Machine-learning-driven automatic application of the stochastic subspace identification method
Vibration-based operational modal analysis (OMA) methods have been proven effective in identifying dynamic properties of existing structures and infrastructures under operational conditions. Nevertheless, the provision and installation of continuous monitoring systems for long-term structural health...
        Saved in:
      
    
          | Published in | Procedia Structural Integrity Vol. 64; pp. 507 - 514 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2452-3216 2452-3216  | 
| DOI | 10.1016/j.prostr.2024.09.295 | 
Cover
| Abstract | Vibration-based operational modal analysis (OMA) methods have been proven effective in identifying dynamic properties of existing structures and infrastructures under operational conditions. Nevertheless, the provision and installation of continuous monitoring systems for long-term structural health monitoring (SHM) purposes potentially applicable to the entire infrastructure networks or to the regional scale of existing vulnerable building heritage require significant economic planning efforts. Nowadays research trends are oriented toward developing effective automatic OMA (AOMA) methods for setting up novel and efficient long-term SHM solutions. The current study illustrates a new recent paradigm for the automatic output-only modal identification of linear structures under ambient vibrations called intelligent automatic operational modal analysis (i-AOMA). The proposed approach relies on the covariance-based stochastic subspace identification (SSI-cov) algorithm and effectively integrates a machine learning intelligent core, i.e. a random forest (RF) classifier, in a conceptually two steps procedure, i.e. an explorative phase and an intelligently-driven phase. The i-AOMA procedure provided a new framework that requires a minimum intervention to the user and is potentially able to deliver uncertainty measures of the modal parameters’ estimates based on the explored SSI-cov control parameters. An application on a shear-type RC frame building typical of existing heritage in Italy is herein discussed and reported. | 
    
|---|---|
| AbstractList | Vibration-based operational modal analysis (OMA) methods have been proven effective in identifying dynamic properties of existing structures and infrastructures under operational conditions. Nevertheless, the provision and installation of continuous monitoring systems for long-term structural health monitoring (SHM) purposes potentially applicable to the entire infrastructure networks or to the regional scale of existing vulnerable building heritage require significant economic planning efforts. Nowadays research trends are oriented toward developing effective automatic OMA (AOMA) methods for setting up novel and efficient long-term SHM solutions. The current study illustrates a new recent paradigm for the automatic output-only modal identification of linear structures under ambient vibrations called intelligent automatic operational modal analysis (i-AOMA). The proposed approach relies on the covariance-based stochastic subspace identification (SSI-cov) algorithm and effectively integrates a machine learning intelligent core, i.e. a random forest (RF) classifier, in a conceptually two steps procedure, i.e. an explorative phase and an intelligently-driven phase. The i-AOMA procedure provided a new framework that requires a minimum intervention to the user and is potentially able to deliver uncertainty measures of the modal parameters’ estimates based on the explored SSI-cov control parameters. An application on a shear-type RC frame building typical of existing heritage in Italy is herein discussed and reported. | 
    
| Author | Rosso, Marco Martino Marano, Giuseppe Carlo Aloisio, Angelo Quaranta, Giuseppe  | 
    
| Author_xml | – sequence: 1 givenname: Marco Martino surname: Rosso fullname: Rosso, Marco Martino email: marco.rosso@polito.it organization: Department of Structural, Geotechnical and Building Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10128 Turin, Italy – sequence: 2 givenname: Angelo surname: Aloisio fullname: Aloisio, Angelo organization: Civil, Environmental and Architectural Engineering Department, Universita’ degli Studi dell’Aquila, Via Giovanni Gronchi 18, L’Aquila, Italy – sequence: 3 givenname: Giuseppe Carlo surname: Marano fullname: Marano, Giuseppe Carlo organization: Department of Structural, Geotechnical and Building Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10128 Turin, Italy – sequence: 4 givenname: Giuseppe surname: Quaranta fullname: Quaranta, Giuseppe organization: Department of Structural and Geotechnical Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy  | 
    
| BookMark | eNqNkN1Kw0AQhRepYK19Ay_yAon7l9rcCFL8g4o3eusy2Z01W9JN2N1W-vamRMEr8WoOnPkOM-ecTHznkZBLRgtG2eJqU_ShiykUnHJZ0KrgVXlCplyWPBecLSa_9BmZx7ihlArKKOVsSt6fQTfOY94iBO_8R26C26PPYJe6LSSnM-j71ulBdj7rbJYazGLqdAPx6MZdHXvQmDmDPjn7s7nF1HTmgpxaaCPOv-eMvN3fva4e8_XLw9Pqdp3r4aoyZ5pxyxksSrFcmoqZ64pawaVdGi4sk2C4BIZYL6k1pjZaQm0rUQuUwGtBxYyUY-7O93D4hLZVfXBbCAfFqDr2pDZq7Ekde1K0UkNPAydHTg9eDGj_i92MGA4_7R0GFbVDr9G4gDop07m_A74ASl6JaA | 
    
| Cites_doi | 10.1016/j.ymssp.2023.110669 10.1007/978-1-4939-0767-0 10.1177/1087724X231164648  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2024 | 
    
| Copyright_xml | – notice: 2024 | 
    
| DBID | 6I. AAFTH AAYXX CITATION ADTOC UNPAY  | 
    
| DOI | 10.1016/j.prostr.2024.09.295 | 
    
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| EISSN | 2452-3216 | 
    
| EndPage | 514 | 
    
| ExternalDocumentID | 10.1016/j.prostr.2024.09.295 10_1016_j_prostr_2024_09_295 S2452321624008916  | 
    
| GroupedDBID | 0R~ 0SF 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ACGFS ADBBV ADVLN AEXQZ AFTJW AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS EJD FDB KQ8 M41 M~E NCXOZ O9- OK1 ROL SSZ AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP CITATION ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c2165-1c12f21a65388d91d790f324f8d23f14ad24a1eeb80fddbdc4abf93b3e4a2b303 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 2452-3216 | 
    
| IngestDate | Sun Oct 26 03:22:39 EDT 2025 Wed Oct 01 06:48:15 EDT 2025 Sat Nov 23 15:54:01 EST 2024  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | true | 
    
| Keywords | Stochastic subspace identification Machine learning Operational modal analysis Random Forest  | 
    
| Language | English | 
    
| License | This is an open access article under the CC BY license. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c2165-1c12f21a65388d91d790f324f8d23f14ad24a1eeb80fddbdc4abf93b3e4a2b303 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.prostr.2024.09.295 | 
    
| PageCount | 8 | 
    
| ParticipantIDs | unpaywall_primary_10_1016_j_prostr_2024_09_295 crossref_primary_10_1016_j_prostr_2024_09_295 elsevier_sciencedirect_doi_10_1016_j_prostr_2024_09_295  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024 2024-00-00  | 
    
| PublicationDateYYYYMMDD | 2024-01-01 | 
    
| PublicationDate_xml | – year: 2024 text: 2024  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Procedia Structural Integrity | 
    
| PublicationYear | 2024 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Mimmi, L. M. “Italy in Front of the Challenge of Infrastructure Maintenance: Existing Issues and Promising Responses.” In: Public Works Management & Policy (2023). Magalhães, Cunha, Caetano (bib4) 2012; 28 Zhou, Li, Han (bib8) 2022; 148.6 Rainieri, C. and G. Fabbrocino. Operational modal analysis of civil engineering structures. Vol. 142. Springer, (2014). Kanda, Nakashima, Suzuki, Ogasawara (bib3) 2021; 37.1 Rosso (bib7) 2023; 201 Deng, Wang, Yu (bib1) 2016; 30.2 Di Prisco, M. et al. “Critical infrastructures in Italy: State of the art, case studies, rational approaches to select the intervention priorities.” In: Proceedings of the fib Symposium 2019: Concrete-Innovations in Materials, Design and Structures. International Federation for Structural Concrete. (2019). Magalhães (10.1016/j.prostr.2024.09.295_bib4) 2012; 28 10.1016/j.prostr.2024.09.295_bib5 10.1016/j.prostr.2024.09.295_bib6 Rosso (10.1016/j.prostr.2024.09.295_bib7) 2023; 201 Deng (10.1016/j.prostr.2024.09.295_bib1) 2016; 30.2 Zhou (10.1016/j.prostr.2024.09.295_bib8) 2022; 148.6 10.1016/j.prostr.2024.09.295_bib2 Kanda (10.1016/j.prostr.2024.09.295_bib3) 2021; 37.1  | 
    
| References_xml | – reference: Di Prisco, M. et al. “Critical infrastructures in Italy: State of the art, case studies, rational approaches to select the intervention priorities.” In: Proceedings of the fib Symposium 2019: Concrete-Innovations in Materials, Design and Structures. International Federation for Structural Concrete. (2019). – reference: Mimmi, L. M. “Italy in Front of the Challenge of Infrastructure Maintenance: Existing Issues and Promising Responses.” In: Public Works Management & Policy (2023). – reference: Rainieri, C. and G. Fabbrocino. Operational modal analysis of civil engineering structures. Vol. 142. Springer, (2014). – volume: 30.2 year: 2016 ident: bib1 article-title: “State-of-the-art review on the causes and mechanisms of bridge collapse.” publication-title: In: Journal of Performance of Constructed Facilities – volume: 148.6 year: 2022 ident: bib8 article-title: "Modal identification of civil structures via stochastic subspace algorithm with Monte Carlo–based stabilization diagram" publication-title: Journal of Structural Engineering – volume: 37.1 year: 2021 ident: bib3 article-title: ““q-NAVI”: A case of market-based implementation of structural health monitoring in Japan.” publication-title: In: Earthquake Spectra – volume: 201 year: 2023 ident: bib7 article-title: "Intelligent automatic operational modal analysis" publication-title: Mechanical Systems and Signal Processing – volume: 28 year: 2012 ident: bib4 article-title: “Vibration based structural health monitoring of an arch bridge: From automated OMA to damage detection.” publication-title: In: Mechanical Systems and signal processing – volume: 148.6 year: 2022 ident: 10.1016/j.prostr.2024.09.295_bib8 article-title: "Modal identification of civil structures via stochastic subspace algorithm with Monte Carlo–based stabilization diagram" publication-title: Journal of Structural Engineering – volume: 28 year: 2012 ident: 10.1016/j.prostr.2024.09.295_bib4 article-title: “Vibration based structural health monitoring of an arch bridge: From automated OMA to damage detection.” publication-title: In: Mechanical Systems and signal processing – volume: 30.2 year: 2016 ident: 10.1016/j.prostr.2024.09.295_bib1 article-title: “State-of-the-art review on the causes and mechanisms of bridge collapse.” publication-title: In: Journal of Performance of Constructed Facilities – volume: 37.1 year: 2021 ident: 10.1016/j.prostr.2024.09.295_bib3 article-title: ““q-NAVI”: A case of market-based implementation of structural health monitoring in Japan.” publication-title: In: Earthquake Spectra – volume: 201 year: 2023 ident: 10.1016/j.prostr.2024.09.295_bib7 article-title: "Intelligent automatic operational modal analysis" publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2023.110669 – ident: 10.1016/j.prostr.2024.09.295_bib6 doi: 10.1007/978-1-4939-0767-0 – ident: 10.1016/j.prostr.2024.09.295_bib5 doi: 10.1177/1087724X231164648 – ident: 10.1016/j.prostr.2024.09.295_bib2  | 
    
| SSID | ssj0003010021 | 
    
| Score | 2.245043 | 
    
| Snippet | Vibration-based operational modal analysis (OMA) methods have been proven effective in identifying dynamic properties of existing structures and... | 
    
| SourceID | unpaywall crossref elsevier  | 
    
| SourceType | Open Access Repository Index Database Publisher  | 
    
| StartPage | 507 | 
    
| SubjectTerms | Machine learning Operational modal analysis Random Forest Stochastic subspace identification  | 
    
| Title | Machine-learning-driven automatic application of the stochastic subspace identification method | 
    
| URI | https://dx.doi.org/10.1016/j.prostr.2024.09.295 https://doi.org/10.1016/j.prostr.2024.09.295  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 64 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2452-3216 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003010021 issn: 2452-3216 databaseCode: KQ8 dateStart: 20160101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2452-3216 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003010021 issn: 2452-3216 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2452-3216 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003010021 issn: 2452-3216 databaseCode: AKRWK dateStart: 20160101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61PXjygYoVLTl4NGWTTbLZYxFLUVpELNaLS17rq2xL3UX015t9SRWK9byZJHwJM9-SmW8AOJVU6MCFLUQ1Z4iKkCPFBUZEcF9jEVi_qHofjvhgTC8nbNIAZ3UtzI_3-yIPa55XP-TKnaRQJCUh2wAtzhzzboLWeHTdu8_7x1FGkE8wr6vjVpiuij6bWTKXH-9yOl2KLv1tMKz3VSaVvHazVHX15y_JxnU3vgO2KpoJe-W92AUNm-yBh2GROWlR1SriEZlF7uygzNJZId0Kl96z4SyGjh1Cxw71k8zlnOGb8zLuH9vCZ1MlGZUjyzbU-2Dcv7g9H6CqvwLSDimGsMYkJlhy5_SECbEJQi92BCsWhvgxptIQKrG1SnixMcpoKlUc-sq3VBLlYt8BaCazxB4CyJTh7gsjcciooVowLqU2gfWUm17bNkA17tG8lNGI6vyyl6hEKsqRirwwcki1QVAfTlRRgTLERw7nPyy732e51lJH_zU4Bs10kdkTR0ZS1QGt3tXN3VWnuotfKvDiSA | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61PXjygYoVlRw8mrLJJtnssYilCC0eLNSLS56-yrbUXUR_vdmXVKFYz5tJwpcw8y2Z-QaAC0mFjnzYQlRzhqiIOVJcYEQEDzUWkQ3LqvfRmA8n9GbKpi1w2dTC_Hi_L_OwFkX1Q6HcSUpFUhKzLdDhzDPvNuhMxrf9-6J_HGUEhQTzpjpujem66LOdpwv58S5ns5XoMtgFo2ZfVVLJay_PVE9__pJs3HTje2CnppmwX92LfdCy6QF4GJWZkxbVrSIekVkWzg7KPJuX0q1w5T0bzh307BB6dqifZCHnDN-8l_H_2BY-mzrJqBpZtaE-BJPB9d3VENX9FZD2SDGENSaOYMm90xMmxiaKA-cJlhOGhA5TaQiV2FolAmeMMppK5eJQhZZKonzsOwLtdJ7aYwCZMtx_YcTFjBqqBeNSahPZQPnpte0C1OCeLCoZjaTJL3tJKqSSAqkkiBOPVBdEzeEkNRWoQnzicf7Dsvd9lhstdfJfg1PQzpa5PfNkJFPn9R38AiBZ4KU | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine-learning-driven+automatic+application+of+the+stochastic+subspace+identification+method&rft.jtitle=Procedia+Structural+Integrity&rft.au=Rosso%2C+Marco+Martino&rft.au=Aloisio%2C+Angelo&rft.au=Marano%2C+Giuseppe+Carlo&rft.au=Quaranta%2C+Giuseppe&rft.date=2024&rft.issn=2452-3216&rft.eissn=2452-3216&rft.volume=64&rft.spage=507&rft.epage=514&rft_id=info:doi/10.1016%2Fj.prostr.2024.09.295&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_prostr_2024_09_295 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2452-3216&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2452-3216&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2452-3216&client=summon |