Liver tumour detection and classification using partial differential technique algorithm with enhanced convolutional classifier
The image of liver which is the area of interest in this work is obtained from abdominal CT scan. It also contains details of other abdominal organs such as pancreas, spleen, stomach, gall bladder, intestine etc. Since all these organs are of soft tissues, the pixel intensity values differ marginall...
        Saved in:
      
    
          | Published in | Journal of intelligent & fuzzy systems Vol. 45; no. 5; pp. 7939 - 7955 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        London, England
          SAGE Publications
    
        04.11.2023
     Sage Publications Ltd  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1064-1246 1875-8967  | 
| DOI | 10.3233/JIFS-232218 | 
Cover
| Abstract | The image of liver which is the area of interest in this work is obtained from abdominal CT scan. It also contains details of other abdominal organs such as pancreas, spleen, stomach, gall bladder, intestine etc. Since all these organs are of soft tissues, the pixel intensity values differ marginally in the CT scan output and the organs overlap each other at their boundaries. Hence it is very difficult to trace out the exact contour of liver and liver tumor. The overlapping and obscure boundaries are to be avoided for proper diagnosis. Image segmentation process helps to meet this requirement. The normal perception of the CT image can be improved by suitable segmentation techniques. This will help the physician to extract more information from the image and give an accurate diagnosis and better treatment. The projected images are processed using the Partial Differential Technique (PDT) to isolate the liver from the other organs. The Level Set Methodology (LSM) is then used to separate the cancerous tissue from the healthy tissue around it. The classification of stages may be done with the assistance of an Enhanced Convolutional Classifier. The classification of LSM is evaluated by producing many metrics of accuracy, sensitivity, and specificity using an Improved Convolutional classifier. Compared to the two current algorithms, the proposed technique has a sensitivity and specificity of 96% and 93%, respectively, with 95% confidence intervals of [0.7513 1.0000] and [0.7126 1.0000] for sensitivity, and specificity respectively. | 
    
|---|---|
| AbstractList | The image of liver which is the area of interest in this work is obtained from abdominal CT scan. It also contains details of other abdominal organs such as pancreas, spleen, stomach, gall bladder, intestine etc. Since all these organs are of soft tissues, the pixel intensity values differ marginally in the CT scan output and the organs overlap each other at their boundaries. Hence it is very difficult to trace out the exact contour of liver and liver tumor. The overlapping and obscure boundaries are to be avoided for proper diagnosis. Image segmentation process helps to meet this requirement. The normal perception of the CT image can be improved by suitable segmentation techniques. This will help the physician to extract more information from the image and give an accurate diagnosis and better treatment. The projected images are processed using the Partial Differential Technique (PDT) to isolate the liver from the other organs. The Level Set Methodology (LSM) is then used to separate the cancerous tissue from the healthy tissue around it. The classification of stages may be done with the assistance of an Enhanced Convolutional Classifier. The classification of LSM is evaluated by producing many metrics of accuracy, sensitivity, and specificity using an Improved Convolutional classifier. Compared to the two current algorithms, the proposed technique has a sensitivity and specificity of 96% and 93%, respectively, with 95% confidence intervals of [0.7513 1.0000] and [0.7126 1.0000] for sensitivity, and specificity respectively. | 
    
| Author | Vimalnath, S. Sasirekha, N. Poonguzhali, I. Shekhar, Himanshu  | 
    
| Author_xml | – sequence: 1 givenname: N. surname: Sasirekha fullname: Sasirekha, N. organization: Department of ECE – sequence: 2 givenname: I. surname: Poonguzhali fullname: Poonguzhali, I. organization: Department of ECE – sequence: 3 givenname: Himanshu surname: Shekhar fullname: Shekhar, Himanshu organization: Department of ECE – sequence: 4 givenname: S. surname: Vimalnath fullname: Vimalnath, S. organization: Department of ECE  | 
    
| BookMark | eNptkE1LAzEQhoMo2FZP_oGAF0FWN9nNR49SrFYKHtTzkmYnbco2qcluxZN_3bSrePGSyQxPHibvEB077wChC5LfFLQobp9m05eMFpQSeYQGRAqWyTEXx-me8zIjtOSnaBjjOs-JYDQfoK-53UHAbbfxXcA1tKBb6x1Wrsa6UTFaY7U6jLpo3RJvVWitanBtjYEA7tCkVytn3zvAqln6YNvVBn-kE4NbKachubzb-abbixL_a4Zwhk6MaiKc_9QRepvev04es_nzw2xyN880JazNCFsQLmrKC6CCl8pIUhOyKKShhiqoaSlowZjUnNeGGc70WLFSGgGJEUQWI3TZe7fBpz1jW63Th9MusaJSci7GgrBEXfeUDj7GAKbaBrtR4bMiebVPuNonXPUJJ_qqp6Nawp_vP_QbMNV_XA | 
    
| Cites_doi | 10.1007/s00500-019-03988-3 10.4254/wjh.v7.i12.1632 10.1002/ima.22403 10.1172/JCI66024 10.1091/mbc.02-02-0023 10.1016/j.ijrobp.2006.03.026 10.1158/1940-6207.CAPR-10-0387 10.1007/s12559-020-09755-z 10.1142/S0217979220500617 10.1007/s13369-019-03735-8 10.1109/TITS.2021.3113995 10.1038/s41419-019-1676-0 10.1109/TWC.2019.2947670 10.1109/TCOMM.2021.3050503 10.1002/hep.20933 10.1155/2021/7804540 10.1016/j.mehy.2019.109431 10.3390/s110101105 10.3390/cancers12040819 10.1053/j.gastro.2014.02.032 10.1002/hep.22742 10.1007/s10151-018-1773-6 10.1111/liv.14095  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2023 – IOS Press. All rights reserved Copyright IOS Press BV 2023  | 
    
| Copyright_xml | – notice: 2023 – IOS Press. All rights reserved – notice: Copyright IOS Press BV 2023  | 
    
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D  | 
    
| DOI | 10.3233/JIFS-232218 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | CrossRef Computer and Information Systems Abstracts  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1875-8967 | 
    
| EndPage | 7955 | 
    
| ExternalDocumentID | 10_3233_JIFS_232218 10.3233_JIFS-232218  | 
    
| GroupedDBID | .4S .DC 4.4 5GY 8VB AAGLT ABCQX ABDBF ABJNI ABUJY ACGFS ACPQW ACUHS ADMLS ADZMO AEMOZ AENEX AFRHK AHDMH AHQJS AJNRN AKVCP ALMA_UNASSIGNED_HOLDINGS AMVHM ARCSS ARTOV ASPBG AVWKF DU5 EAD EAP EBA EBR EBS EBU EDO EMK EPL EST ESX H13 HZ~ I-F IOS K1G L7B MET MIO MK~ MV1 NGNOM O9- P2P QWB TH9 TUS ZL0 0R~ AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c215t-15b167d263e2764af81d11b38f2f2aed24723558c66df5f65c9a548f7eb387183 | 
    
| ISSN | 1064-1246 | 
    
| IngestDate | Fri Jul 25 10:08:06 EDT 2025 Wed Oct 01 06:35:31 EDT 2025 Sun Jul 13 06:02:24 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 5 | 
    
| Keywords | improved convolutional classifier Liver cancer level set methodology accuracy partial differential technique  | 
    
| Language | English | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c215t-15b167d263e2764af81d11b38f2f2aed24723558c66df5f65c9a548f7eb387183 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 2886679715 | 
    
| PQPubID | 2046407 | 
    
| PageCount | 17 | 
    
| ParticipantIDs | proquest_journals_2886679715 crossref_primary_10_3233_JIFS_232218 sage_journals_10_3233_JIFS_232218  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-11-04 | 
    
| PublicationDateYYYYMMDD | 2023-11-04 | 
    
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-04 day: 04  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | London, England | 
    
| PublicationPlace_xml | – name: London, England – name: London  | 
    
| PublicationTitle | Journal of intelligent & fuzzy systems | 
    
| PublicationYear | 2023 | 
    
| Publisher | SAGE Publications Sage Publications Ltd  | 
    
| Publisher_xml | – name: SAGE Publications – name: Sage Publications Ltd  | 
    
| References | 44 2021; 69 2017; 8 2019; 10 2002; 13 2011; 61 2013; 123 2019; 39 2005; 42 2011; 11 2020; 12 2020; 34 2011; 4 2018; 22 2015; 7 2009; 49 2020; 19 2012; 1 2020; 30 2019; 44 2019; 43 2006; 66 2019; 69 2020; 24 2020; 134 2021; 2021 2014; 146 Ma’aitah (10.3233/JIFS-232218_ref25) 2017; 8 Khan (10.3233/JIFS-232218_ref13) 2019; 39 Li (10.3233/JIFS-232218_ref28) 2020; 19 10.3233/JIFS-232218_ref32 10.3233/JIFS-232218_ref33 Budak (10.3233/JIFS-232218_ref22) 2020; 134 Jemal (10.3233/JIFS-232218_ref2) 2011; 61 Chen (10.3233/JIFS-232218_ref3) 2011; 4 Wilson (10.3233/JIFS-232218_ref14) 2011; 11 Miller (10.3233/JIFS-232218_ref15) 2019; 69 Gour (10.3233/JIFS-232218_ref12) 2020; 30 Shukla (10.3233/JIFS-232218_ref31) 2021; 2021 Yamashita (10.3233/JIFS-232218_ref1) 2013; 123 Rockey (10.3233/JIFS-232218_ref8) 2009; 49 Attwa (10.3233/JIFS-232218_ref6) 2015; 7 Nanda (10.3233/JIFS-232218_ref21) 2019; 44 Diana (10.3233/JIFS-232218_ref18) 2020; 12 Hawkins (10.3233/JIFS-232218_ref24) 2006; 66 Wang (10.3233/JIFS-232218_ref26) 2019; 10 Chand (10.3233/JIFS-232218_ref4) 2018; 22 Bruix (10.3233/JIFS-232218_ref7) 2005; 42 10.3233/JIFS-232218_ref20 Divya (10.3233/JIFS-232218_ref19) 2019; 43 Yau (10.3233/JIFS-232218_ref27) 2014; 146 Anter (10.3233/JIFS-232218_ref17) 2020; 24 Faundez-Zanuy (10.3233/JIFS-232218_ref11) 2020; 12 Chen (10.3233/JIFS-232218_ref5) 2002; 13 Roy (10.3233/JIFS-232218_ref29); 44 Li (10.3233/JIFS-232218_ref30) 2021; 69  | 
    
| References_xml | – volume: 49 start-page: 1017 issue: 3 year: 2009 end-page: 1044 article-title: Liver biopsy publication-title: Hepatology – volume: 24 start-page: 1565 issue: 3 year: 2020 end-page: 1584 article-title: Feature selection strategy based on hybrid crow search optimization algorithm integrated with chaos theory and fuzzy c-means algorithm for medical diagnosis problems publication-title: Soft Computing – volume: 8 start-page: 25 issue: 12 year: 2017 end-page: 31 article-title: Intelligent classification of liver disorder using fuzzy neural system publication-title: International Journal of Advanced Computer Science and Applications – volume: 2021 start-page: 9 year: 2021 article-title: Multiobjective genetic algorithm and improved convolutional neural network based COVID-19 identification in chest X-ray images publication-title: Mathematical Problems in Engineering – volume: 13 start-page: 1929 issue: 6 year: 2002 end-page: 1939 article-title: Gene expression patterns in human liver cancers publication-title: Molecular Biology of the Cell – volume: 44 start-page: 4049 issue: 4 year: 2019 end-page: 4062 article-title: Computer-aided segmentation of liver lesions in CT scans using cascaded Improved Convolutional Neural Networks and genetically optimised classifier publication-title: Arabian Journal for Science and Engineering – volume: 44 start-page: 331 issue: 2021 end-page: 338 article-title: Taxonomy on EEG artifacts removal methods, issues, and healthcare applications, Journal of Organizational and End User Computing (JOEUC) 33(1) (2021), 19–46. http://doi.org/10.4018/JOE N.K. Rathore, N.K. Jain, P.K. Shukla, et al., Image forgery detection using singular value decomposition with some attacks publication-title: Natl Acad Sci Letts – volume: 42 start-page: 1208 issue: 5 year: 2005 end-page: 1236 article-title: Management of hepatocellular carcinoma publication-title: Hepatology – volume: 134 start-page: 109431 year: 2020 article-title: Cascaded deep convolutional encoder-decoder neural networks for efficient liver tumor segmentation publication-title: Medical Hypotheses – volume: 39 start-page: 19 year: 2019 end-page: 31 article-title: Cholangiocarcinoma: Epidemiology and risk factors publication-title: Liver International – volume: 12 start-page: 819 issue: 4 year: 2020 article-title: Early triple negative breast cancer: Conventional treatment and emerging therapeutic landscapes publication-title: Cancers – volume: 69 start-page: 363 issue: 5 year: 2019 end-page: 385 article-title: . , Cancer treatment and survivorship statistics, 2019 publication-title: CA: A Cancer Journal for Clinicians – volume: 43 start-page: 1 issue: 7 year: 2019 end-page: 12 article-title: An Optimized HCC recurrence prediction using APO algorithm multiple time series clinical liver cancer dataset publication-title: Journal of Medical Systems – volume: 12 start-page: 940 issue: 5 year: 2020 end-page: 953 article-title: Handwriting biometrics: Applications and future trends in e-security and e-health publication-title: Cognitive Computation – volume: 7 start-page: 1632 issue: 12 year: 2015 article-title: Guide for diagnosis and treatment of hepatocellular carcinoma publication-title: World Journal of Hepatology – volume: 66 start-page: 610 issue: 2 year: 2006 end-page: 619 article-title: Assessment of residual error in liver position using kV cone-beam computed tomography for liver cancer high-precision radiation therapy publication-title: International Journal of Radiation Oncology* Biology* Physics – volume: 61 start-page: 69 issue: 2 year: 2011 end-page: 90 article-title: Global cancer statistics publication-title: CA: A Cancer Journal for Clinicians – volume: 10 start-page: 1 issue: 6 year: 2019 end-page: 16 article-title: Arsenic trioxide inhibits liver cancer stem cells and metastasis by targeting SRF/MCM7 complex publication-title: Cell Death & Disease – volume: 34 issue: 8 year: 2020 article-title: Review of video compression techniques based on fractal transform function and swarm intelligence publication-title: International Journal of Modern Physics B – volume: 146 start-page: 1691 issue: 7 year: 2014 end-page: 1700 article-title: Development of Hong Kong Liver Cancer staging system with treatment stratification for patients with hepatocellular carcinoma publication-title: Gastroenterology – volume: 69 start-page: 2723 issue: 4 year: 2021 end-page: 2736 article-title: Hardware impaired ambient backscatter NOMA system: Reliability and security publication-title: IEEE Transactions Communications – volume: 22 start-page: 271 issue: 4 year: 2018 end-page: 277 article-title: Feasibility of fluorescence lymph node imaging in colon cancer: FLICC publication-title: Techniques in Coloproctology – volume: 1 issue: 1 year: 2012 article-title: Guidelines on the diagnosis and treatment of primary liver cancer (2011 edition) publication-title: Chinese Clinical Oncology – volume: 123 start-page: 1911 issue: 5 year: 2013 end-page: 1918 article-title: Cancer stem cells in the development of liver cancer publication-title: The Journal of Clinical Investigation – volume: 30 start-page: 621 issue: 3 year: 2020 end-page: 635 article-title: Kumar, Residual learning-based CNN for breast cancer histopathological image classification publication-title: International Journal of Imaging Systems and Technology – volume: 11 start-page: 1105 issue: 1 year: 2011 end-page: 1176 article-title: Advances in electronic-nose technologies developed for biomedical applications publication-title: Sensors – volume: 4 start-page: 973 issue: 7 year: 2011 end-page: 983 article-title: Role of autophagy in cancer prevention publication-title: Cancer Prevention Research – volume: 19 start-page: 680 issue: 1 year: 2020 end-page: 695 article-title: Residual transceiver hardware impairments on cooperative NOMA networks publication-title: IEEE Transactions on Wireless Communications – volume: 24 start-page: 1565 issue: 3 year: 2020 ident: 10.3233/JIFS-232218_ref17 article-title: Feature selection strategy based on hybrid crow search optimization algorithm integrated with chaos theory and fuzzy c-means algorithm for medical diagnosis problems publication-title: Soft Computing doi: 10.1007/s00500-019-03988-3 – volume: 69 start-page: 363 issue: 5 year: 2019 ident: 10.3233/JIFS-232218_ref15 article-title: . , Cancer treatment and survivorship statistics, 2019 publication-title: CA: A Cancer Journal for Clinicians – volume: 7 start-page: 1632 issue: 12 year: 2015 ident: 10.3233/JIFS-232218_ref6 article-title: Guide for diagnosis and treatment of hepatocellular carcinoma publication-title: World Journal of Hepatology doi: 10.4254/wjh.v7.i12.1632 – volume: 30 start-page: 621 issue: 3 year: 2020 ident: 10.3233/JIFS-232218_ref12 article-title: Kumar, Residual learning-based CNN for breast cancer histopathological image classification publication-title: International Journal of Imaging Systems and Technology doi: 10.1002/ima.22403 – volume: 123 start-page: 1911 issue: 5 year: 2013 ident: 10.3233/JIFS-232218_ref1 article-title: Cancer stem cells in the development of liver cancer publication-title: The Journal of Clinical Investigation doi: 10.1172/JCI66024 – ident: 10.3233/JIFS-232218_ref20 – volume: 13 start-page: 1929 issue: 6 year: 2002 ident: 10.3233/JIFS-232218_ref5 article-title: Gene expression patterns in human liver cancers publication-title: Molecular Biology of the Cell doi: 10.1091/mbc.02-02-0023 – volume: 66 start-page: 610 issue: 2 year: 2006 ident: 10.3233/JIFS-232218_ref24 article-title: Assessment of residual error in liver position using kV cone-beam computed tomography for liver cancer high-precision radiation therapy publication-title: International Journal of Radiation Oncology* Biology* Physics doi: 10.1016/j.ijrobp.2006.03.026 – volume: 4 start-page: 973 issue: 7 year: 2011 ident: 10.3233/JIFS-232218_ref3 article-title: Role of autophagy in cancer prevention publication-title: Cancer Prevention Research doi: 10.1158/1940-6207.CAPR-10-0387 – volume: 12 start-page: 940 issue: 5 year: 2020 ident: 10.3233/JIFS-232218_ref11 article-title: Handwriting biometrics: Applications and future trends in e-security and e-health publication-title: Cognitive Computation doi: 10.1007/s12559-020-09755-z – volume: 44 start-page: 331 issue: 2021 ident: 10.3233/JIFS-232218_ref29 article-title: Taxonomy on EEG artifacts removal methods, issues, and healthcare applications, Journal of Organizational and End User Computing (JOEUC) 33(1) (2021), 19–46. http://doi.org/10.4018/JOE N.K. Rathore, N.K. Jain, P.K. Shukla, et al., Image forgery detection using singular value decomposition with some attacks publication-title: Natl Acad Sci Letts – ident: 10.3233/JIFS-232218_ref33 doi: 10.1142/S0217979220500617 – volume: 44 start-page: 4049 issue: 4 year: 2019 ident: 10.3233/JIFS-232218_ref21 article-title: Computer-aided segmentation of liver lesions in CT scans using cascaded Improved Convolutional Neural Networks and genetically optimised classifier publication-title: Arabian Journal for Science and Engineering doi: 10.1007/s13369-019-03735-8 – ident: 10.3233/JIFS-232218_ref32 doi: 10.1109/TITS.2021.3113995 – volume: 10 start-page: 1 issue: 6 year: 2019 ident: 10.3233/JIFS-232218_ref26 article-title: Arsenic trioxide inhibits liver cancer stem cells and metastasis by targeting SRF/MCM7 complex publication-title: Cell Death & Disease doi: 10.1038/s41419-019-1676-0 – volume: 19 start-page: 680 issue: 1 year: 2020 ident: 10.3233/JIFS-232218_ref28 article-title: Residual transceiver hardware impairments on cooperative NOMA networks publication-title: IEEE Transactions on Wireless Communications doi: 10.1109/TWC.2019.2947670 – volume: 61 start-page: 69 issue: 2 year: 2011 ident: 10.3233/JIFS-232218_ref2 article-title: Global cancer statistics publication-title: CA: A Cancer Journal for Clinicians – volume: 69 start-page: 2723 issue: 4 year: 2021 ident: 10.3233/JIFS-232218_ref30 article-title: Hardware impaired ambient backscatter NOMA system: Reliability and security publication-title: IEEE Transactions Communications doi: 10.1109/TCOMM.2021.3050503 – volume: 42 start-page: 1208 issue: 5 year: 2005 ident: 10.3233/JIFS-232218_ref7 article-title: Management of hepatocellular carcinoma publication-title: Hepatology doi: 10.1002/hep.20933 – volume: 43 start-page: 1 issue: 7 year: 2019 ident: 10.3233/JIFS-232218_ref19 article-title: An Optimized HCC recurrence prediction using APO algorithm multiple time series clinical liver cancer dataset publication-title: Journal of Medical Systems – volume: 2021 start-page: 9 year: 2021 ident: 10.3233/JIFS-232218_ref31 article-title: Multiobjective genetic algorithm and improved convolutional neural network based COVID-19 identification in chest X-ray images publication-title: Mathematical Problems in Engineering doi: 10.1155/2021/7804540 – volume: 8 start-page: 25 issue: 12 year: 2017 ident: 10.3233/JIFS-232218_ref25 article-title: Intelligent classification of liver disorder using fuzzy neural system publication-title: International Journal of Advanced Computer Science and Applications – volume: 134 start-page: 109431 year: 2020 ident: 10.3233/JIFS-232218_ref22 article-title: Cascaded deep convolutional encoder-decoder neural networks for efficient liver tumor segmentation publication-title: Medical Hypotheses doi: 10.1016/j.mehy.2019.109431 – volume: 11 start-page: 1105 issue: 1 year: 2011 ident: 10.3233/JIFS-232218_ref14 article-title: Advances in electronic-nose technologies developed for biomedical applications publication-title: Sensors doi: 10.3390/s110101105 – volume: 12 start-page: 819 issue: 4 year: 2020 ident: 10.3233/JIFS-232218_ref18 article-title: Early triple negative breast cancer: Conventional treatment and emerging therapeutic landscapes publication-title: Cancers doi: 10.3390/cancers12040819 – volume: 146 start-page: 1691 issue: 7 year: 2014 ident: 10.3233/JIFS-232218_ref27 article-title: Development of Hong Kong Liver Cancer staging system with treatment stratification for patients with hepatocellular carcinoma publication-title: Gastroenterology doi: 10.1053/j.gastro.2014.02.032 – volume: 49 start-page: 1017 issue: 3 year: 2009 ident: 10.3233/JIFS-232218_ref8 article-title: Liver biopsy publication-title: Hepatology doi: 10.1002/hep.22742 – volume: 22 start-page: 271 issue: 4 year: 2018 ident: 10.3233/JIFS-232218_ref4 article-title: Feasibility of fluorescence lymph node imaging in colon cancer: FLICC publication-title: Techniques in Coloproctology doi: 10.1007/s10151-018-1773-6 – volume: 39 start-page: 19 year: 2019 ident: 10.3233/JIFS-232218_ref13 article-title: Cholangiocarcinoma: Epidemiology and risk factors publication-title: Liver International doi: 10.1111/liv.14095  | 
    
| SSID | ssj0017520 | 
    
| Score | 2.3156145 | 
    
| Snippet | The image of liver which is the area of interest in this work is obtained from abdominal CT scan. It also contains details of other abdominal organs such as... | 
    
| SourceID | proquest crossref sage  | 
    
| SourceType | Aggregation Database Index Database Publisher  | 
    
| StartPage | 7939 | 
    
| SubjectTerms | Algorithms Boundaries Classification Classifiers Computed tomography Diagnosis Gallbladder Image enhancement Image segmentation Intestine Liver Medical imaging Organs Soft tissues Tumors  | 
    
| Title | Liver tumour detection and classification using partial differential technique algorithm with enhanced convolutional classifier | 
    
| URI | https://journals.sagepub.com/doi/full/10.3233/JIFS-232218 https://www.proquest.com/docview/2886679715  | 
    
| Volume | 45 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Academic Search Ultimate [EBSCO] customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1875-8967 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017520 issn: 1064-1246 databaseCode: ABDBF dateStart: 19980201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - HOST customDbUrl: eissn: 1875-8967 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017520 issn: 1064-1246 databaseCode: AMVHM dateStart: 19980201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1875-8967 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017520 issn: 1064-1246 databaseCode: ADMLS dateStart: 19980201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9AIHVF4iUNAitSe0EO_6eaygVqiSgtSkys2ynd06auuE1j40F_4Zv40Z7_oRESHgYsUPreWZL7PzHkIOlS-k8BKHpV7qMtsBORhbvmJS8NSH7cMaSvR3TM7c0cw-nTvzXu9nJ2upLJIP6WZnXcn_cBWuAV-xSvYfONssChfgN_AXjsBhOP4Vj8eYVPG-KMF8xznfhTRzv7FUDbViTAPSDC4rl8Aa16iiMnoqSnXSdnGNry9Xt8siu9HeWZlnOj0AM9PNd2A3EbOySev9XbFdNl0-iwpYqtxs7k3L6EaDP4_vQNhe6XBTEw76tlrll-Umi3XRdju4OcNHK3CNljewu2ZlfesCzq8xAtD6cY0Tg4uqmq_jxOzkJ-kEwDanCaUy6E0MFBHTM1tfA0OL-YGe5VGLct2Z0kDW6chlkELBrg1DcHRoh6dfwnMGuiU3e8FWW-6zr1E4G4-j6cl8eiTC9XeGM8swtn8kPmtQPSB7HHaVYZ_sHU8uRpMmjuU5XPfDMB-gK0TxrR8779zWiVpDp5NbWKk7033y2LCTHmvQPSE9mT8ljzrdK5-RHxX8qIYfbeBHAX50G360gh818KNd-NEGfrSBH0X40Rp-dAt-tIXfczILT6afRszM82ApKJYFs5zEcr0Fd4UEatmxAlvJshLhK654LBfc9jh2-09dd6Ec5TppEINBrTwJz4AOJV6Qfr7K5UtCQYdSDhc2iBRlp0Me2IGd4pQTL1YLJdMBOawpGq1125YIzF0kfISEjzThB-SgpnZk_td3Efd91_UCz3IG5B1yoL21Y4lXf17iNXnY4v2A9IvbUr4BNbZI3hqs_AIN3KeD | 
    
| linkProvider | EBSCOhost | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Liver+tumour+detection+and+classification+using+partial+differential+technique+algorithm+with+enhanced+convolutional+classifier&rft.jtitle=Journal+of+intelligent+%26+fuzzy+systems&rft.au=Sasirekha%2C+N&rft.au=Poonguzhali%2C+I&rft.au=Shekhar%2C+Himanshu&rft.au=Vimalnath%2C+S&rft.date=2023-11-04&rft.pub=Sage+Publications+Ltd&rft.issn=1064-1246&rft.eissn=1875-8967&rft.volume=45&rft.issue=5&rft.spage=7939&rft_id=info:doi/10.3233%2FJIFS-232218&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1064-1246&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1064-1246&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1064-1246&client=summon |