An Improved Local Binary Patterns Histograms Technique for Face Recognition for Real Time Applications
Recently, face recognition and its applications has been considered as one of the image analysis most successful applications, especially over the past several years. Face Recognition is a unique system that can be used by using unique facial features for identification or verification of a person f...
Saved in:
| Published in | International journal of recent technology and engineering Vol. 8; no. 2S7; pp. 524 - 529 |
|---|---|
| Format | Journal Article |
| Language | English |
| Published |
05.09.2019
|
| Online Access | Get full text |
| ISSN | 2277-3878 2277-3878 |
| DOI | 10.35940/ijrte.B1098.0782S719 |
Cover
| Abstract | Recently, face recognition and its applications has been considered as one of the image analysis most successful applications, especially over the past several years. Face Recognition is a unique system that can be used by using unique facial features for identification or verification of a person from a digital image. In a face recognition system, there are many technique that can be used. This paper provides an efficient of the Local Binary Patterns Histograms (LBPH) based technique provided by OpenCV library which is implemented in Python programming language which is well suitable for realistic scenarios. In this paper we also provide visual qualitative outcome with existing algorithm (Haar-cascade classifier and Local Binary Patterns Histograms (LBPH)). As a result, the proposed technique outperform better in terms of visual qualitative analysis. |
|---|---|
| AbstractList | Recently, face recognition and its applications has been considered as one of the image analysis most successful applications, especially over the past several years. Face Recognition is a unique system that can be used by using unique facial features for identification or verification of a person from a digital image. In a face recognition system, there are many technique that can be used. This paper provides an efficient of the Local Binary Patterns Histograms (LBPH) based technique provided by OpenCV library which is implemented in Python programming language which is well suitable for realistic scenarios. In this paper we also provide visual qualitative outcome with existing algorithm (Haar-cascade classifier and Local Binary Patterns Histograms (LBPH)). As a result, the proposed technique outperform better in terms of visual qualitative analysis. |
| BookMark | eNqFkGFLwzAQhoNMcM79BCF_oDNp06TFT9twbjBQtvm5ZOl1ZrRJTTpl_96uExFB_HJ33PEcvM816hlrAKFbSkZRnDJyp_eugdGEkjQZEZGEa0HTC9QPQyGCKBFJ78d8hYbe7wkhNOKURbyPirHBi6p29h1yvLRKlniijXRH_CybBpzxeK59Y3dOVh5vQL0a_XYAXFiHZ1IBXoGyO6MbbU23XEH7YqMrwOO6LrWSp4u_QZeFLD0Mv_oAvcweNtN5sHx6XEzHy0CFNE6DnMd5wbc84YKLosglSRQNlaSStzVhWwlRxAVjKgcKKQtpDkSokDAiWZrG0QDx89-DqeXxQ5ZlVjtdtXkySrJOWNYJy7YnYdlJmG-FtWB8BpWz3jso_uIm39z6zN3_4pRuusyNk7r8h_4EApGH7Q |
| CitedBy_id | crossref_primary_10_1515_jisys_2022_0283 crossref_primary_10_23939_mmc2024_04_1093 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ADTOC UNPAY |
| DOI | 10.35940/ijrte.B1098.0782S719 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2277-3878 |
| EndPage | 529 |
| ExternalDocumentID | 10.35940/ijrte.b1098.0782s719 10_35940_ijrte_B1098_0782S719 |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION M~E OK1 RNS ADTOC UNPAY |
| ID | FETCH-LOGICAL-c2159-d65df6b686767ffda08c12ca1a62ca84bae336744cde1e9421de07c2040a49953 |
| IEDL.DBID | UNPAY |
| ISSN | 2277-3878 |
| IngestDate | Tue Aug 19 19:14:39 EDT 2025 Tue Jul 01 04:00:20 EDT 2025 Thu Apr 24 23:03:46 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 2S7 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2159-d65df6b686767ffda08c12ca1a62ca84bae336744cde1e9421de07c2040a49953 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.35940/ijrte.b1098.0782s719 |
| PageCount | 6 |
| ParticipantIDs | unpaywall_primary_10_35940_ijrte_b1098_0782s719 crossref_primary_10_35940_ijrte_B1098_0782S719 crossref_citationtrail_10_35940_ijrte_B1098_0782S719 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-9-5 |
| PublicationDateYYYYMMDD | 2019-09-05 |
| PublicationDate_xml | – month: 09 year: 2019 text: 2019-9-5 day: 05 |
| PublicationDecade | 2010 |
| PublicationTitle | International journal of recent technology and engineering |
| PublicationYear | 2019 |
| SSID | ssj0001361436 |
| Score | 2.2236435 |
| Snippet | Recently, face recognition and its applications has been considered as one of the image analysis most successful applications, especially over the past several... |
| SourceID | unpaywall crossref |
| SourceType | Open Access Repository Enrichment Source Index Database |
| StartPage | 524 |
| Title | An Improved Local Binary Patterns Histograms Technique for Face Recognition for Real Time Applications |
| URI | https://doi.org/10.35940/ijrte.b1098.0782s719 |
| UnpaywallVersion | publishedVersion |
| Volume | 8 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2277-3878 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001361436 issn: 2277-3878 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA7aHtSDb7G-yMHrbveR7GaPW2kpYkupLdTTkmQTUMu2tFtED_52k32UVSjqZQ8LH4SZkPkmmfkGgFuhOAXnDjakTZiBfFcahGFmKGqLHEoEdbI73V7f647R_QRPimZ13QtTeb93cYCs5vPLIhUms62AmDqcLX0t8ln3sKLeNVAf9wfhkx4gp58iXeKTvEtnM_Zb_NlZJXP6_kan00pQ6RyAfrmcvJbk1VylzOQfP5Qa_7zeQ7Bf0EsY5vvhCGyJ5BjsVUQHT4AME5hfJYgYPuhQBltZUy4cZFqbyRJm2iG6bGsJR6XGK1TsFnYoF3BY1hzNkuznUHFNqFtJYFh5DT8F4057dNc1imkLBldhPzBiD8fSYx7REm5SxtQi3HY4tamnvgQxKlzX8xHisbBFgBw7FpbPHXUKUJU2YfcM1JJZIs4BlAFmnCNMBVHZpnQpUzwqEFIo7sVRTBsAlT6IeCFFridiTCOVkmRmjDIzRi1txkib8VGZsQHMNWyea3H8BmiuHbwJwdYI7amLfyMuwa7iUHnZGb4CtXSxEteKp6TsBmz3Pts3xR79Av0B5MM |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-yHdSD3-L8Igev7dY2adNjJ44hOsbcYJ5Kkiagjm5sHaJ_vS_9GFMY6qWHwg_CeyHv95L3fg-hGwWcQkqXWtphwiKBpy0mqLCA2hKXM8Xd_E73sed3R-R-TMdls7rphVl7v_doSFrNl9d5pmzhtEJmm3C2CIzIZ92nQL1rqD7q9aNnM0DOPEV6LGBFl85m7Lf4s71MZ_zjnU8ma0Gls4961XKKWpI3e5kJW37-UGr883oP0F5JL3FU7IdDtKXSI7S7Jjp4jHSU4uIqQSX4wYQy3M6bcnE_19pMFzjXDjFlWws8rDReMbBb3OFS4UFVczRN858D4JrYtJLgaO01_ASNOnfD265VTluwJIT90Ep8mmhf-MxIuGmd8BaTjiu5w334MiK48jw_IEQmylEhcZ1EtQLpwinAIW2i3imqpdNUnSGsQyqkJJQrBtmm9rgAHhUqrYB7SZLwBiKVD2JZSpGbiRiTGFKS3Ixxbsa4bcwYGzM-gRkbyF7BZoUWx2-A5srBmxBihTCeOv834gLtAIcqys7oJapl86W6Ap6Sietyd34BpPrjkg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Improved+Local+Binary+Patterns+Histograms+Technique+for+Face+Recognition+for+Real+Time+Applications&rft.jtitle=International+journal+of+recent+technology+and+engineering&rft.date=2019-09-05&rft.issn=2277-3878&rft.eissn=2277-3878&rft.volume=8&rft.issue=2S7&rft.spage=524&rft.epage=529&rft_id=info:doi/10.35940%2Fijrte.B1098.0782S719&rft.externalDBID=n%2Fa&rft.externalDocID=10_35940_ijrte_B1098_0782S719 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2277-3878&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2277-3878&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2277-3878&client=summon |