MIe
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convolutional+Neural+Networks+for+Predicting+Power+Outages+in+Baghdad&rft.jtitle=Al-Nahrain+journal+for+engineering+sciences&rft.au=Jawad%2C+Saja+Jafar&rft.au=Al-Shammari%2C+Shaymaa.+W.&rft.date=2025-07-19&rft.issn=2521-9154&rft.eissn=2521-9162&rft.volume=28&rft.issue=2&rft.spage=212&rft.epage=223&rft_id=info:doi/10.29194%2FNJES.28020212&rft.externalDBID=n%2Fa&rft.externalDocID=10_29194_NJES_28020212
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2521-9154&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2521-9154&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2521-9154&client=summon