Enhancing Robustness and Accuracy in Edge-Assisted Visual SLAM Implementation

With the increasing demand for spatial positioning on modern mobile devices, Simultaneous Localization and Mapping (SLAM), particularly camera-based Visual SLAM, has become essential for real-time perception and positioning by processing continuous image data. However,these algorithms often entail h...

Full description

Saved in:
Bibliographic Details
Published inInternational Journal of Networking and Computing Vol. 15; no. 2; pp. 85 - 101
Main Authors Xia, Chenzhang, Wang, Yuan, Inoue, Koji
Format Journal Article
LanguageEnglish
Published IJNC Editorial Committee 2025
Subjects
Online AccessGet full text
ISSN2185-2839
2185-2847
DOI10.15803/ijnc.15.2_85

Cover

Abstract With the increasing demand for spatial positioning on modern mobile devices, Simultaneous Localization and Mapping (SLAM), particularly camera-based Visual SLAM, has become essential for real-time perception and positioning by processing continuous image data. However,these algorithms often entail high memory and computational requirements, making it challenging to deploy them on mobile devices and run for extended periods. To address this issue, the edge-assisted SLAM architecture, which offloads computationally intensive tasks toedge servers, has been proposed. Despite its potential, existing solutions in this domain suffer from significant limitations in data synchronization and recovery capability, compromising both the robustness and accuracy of the system. In response to the identified limitations, we analyze the impact of the current data synchronization and relocalization recovery processes on system performance, and introduce a novel multithreaded tracking approach integrated with an efficient relocalization mechanism. We validated our approach in standard datasets, including the robustness of the system, tracking recovery capability, and localization accuracy. Experimentalresults demonstrate that our solution reduces tracking interruptions by up to 94.2%, significantly improves coverage, a vital robustness metric of the SLAM system, by up to 30.1%, and shortens relocalization recovery time by up to 35.2%. Furthermore, our approach improvesthe localization accuracy by 43.7% in translation scenarios and 36.8% in rotation scenarios.
AbstractList With the increasing demand for spatial positioning on modern mobile devices, Simultaneous Localization and Mapping (SLAM), particularly camera-based Visual SLAM, has become essential for real-time perception and positioning by processing continuous image data. However,these algorithms often entail high memory and computational requirements, making it challenging to deploy them on mobile devices and run for extended periods. To address this issue, the edge-assisted SLAM architecture, which offloads computationally intensive tasks toedge servers, has been proposed. Despite its potential, existing solutions in this domain suffer from significant limitations in data synchronization and recovery capability, compromising both the robustness and accuracy of the system. In response to the identified limitations, we analyze the impact of the current data synchronization and relocalization recovery processes on system performance, and introduce a novel multithreaded tracking approach integrated with an efficient relocalization mechanism. We validated our approach in standard datasets, including the robustness of the system, tracking recovery capability, and localization accuracy. Experimentalresults demonstrate that our solution reduces tracking interruptions by up to 94.2%, significantly improves coverage, a vital robustness metric of the SLAM system, by up to 30.1%, and shortens relocalization recovery time by up to 35.2%. Furthermore, our approach improvesthe localization accuracy by 43.7% in translation scenarios and 36.8% in rotation scenarios.
Author Chenzhang Xia
Koji Inoue
Yuan Wang
Author_xml – sequence: 1
  givenname: Chenzhang
  surname: Xia
  fullname: Xia, Chenzhang
– sequence: 2
  givenname: Yuan
  surname: Wang
  fullname: Wang, Yuan
– sequence: 3
  givenname: Koji
  surname: Inoue
  fullname: Inoue, Koji
BookMark eNpNkE1rAjEQhkOxUGs99p4_sDbJmmz20MMitgpKoV_XMJvMamTNymY9-O-71iKdw8zL8DAMzz0ZhCYgIY-cTbjULH3yu2D7OBFGyxsyFFzLROhpNrjmNL8j4xh3rK8sy5lIh2Q9D1sI1ocNfW_KY-wCxkghOFpYe2zBnqgPdO42mBQx-tiho98-HqGmH6tiTZf7Q417DB10vgkP5LaCOuL4b47I18v8c7ZIVm-vy1mxSqzgMiRQKadLDqoqS4ZVyR2gzjMrc8al4Ay16D8H7RhINc05A6GmSqFTDmyGkI5Icrlr2ybGFitzaP0e2pPhzPzqMGcdfTRnHT3_fOF3sYMNXmloO29r_Af3Tcvr3m6hNRjSH8ycbHg
Cites_doi 10.1109/ICCV.2011.6126517
10.1109/ICASERT.2019.8934466
10.1109/ICRA.2014.6906953
10.1109/GLOBECOM48099.2022.10001128
10.3390/robotics11010024
10.1109/TPAMI.2011.41
10.1145/3561972
10.1109/TRO.2017.2705103
10.1109/IROS.2012.6385773
10.1109/VR.2016.7504740
10.1109/MMSP48831.2020.9287125
10.1109/ACCESS.2021.3049864
10.1109/RCAR.2017.8311876
10.1186/s13638-022-02181-9
10.1109/TRO.2015.2463671
10.1109/ICIP.2013.6738525
10.1109/MASS56207.2022.00071
10.1109/SEC50012.2020.00018
10.1109/ICOIN56518.2023.10048921
10.1007/s40747-020-00161-4
10.1109/ICCV.2011.6126544
10.1016/j.array.2022.100222
10.1007/978-3-319-10605-2_54
10.1145/3004010.3004032
10.1007/3-540-44480-7_21
10.1007/978-981-99-1814-0_2
10.1109/ACCESS.2022.3218774
10.1109/ICC45041.2023.10278556
ContentType Journal Article
Copyright 2025 International Journal of Networking and Computing
Copyright_xml – notice: 2025 International Journal of Networking and Computing
DBID AAYXX
CITATION
DOI 10.15803/ijnc.15.2_85
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2185-2847
EndPage 101
ExternalDocumentID 10_15803_ijnc_15_2_85
article_ijnc_15_2_15_85_article_char_en
GroupedDBID 7.U
ALMA_UNASSIGNED_HOLDINGS
JSF
JSH
KQ8
KWQ
OK1
RJT
RZJ
AAYXX
CITATION
ISHAI
ID FETCH-LOGICAL-c215n-af6d8b1a6fbb0efb1dae897c59015210e82284a8d0a564910a26466ed6dac7ea3
ISSN 2185-2839
IngestDate Wed Oct 01 05:46:01 EDT 2025
Wed Sep 03 06:30:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c215n-af6d8b1a6fbb0efb1dae897c59015210e82284a8d0a564910a26466ed6dac7ea3
OpenAccessLink https://www.jstage.jst.go.jp/article/ijnc/15/2/15_85/_article/-char/en
PageCount 17
ParticipantIDs crossref_primary_10_15803_ijnc_15_2_85
jstage_primary_article_ijnc_15_2_15_85_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025
2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025
PublicationDecade 2020
PublicationTitle International Journal of Networking and Computing
PublicationTitleAlternate IJNC
PublicationYear 2025
Publisher IJNC Editorial Committee
Publisher_xml – name: IJNC Editorial Committee
References [28] Gang Peng, Tin Lun Lam, Chunxu Hu, Yu Yao, Jintao Liu, and Fan Yang. Connecting the robot to ros. In Introduction to Intelligent Robot System Design: Application Development with ROS, pages 41–137, 2023.
[14] Swarnava Dey and Arijit Mukherjee. Robotic slam: a review from fog computing and mobile edge computing perspective. In Adjunct Proceedings of the 13th International Conference on Mobile and Ubiquitous Systems: Computing Networking and Services, pages 153–158, 2016.
[11] Ali J Ben Ali, Marziye Kouroshli, Sofiya Semenova, Zakieh Sadat Hashemifar, Steven Y Ko, and Karthik Dantu. Edge-slam: Edge-assisted visual simultaneous localization and mapping. ACM Transactions on Embedded Computing Systems, 22(1):1–31, 2022.
[20] Raúl Mur-Artal and Juan D Tardós. Fast relocalisation and loop closing in keyframe-based slam. In 2014 IEEE International Conference on Robotics and Automation (ICRA), pages 846–853, 2014.
[18] Brian Williams, Georg Klein, and Ian Reid. Automatic relocalization and loop closing for real-time monocular slam. IEEE transactions on pattern analysis and machine intelligence, 33(9):1699–1712, 2011.
[8] Jingao Xu, Zheng Yang, Yunhao Liu, and Hao Cao. Edge assisted mobile visual slam, 2024.
[4] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics, 31(5):1147–1163, 2015.
[25] Johannes Hofer, Peter Sossalla, Justus Rischke, Christian L Vielhaus, Martin Reisslein, and Frank HP Fitzek. Circular frame buffer to enhance map synchronization in edge assisted slam. In ICC 2023-IEEE International Conference on Communications, pages 210–215, 2023.
[3] Jiansheng Peng, Yaru Hou, Hengming Xu, and Taotao Li. Dynamic visual slam and mec technologies for b5g: a comprehensive review. EURASIP Journal on Wireless Communications and Networking, 2022(1):98, 2022.
[24] Atsunori Moteki, Nobuyasu Yamaguchi, Ayu Karasudani, and Toshiyuki Yoshitake. Fast and accurate relocalization for keyframe-based slam using geometric model selection. In 2016 IEEE Virtual Reality (VR), pages 235–236, 2016.
[26] Pengfei Zhang, Huaimin Wang, and Bo Ding. Using collaborative sharing on cloud for fast relocalization in keyframe-based slam. In 2017 IEEE International Conference on Real-time Computing and Robotics (RCAR), pages 291–296, 2017.
[19] Hauke Strasdat, Andrew J Davison, JM Martìnez Montiel, and Kurt Konolige. Double window optimisation for constant time visual slam. In 2011 international conference on computer vision, pages 2352–2359, 2011.
[9] Peter Sossalla, Johannes Hofer, Justus Rischke, Christian Vielhaus, Giang T Nguyen, Martin Reisslein, and Frank HP Fitzek. Dynnetslam: Dynamic visual slam network offloading. IEEE Access, 10:116014–116030, 2022.
[16] Kwame-Lante Wright, Ashiwan Sivakumar, Peter Steenkiste, Bo Yu, and Fan Bai. Cloudslam: Edge offloading of stateful vehicular applications. In 2020 IEEE/ACM Symposium on Edge Computing (SEC), pages 139–151, 2020.
[21] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb: An efficient alternative to sift or surf. In 2011 International Conference on Computer Vision, pages 2564–2571, 2011.
[29] Zongqian Zhan, Wenjie Jian, Yihui Li, and Yang Yue. A slam map restoration algorithm based on submaps and an undirected connected graph. IEEE Access, 9:12657–12674, 2021.
[10] Timothy Chase, Ali J Ben Ali, Steven Y Ko, and Karthik Dantu. Pre-slam: Persistence reasoning in edge-assisted visual slam. In 2022 IEEE 19th International Conference on Mobile Ad Hoc and Smart Systems (MASS), pages 458–466, 2022.
[17] Peter Sossalla, Johannes Hofer, Justus Rischke, Johannes Busch, Giang T Nguyen, Martin Reisslein, and Frank HP Fitzek. Optimizing edge slam: Judicious parameter settings and parallelized map updates. In GLOBECOM 2022-2022 IEEE Global Communications Conference, pages 1954–1959, 2020.
[2] Andréa Macario Barros, Maugan Michel, Yoann Moline, Gwenolé Corre, and Frédérick Carrel. A comprehensive survey of visual slam algorithms. Robotics, 11(1):24, 2022.
[15] Victor Kathan Sarker, J Pe na Queralta, Tuan Nguyen Gia, Hannu Tenhunen, and Tomi Westerlund. Offloading slam for indoor mobile robots with edge-fog-cloud computing. In 2019 1st international conference on advances in science, engineering and robotics technology (ICASERT), pages 1–6, 2019.
[1] Charalambos Theodorou, Vladan Velisavljevic, Vladimir Dyo, and Fredi Nonyelu. Visual slam algorithms and their application for ar, mapping, localization and wayfinding. Array, 15:100–222, 2022.
[5] Jakob Engel, Thomas Schöps, and Daniel Cremers. Lsd-slam: Large-scale direct monocular slam. In European conference on computer vision, pages 834–849, 2014.
[12] Shuai Liu, Dongye Liu, Gautam Srivastava, Dawid Poap, and Marcin Wożniak. Overview and methods of correlation filter algorithms in object tracking. Complex & Intelligent Systems, 7:1895–1917, 2021.
[23] Jeremy Straub, Sebastian Hilsenbeck, Georg Schroth, Robert Huitl, Andreas Möller, and Eckehard Steinbach. Fast relocalization for visual odometry using binary features. In 2013 IEEE International Conference on Image Processing, pages 2548–2552, 2013.
[6] Sebastian Eger, Rastin Pries, and Eckehard Steinbach. valuation of different task distributions for edge cloud-based collaborative visual slam. In 2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP), pages 1–6, 2020.
[22] Bill Triggs, Philip F. McLauchlan, Richard I. Hartley, and Andrew W. Fitzgibbon. Bundle adjustment –-a modern synthesis. In Bill Triggs, Andrew Zisserman, and Richard Szeliski, editors, Vision Algorithms: Theory and Practice, pages 298–372, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.
[7] Peter Sossalla, Johannes Hofer, Christian Vielhaus, Justus Rischke, and Frank HP Fitzek. Offloading visual slam processing to the edge: An energy perspective. In 2023 International Conference on Information Networking (ICOIN), pages 39–44, 2023.
[13] Raul Mur-Artal and Juan D Tardós. Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics, 33(5):1255–1262, 2017.
[27] Jürgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram Burgard, and Daniel Cremers. A benchmark for the evaluation of rgb-d slam systems. In 2012 IEEE/RSJ international conference on intelligent robots and systems, pages 573–580, 2012.
22
23
24
25
26
27
28
29
10
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – reference: [20] Raúl Mur-Artal and Juan D Tardós. Fast relocalisation and loop closing in keyframe-based slam. In 2014 IEEE International Conference on Robotics and Automation (ICRA), pages 846–853, 2014.
– reference: [14] Swarnava Dey and Arijit Mukherjee. Robotic slam: a review from fog computing and mobile edge computing perspective. In Adjunct Proceedings of the 13th International Conference on Mobile and Ubiquitous Systems: Computing Networking and Services, pages 153–158, 2016.
– reference: [18] Brian Williams, Georg Klein, and Ian Reid. Automatic relocalization and loop closing for real-time monocular slam. IEEE transactions on pattern analysis and machine intelligence, 33(9):1699–1712, 2011.
– reference: [2] Andréa Macario Barros, Maugan Michel, Yoann Moline, Gwenolé Corre, and Frédérick Carrel. A comprehensive survey of visual slam algorithms. Robotics, 11(1):24, 2022.
– reference: [25] Johannes Hofer, Peter Sossalla, Justus Rischke, Christian L Vielhaus, Martin Reisslein, and Frank HP Fitzek. Circular frame buffer to enhance map synchronization in edge assisted slam. In ICC 2023-IEEE International Conference on Communications, pages 210–215, 2023.
– reference: [21] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb: An efficient alternative to sift or surf. In 2011 International Conference on Computer Vision, pages 2564–2571, 2011.
– reference: [28] Gang Peng, Tin Lun Lam, Chunxu Hu, Yu Yao, Jintao Liu, and Fan Yang. Connecting the robot to ros. In Introduction to Intelligent Robot System Design: Application Development with ROS, pages 41–137, 2023.
– reference: [4] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics, 31(5):1147–1163, 2015.
– reference: [27] Jürgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram Burgard, and Daniel Cremers. A benchmark for the evaluation of rgb-d slam systems. In 2012 IEEE/RSJ international conference on intelligent robots and systems, pages 573–580, 2012.
– reference: [13] Raul Mur-Artal and Juan D Tardós. Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics, 33(5):1255–1262, 2017.
– reference: [11] Ali J Ben Ali, Marziye Kouroshli, Sofiya Semenova, Zakieh Sadat Hashemifar, Steven Y Ko, and Karthik Dantu. Edge-slam: Edge-assisted visual simultaneous localization and mapping. ACM Transactions on Embedded Computing Systems, 22(1):1–31, 2022.
– reference: [26] Pengfei Zhang, Huaimin Wang, and Bo Ding. Using collaborative sharing on cloud for fast relocalization in keyframe-based slam. In 2017 IEEE International Conference on Real-time Computing and Robotics (RCAR), pages 291–296, 2017.
– reference: [6] Sebastian Eger, Rastin Pries, and Eckehard Steinbach. valuation of different task distributions for edge cloud-based collaborative visual slam. In 2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP), pages 1–6, 2020.
– reference: [19] Hauke Strasdat, Andrew J Davison, JM Martìnez Montiel, and Kurt Konolige. Double window optimisation for constant time visual slam. In 2011 international conference on computer vision, pages 2352–2359, 2011.
– reference: [1] Charalambos Theodorou, Vladan Velisavljevic, Vladimir Dyo, and Fredi Nonyelu. Visual slam algorithms and their application for ar, mapping, localization and wayfinding. Array, 15:100–222, 2022.
– reference: [12] Shuai Liu, Dongye Liu, Gautam Srivastava, Dawid Poap, and Marcin Wożniak. Overview and methods of correlation filter algorithms in object tracking. Complex & Intelligent Systems, 7:1895–1917, 2021.
– reference: [24] Atsunori Moteki, Nobuyasu Yamaguchi, Ayu Karasudani, and Toshiyuki Yoshitake. Fast and accurate relocalization for keyframe-based slam using geometric model selection. In 2016 IEEE Virtual Reality (VR), pages 235–236, 2016.
– reference: [5] Jakob Engel, Thomas Schöps, and Daniel Cremers. Lsd-slam: Large-scale direct monocular slam. In European conference on computer vision, pages 834–849, 2014.
– reference: [7] Peter Sossalla, Johannes Hofer, Christian Vielhaus, Justus Rischke, and Frank HP Fitzek. Offloading visual slam processing to the edge: An energy perspective. In 2023 International Conference on Information Networking (ICOIN), pages 39–44, 2023.
– reference: [22] Bill Triggs, Philip F. McLauchlan, Richard I. Hartley, and Andrew W. Fitzgibbon. Bundle adjustment –-a modern synthesis. In Bill Triggs, Andrew Zisserman, and Richard Szeliski, editors, Vision Algorithms: Theory and Practice, pages 298–372, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.
– reference: [29] Zongqian Zhan, Wenjie Jian, Yihui Li, and Yang Yue. A slam map restoration algorithm based on submaps and an undirected connected graph. IEEE Access, 9:12657–12674, 2021.
– reference: [9] Peter Sossalla, Johannes Hofer, Justus Rischke, Christian Vielhaus, Giang T Nguyen, Martin Reisslein, and Frank HP Fitzek. Dynnetslam: Dynamic visual slam network offloading. IEEE Access, 10:116014–116030, 2022.
– reference: [10] Timothy Chase, Ali J Ben Ali, Steven Y Ko, and Karthik Dantu. Pre-slam: Persistence reasoning in edge-assisted visual slam. In 2022 IEEE 19th International Conference on Mobile Ad Hoc and Smart Systems (MASS), pages 458–466, 2022.
– reference: [15] Victor Kathan Sarker, J Pe na Queralta, Tuan Nguyen Gia, Hannu Tenhunen, and Tomi Westerlund. Offloading slam for indoor mobile robots with edge-fog-cloud computing. In 2019 1st international conference on advances in science, engineering and robotics technology (ICASERT), pages 1–6, 2019.
– reference: [17] Peter Sossalla, Johannes Hofer, Justus Rischke, Johannes Busch, Giang T Nguyen, Martin Reisslein, and Frank HP Fitzek. Optimizing edge slam: Judicious parameter settings and parallelized map updates. In GLOBECOM 2022-2022 IEEE Global Communications Conference, pages 1954–1959, 2020.
– reference: [8] Jingao Xu, Zheng Yang, Yunhao Liu, and Hao Cao. Edge assisted mobile visual slam, 2024.
– reference: [3] Jiansheng Peng, Yaru Hou, Hengming Xu, and Taotao Li. Dynamic visual slam and mec technologies for b5g: a comprehensive review. EURASIP Journal on Wireless Communications and Networking, 2022(1):98, 2022.
– reference: [23] Jeremy Straub, Sebastian Hilsenbeck, Georg Schroth, Robert Huitl, Andreas Möller, and Eckehard Steinbach. Fast relocalization for visual odometry using binary features. In 2013 IEEE International Conference on Image Processing, pages 2548–2552, 2013.
– reference: [16] Kwame-Lante Wright, Ashiwan Sivakumar, Peter Steenkiste, Bo Yu, and Fan Bai. Cloudslam: Edge offloading of stateful vehicular applications. In 2020 IEEE/ACM Symposium on Edge Computing (SEC), pages 139–151, 2020.
– ident: 19
  doi: 10.1109/ICCV.2011.6126517
– ident: 15
  doi: 10.1109/ICASERT.2019.8934466
– ident: 20
  doi: 10.1109/ICRA.2014.6906953
– ident: 17
  doi: 10.1109/GLOBECOM48099.2022.10001128
– ident: 2
  doi: 10.3390/robotics11010024
– ident: 18
  doi: 10.1109/TPAMI.2011.41
– ident: 11
  doi: 10.1145/3561972
– ident: 13
  doi: 10.1109/TRO.2017.2705103
– ident: 27
  doi: 10.1109/IROS.2012.6385773
– ident: 24
  doi: 10.1109/VR.2016.7504740
– ident: 6
  doi: 10.1109/MMSP48831.2020.9287125
– ident: 29
  doi: 10.1109/ACCESS.2021.3049864
– ident: 26
  doi: 10.1109/RCAR.2017.8311876
– ident: 3
  doi: 10.1186/s13638-022-02181-9
– ident: 4
  doi: 10.1109/TRO.2015.2463671
– ident: 23
  doi: 10.1109/ICIP.2013.6738525
– ident: 10
  doi: 10.1109/MASS56207.2022.00071
– ident: 16
  doi: 10.1109/SEC50012.2020.00018
– ident: 7
  doi: 10.1109/ICOIN56518.2023.10048921
– ident: 12
  doi: 10.1007/s40747-020-00161-4
– ident: 21
  doi: 10.1109/ICCV.2011.6126544
– ident: 1
  doi: 10.1016/j.array.2022.100222
– ident: 5
  doi: 10.1007/978-3-319-10605-2_54
– ident: 14
  doi: 10.1145/3004010.3004032
– ident: 22
  doi: 10.1007/3-540-44480-7_21
– ident: 28
  doi: 10.1007/978-981-99-1814-0_2
– ident: 9
  doi: 10.1109/ACCESS.2022.3218774
– ident: 8
– ident: 25
  doi: 10.1109/ICC45041.2023.10278556
SSID ssj0000779023
Score 2.2810516
Snippet With the increasing demand for spatial positioning on modern mobile devices, Simultaneous Localization and Mapping (SLAM), particularly camera-based Visual...
SourceID crossref
jstage
SourceType Index Database
Publisher
StartPage 85
SubjectTerms edge assisted slam
edge computing
multithreaded system
slam relocalization
thread refactoring
visual slam
Title Enhancing Robustness and Accuracy in Edge-Assisted Visual SLAM Implementation
URI https://www.jstage.jst.go.jp/article/ijnc/15/2/15_85/_article/-char/en
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX International Journal of Networking and Computing, 2025, Vol.15(2), pp.85-101
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2185-2847
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000779023
  issn: 2185-2839
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECbcJEOXPpIWSV_gEGQxmOpFWh6NwkWQ1gaKJq07CXwpkQHTRSItGfrbeydKsox0SLMQBk2ZEL_zx08n3h0hxzKXXI4SzWIba4YvDJmCnZCJaCRVbmDLrWOrZnNxdpmcL_hiMPjTjy4p1am--2dcyWNQhT7AFaNk_wPZ7kehAz4DvtACwtA-COOpu8Z0GXiAbq2q27KmLfSET7SubrCQe-GGU3NlGaCAeJrhj-IWA0a-f53MfGbgVRN85Poy9b6fsBGtc39qvI1s9DUh2t2vPiVg3R36oIeLoiP8XxWQyE-5GfVlvSyAmdaV7TsdfGiyfwQ9nwNFmwIzmNTejdWqKEtrN7QFmoEzEC2eCG2_z-fW7HiX9-wr6pGor-HTbMeh93XcY3qeBphyolgCjYb8NMraq7aSZzfQZDgsC3kWYZPyrO3H0DawpCdkN0J_Dr7U_5Z2ProAkzHWFQK7m2rStOLsH_tzb8mavSUo-_ZUYC1ULl6QZw1YdOLnfkkG1u2T5231DtqQ-QGZddZDN9ZDAVXaWg8tHN2yHuqth6L10G3reUUuP08vPp2xprgG06DyHJO5MKkKpciVCmyuQiNtOh5pjEUGSRdYUI5pIlMTSPi_gqiUIJ2FsEYYqUdWxq_Jjls7e0gofBEYEeQ2GoeJkmIc5wmMgp3BxFrq8IictGuT_fY5VDJ89sRF7CGT8iMi_Mp1wx6I35vHXviWPEXz9j61d2SnvKnse1CZpfpQm8JfquuIkg
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Robustness+and+Accuracy+in+Edge-Assisted+Visual+SLAM+Implementation&rft.jtitle=International+Journal+of+Networking+and+Computing&rft.au=Chenzhang+Xia&rft.au=Yuan+Wang&rft.au=Koji+Inoue&rft.date=2025&rft.pub=IJNC+Editorial+Committee&rft.issn=2185-2839&rft.eissn=2185-2847&rft.volume=15&rft.issue=2&rft.spage=85&rft.epage=101&rft_id=info:doi/10.15803%2Fijnc.15.2_85&rft.externalDocID=article_ijnc_15_2_15_85_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2185-2839&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2185-2839&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2185-2839&client=summon