Machine-learning-driven automatic application of the stochastic subspace identification method

Vibration-based operational modal analysis (OMA) methods have been proven effective in identifying dynamic properties of existing structures and infrastructures under operational conditions. Nevertheless, the provision and installation of continuous monitoring systems for long-term structural health...

Full description

Saved in:
Bibliographic Details
Published inProcedia Structural Integrity Vol. 64; pp. 507 - 514
Main Authors Rosso, Marco Martino, Aloisio, Angelo, Marano, Giuseppe Carlo, Quaranta, Giuseppe
Format Journal Article
LanguageEnglish
Published Elsevier B.V 2024
Subjects
Online AccessGet full text
ISSN2452-3216
2452-3216
DOI10.1016/j.prostr.2024.09.295

Cover

Abstract Vibration-based operational modal analysis (OMA) methods have been proven effective in identifying dynamic properties of existing structures and infrastructures under operational conditions. Nevertheless, the provision and installation of continuous monitoring systems for long-term structural health monitoring (SHM) purposes potentially applicable to the entire infrastructure networks or to the regional scale of existing vulnerable building heritage require significant economic planning efforts. Nowadays research trends are oriented toward developing effective automatic OMA (AOMA) methods for setting up novel and efficient long-term SHM solutions. The current study illustrates a new recent paradigm for the automatic output-only modal identification of linear structures under ambient vibrations called intelligent automatic operational modal analysis (i-AOMA). The proposed approach relies on the covariance-based stochastic subspace identification (SSI-cov) algorithm and effectively integrates a machine learning intelligent core, i.e. a random forest (RF) classifier, in a conceptually two steps procedure, i.e. an explorative phase and an intelligently-driven phase. The i-AOMA procedure provided a new framework that requires a minimum intervention to the user and is potentially able to deliver uncertainty measures of the modal parameters’ estimates based on the explored SSI-cov control parameters. An application on a shear-type RC frame building typical of existing heritage in Italy is herein discussed and reported.
AbstractList Vibration-based operational modal analysis (OMA) methods have been proven effective in identifying dynamic properties of existing structures and infrastructures under operational conditions. Nevertheless, the provision and installation of continuous monitoring systems for long-term structural health monitoring (SHM) purposes potentially applicable to the entire infrastructure networks or to the regional scale of existing vulnerable building heritage require significant economic planning efforts. Nowadays research trends are oriented toward developing effective automatic OMA (AOMA) methods for setting up novel and efficient long-term SHM solutions. The current study illustrates a new recent paradigm for the automatic output-only modal identification of linear structures under ambient vibrations called intelligent automatic operational modal analysis (i-AOMA). The proposed approach relies on the covariance-based stochastic subspace identification (SSI-cov) algorithm and effectively integrates a machine learning intelligent core, i.e. a random forest (RF) classifier, in a conceptually two steps procedure, i.e. an explorative phase and an intelligently-driven phase. The i-AOMA procedure provided a new framework that requires a minimum intervention to the user and is potentially able to deliver uncertainty measures of the modal parameters’ estimates based on the explored SSI-cov control parameters. An application on a shear-type RC frame building typical of existing heritage in Italy is herein discussed and reported.
Author Rosso, Marco Martino
Marano, Giuseppe Carlo
Aloisio, Angelo
Quaranta, Giuseppe
Author_xml – sequence: 1
  givenname: Marco Martino
  surname: Rosso
  fullname: Rosso, Marco Martino
  email: marco.rosso@polito.it
  organization: Department of Structural, Geotechnical and Building Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10128 Turin, Italy
– sequence: 2
  givenname: Angelo
  surname: Aloisio
  fullname: Aloisio, Angelo
  organization: Civil, Environmental and Architectural Engineering Department, Universita’ degli Studi dell’Aquila, Via Giovanni Gronchi 18, L’Aquila, Italy
– sequence: 3
  givenname: Giuseppe Carlo
  surname: Marano
  fullname: Marano, Giuseppe Carlo
  organization: Department of Structural, Geotechnical and Building Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10128 Turin, Italy
– sequence: 4
  givenname: Giuseppe
  surname: Quaranta
  fullname: Quaranta, Giuseppe
  organization: Department of Structural and Geotechnical Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
BookMark eNqNkN1Kw0AQhRepYK19Ay_yAon7l9rcCFL8g4o3eusy2Z01W9JN2N1W-vamRMEr8WoOnPkOM-ecTHznkZBLRgtG2eJqU_ShiykUnHJZ0KrgVXlCplyWPBecLSa_9BmZx7ihlArKKOVsSt6fQTfOY94iBO_8R26C26PPYJe6LSSnM-j71ulBdj7rbJYazGLqdAPx6MZdHXvQmDmDPjn7s7nF1HTmgpxaaCPOv-eMvN3fva4e8_XLw9Pqdp3r4aoyZ5pxyxksSrFcmoqZ64pawaVdGi4sk2C4BIZYL6k1pjZaQm0rUQuUwGtBxYyUY-7O93D4hLZVfXBbCAfFqDr2pDZq7Ekde1K0UkNPAydHTg9eDGj_i92MGA4_7R0GFbVDr9G4gDop07m_A74ASl6JaA
Cites_doi 10.1016/j.ymssp.2023.110669
10.1007/978-1-4939-0767-0
10.1177/1087724X231164648
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.prostr.2024.09.295
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 2452-3216
EndPage 514
ExternalDocumentID 10.1016/j.prostr.2024.09.295
10_1016_j_prostr_2024_09_295
S2452321624008916
GroupedDBID 0R~
0SF
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADVLN
AEXQZ
AFTJW
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
EJD
FDB
KQ8
M41
M~E
NCXOZ
O9-
OK1
ROL
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
ADTOC
UNPAY
ID FETCH-LOGICAL-c2165-1c12f21a65388d91d790f324f8d23f14ad24a1eeb80fddbdc4abf93b3e4a2b303
IEDL.DBID UNPAY
ISSN 2452-3216
IngestDate Sun Oct 26 03:22:39 EDT 2025
Wed Oct 01 06:48:15 EDT 2025
Sat Nov 23 15:54:01 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Keywords Stochastic subspace identification
Machine learning
Operational modal analysis
Random Forest
Language English
License This is an open access article under the CC BY license.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2165-1c12f21a65388d91d790f324f8d23f14ad24a1eeb80fddbdc4abf93b3e4a2b303
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.prostr.2024.09.295
PageCount 8
ParticipantIDs unpaywall_primary_10_1016_j_prostr_2024_09_295
crossref_primary_10_1016_j_prostr_2024_09_295
elsevier_sciencedirect_doi_10_1016_j_prostr_2024_09_295
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024
2024-00-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024
PublicationDecade 2020
PublicationTitle Procedia Structural Integrity
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Mimmi, L. M. “Italy in Front of the Challenge of Infrastructure Maintenance: Existing Issues and Promising Responses.” In: Public Works Management & Policy (2023).
Magalhães, Cunha, Caetano (bib4) 2012; 28
Zhou, Li, Han (bib8) 2022; 148.6
Rainieri, C. and G. Fabbrocino. Operational modal analysis of civil engineering structures. Vol. 142. Springer, (2014).
Kanda, Nakashima, Suzuki, Ogasawara (bib3) 2021; 37.1
Rosso (bib7) 2023; 201
Deng, Wang, Yu (bib1) 2016; 30.2
Di Prisco, M. et al. “Critical infrastructures in Italy: State of the art, case studies, rational approaches to select the intervention priorities.” In: Proceedings of the fib Symposium 2019: Concrete-Innovations in Materials, Design and Structures. International Federation for Structural Concrete. (2019).
Magalhães (10.1016/j.prostr.2024.09.295_bib4) 2012; 28
10.1016/j.prostr.2024.09.295_bib5
10.1016/j.prostr.2024.09.295_bib6
Rosso (10.1016/j.prostr.2024.09.295_bib7) 2023; 201
Deng (10.1016/j.prostr.2024.09.295_bib1) 2016; 30.2
Zhou (10.1016/j.prostr.2024.09.295_bib8) 2022; 148.6
10.1016/j.prostr.2024.09.295_bib2
Kanda (10.1016/j.prostr.2024.09.295_bib3) 2021; 37.1
References_xml – reference: Di Prisco, M. et al. “Critical infrastructures in Italy: State of the art, case studies, rational approaches to select the intervention priorities.” In: Proceedings of the fib Symposium 2019: Concrete-Innovations in Materials, Design and Structures. International Federation for Structural Concrete. (2019).
– reference: Mimmi, L. M. “Italy in Front of the Challenge of Infrastructure Maintenance: Existing Issues and Promising Responses.” In: Public Works Management & Policy (2023).
– reference: Rainieri, C. and G. Fabbrocino. Operational modal analysis of civil engineering structures. Vol. 142. Springer, (2014).
– volume: 30.2
  year: 2016
  ident: bib1
  article-title: “State-of-the-art review on the causes and mechanisms of bridge collapse.”
  publication-title: In: Journal of Performance of Constructed Facilities
– volume: 148.6
  year: 2022
  ident: bib8
  article-title: "Modal identification of civil structures via stochastic subspace algorithm with Monte Carlo–based stabilization diagram"
  publication-title: Journal of Structural Engineering
– volume: 37.1
  year: 2021
  ident: bib3
  article-title: ““q-NAVI”: A case of market-based implementation of structural health monitoring in Japan.”
  publication-title: In: Earthquake Spectra
– volume: 201
  year: 2023
  ident: bib7
  article-title: "Intelligent automatic operational modal analysis"
  publication-title: Mechanical Systems and Signal Processing
– volume: 28
  year: 2012
  ident: bib4
  article-title: “Vibration based structural health monitoring of an arch bridge: From automated OMA to damage detection.”
  publication-title: In: Mechanical Systems and signal processing
– volume: 148.6
  year: 2022
  ident: 10.1016/j.prostr.2024.09.295_bib8
  article-title: "Modal identification of civil structures via stochastic subspace algorithm with Monte Carlo–based stabilization diagram"
  publication-title: Journal of Structural Engineering
– volume: 28
  year: 2012
  ident: 10.1016/j.prostr.2024.09.295_bib4
  article-title: “Vibration based structural health monitoring of an arch bridge: From automated OMA to damage detection.”
  publication-title: In: Mechanical Systems and signal processing
– volume: 30.2
  year: 2016
  ident: 10.1016/j.prostr.2024.09.295_bib1
  article-title: “State-of-the-art review on the causes and mechanisms of bridge collapse.”
  publication-title: In: Journal of Performance of Constructed Facilities
– volume: 37.1
  year: 2021
  ident: 10.1016/j.prostr.2024.09.295_bib3
  article-title: ““q-NAVI”: A case of market-based implementation of structural health monitoring in Japan.”
  publication-title: In: Earthquake Spectra
– volume: 201
  year: 2023
  ident: 10.1016/j.prostr.2024.09.295_bib7
  article-title: "Intelligent automatic operational modal analysis"
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2023.110669
– ident: 10.1016/j.prostr.2024.09.295_bib6
  doi: 10.1007/978-1-4939-0767-0
– ident: 10.1016/j.prostr.2024.09.295_bib5
  doi: 10.1177/1087724X231164648
– ident: 10.1016/j.prostr.2024.09.295_bib2
SSID ssj0003010021
Score 2.245043
Snippet Vibration-based operational modal analysis (OMA) methods have been proven effective in identifying dynamic properties of existing structures and...
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Index Database
Publisher
StartPage 507
SubjectTerms Machine learning
Operational modal analysis
Random Forest
Stochastic subspace identification
Title Machine-learning-driven automatic application of the stochastic subspace identification method
URI https://dx.doi.org/10.1016/j.prostr.2024.09.295
https://doi.org/10.1016/j.prostr.2024.09.295
UnpaywallVersion publishedVersion
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2452-3216
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003010021
  issn: 2452-3216
  databaseCode: KQ8
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2452-3216
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003010021
  issn: 2452-3216
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2452-3216
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003010021
  issn: 2452-3216
  databaseCode: AKRWK
  dateStart: 20160101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61PXjygYoVLTl4NGWTTbLZYxFLUVpELNaLS17rq2xL3UX015t9SRWK9byZJHwJM9-SmW8AOJVU6MCFLUQ1Z4iKkCPFBUZEcF9jEVi_qHofjvhgTC8nbNIAZ3UtzI_3-yIPa55XP-TKnaRQJCUh2wAtzhzzboLWeHTdu8_7x1FGkE8wr6vjVpiuij6bWTKXH-9yOl2KLv1tMKz3VSaVvHazVHX15y_JxnU3vgO2KpoJe-W92AUNm-yBh2GROWlR1SriEZlF7uygzNJZId0Kl96z4SyGjh1Cxw71k8zlnOGb8zLuH9vCZ1MlGZUjyzbU-2Dcv7g9H6CqvwLSDimGsMYkJlhy5_SECbEJQi92BCsWhvgxptIQKrG1SnixMcpoKlUc-sq3VBLlYt8BaCazxB4CyJTh7gsjcciooVowLqU2gfWUm17bNkA17tG8lNGI6vyyl6hEKsqRirwwcki1QVAfTlRRgTLERw7nPyy732e51lJH_zU4Bs10kdkTR0ZS1QGt3tXN3VWnuotfKvDiSA
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61PXjygYoVlRw8mrLJJtnssYilCC0eLNSLS56-yrbUXUR_vdmXVKFYz5tJwpcw8y2Z-QaAC0mFjnzYQlRzhqiIOVJcYEQEDzUWkQ3LqvfRmA8n9GbKpi1w2dTC_Hi_L_OwFkX1Q6HcSUpFUhKzLdDhzDPvNuhMxrf9-6J_HGUEhQTzpjpujem66LOdpwv58S5ns5XoMtgFo2ZfVVLJay_PVE9__pJs3HTje2CnppmwX92LfdCy6QF4GJWZkxbVrSIekVkWzg7KPJuX0q1w5T0bzh307BB6dqifZCHnDN-8l_H_2BY-mzrJqBpZtaE-BJPB9d3VENX9FZD2SDGENSaOYMm90xMmxiaKA-cJlhOGhA5TaQiV2FolAmeMMppK5eJQhZZKonzsOwLtdJ7aYwCZMtx_YcTFjBqqBeNSahPZQPnpte0C1OCeLCoZjaTJL3tJKqSSAqkkiBOPVBdEzeEkNRWoQnzicf7Dsvd9lhstdfJfg1PQzpa5PfNkJFPn9R38AiBZ4KU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine-learning-driven+automatic+application+of+the+stochastic+subspace+identification+method&rft.jtitle=Procedia+Structural+Integrity&rft.au=Rosso%2C+Marco+Martino&rft.au=Aloisio%2C+Angelo&rft.au=Marano%2C+Giuseppe+Carlo&rft.au=Quaranta%2C+Giuseppe&rft.date=2024&rft.issn=2452-3216&rft.eissn=2452-3216&rft.volume=64&rft.spage=507&rft.epage=514&rft_id=info:doi/10.1016%2Fj.prostr.2024.09.295&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_prostr_2024_09_295
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2452-3216&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2452-3216&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2452-3216&client=summon