Real-world human gender classification from oral region using convolutional neural netwrok
Gender classification is an important biometric task. It has been widely studied in the literature. Face modality is the most studied aspect of human-gender classification. Moreover, the task has also been investigated in terms of different face components such as irises, ears, and the periocular re...
Saved in:
Published in | Advances in distributed computing and artificial intelligence journal Vol. 11; no. 3; pp. 249 - 261 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Salamanca
Ediciones Universidad de Salamanca
24.01.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2255-2863 2255-2863 |
DOI | 10.14201/adcaij.27797 |
Cover
Abstract | Gender classification is an important biometric task. It has been widely studied in the literature. Face modality is the most studied aspect of human-gender classification. Moreover, the task has also been investigated in terms of different face components such as irises, ears, and the periocular region. In this paper, we aim to investigate gender classification based on the oral region. In the proposed approach, we adopt a convolutional neural network. For experimentation, we extracted the region of interest using the RetinaFace algorithm from the FFHQ faces dataset. We achieved acceptable results, surpassing those that use the mouth as a modality or facial sub-region in geometric approaches. The obtained results also proclaim the importance of the oral region as a facial part lost in the Covid-19 context when people wear facial mask. We suppose that the adaptation of existing facial data analysis solutions from the whole face is indispensable to keep-up their robustness. |
---|---|
AbstractList | Gender classification is an important biometric task. It has been widely studied in the literature. Face modality is the most studied aspect of human-gender classification. Moreover, the task has also been investigated in terms of different face components such as irises, ears, and the periocular region. In this paper, we aim to investigate gender classification based on the oral region. In the proposed approach, we adopt a convolutional neural network. For experimentation, we extracted the region of interest using the RetinaFace algorithm from the FFHQ faces dataset. We achieved acceptable results, surpassing those that use the mouth as a modality or facial sub-region in geometric approaches. The obtained results also proclaim the importance of the oral region as a facial part lost in the Covid-19 context when people wear facial mask. We suppose that the adaptation of existing facial data analysis solutions from the whole face is indispensable to keep-up their robustness. |
Author | Haddadou, Hamid Palacios-Alonso, Daniel Conde, Cristina Oulad-Kaddour, Mohamed Cabello, Enrique |
Author_xml | – sequence: 1 givenname: Mohamed surname: Oulad-Kaddour fullname: Oulad-Kaddour, Mohamed – sequence: 2 givenname: Hamid surname: Haddadou fullname: Haddadou, Hamid – sequence: 3 givenname: Cristina surname: Conde fullname: Conde, Cristina – sequence: 4 givenname: Daniel surname: Palacios-Alonso fullname: Palacios-Alonso, Daniel – sequence: 5 givenname: Enrique surname: Cabello fullname: Cabello, Enrique |
BookMark | eNptUU1LxDAQDaLguu7Re8FzNV9t2qOIXyAIohcvYZpOamq30aRV_Pd2uwoint4w781jZt4B2e19j4QcMXrCJKfsFGoDrj3hSpVqhyw4z7KUF7nY_VXvk1WMLaWUCZ5xphbk6R6hSz986OrkeVxDnzTY1xgS00GMzjoDg_N9YoNfJz5AlwRsNo0xur5JjO_ffTduJBPV4xhmGD6Cfzkkexa6iKtvXJLHy4uH8-v09u7q5vzsNjWcZSqVSlIrC-BZAQYFBSitzUtj60IVnLE8YyWvrTW0mmhTMmE55lJVFeaAwooludn61h5a_RrcGsKn9uD03PCh0RAGZzrUlqKRrFKqKFAaCyBqYSopFWQURU4nr-Ot12vwbyPGQbd-DNNtUU-PlWUmKSsnldiqTPAxBrTauGH-0xDAdZpRPWeit5noOZNpKv0z9bPr__ovFgySyg |
CitedBy_id | crossref_primary_10_4108_eetinis_v11i2_4318 crossref_primary_10_1109_ACCESS_2023_3328210 |
Cites_doi | 10.1007/978-3-319-61657-5_9 10.1016/j.neucom.2011.01.028 10.1007/s10044-008-0144-8 10.1109/CVPR.2019.00453 10.1007/s11042-019-7424-8 10.1109/ICCUBEA.2015.141 10.1109/ICCV.2017.74 10.1049/iet-bmt.2018.5233 10.1186/s13635-020-0102-6 10.1016/j.jvcir.2019.05.001 10.1186/s40537-021-00444-8 10.1016/j.jvcir.2014.03.009 10.1007/s00521-011-0647-x 10.1109/IWBF.2018.8401568 |
ContentType | Journal Article |
Copyright | 2022. This work is licensed under https://creativecommons.org/licenses/by-nc-nd/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022. This work is licensed under https://creativecommons.org/licenses/by-nc-nd/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU COVID DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.14201/adcaij.27797 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central Database Suite (ProQuest) Technology Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Korea SciTech Collection (ProQuest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2255-2863 |
EndPage | 261 |
ExternalDocumentID | oai_doaj_org_article_f0ec41b7788e4cfaa3d3cb447a50e360 10_14201_adcaij_27797 |
GroupedDBID | 3J0 8FE 8FG AAYXX ADBBV AFKRA AGVNC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ KQ8 M~E OK1 P62 PHGZM PHGZT PIMPY PROAC R9V ABUWG AZQEC COVID DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS R9Y PUEGO |
ID | FETCH-LOGICAL-c2157-4740f48a258ace30aa9ff69cfd87821165192dffc0bce3c913f2e647bbe6ae3f3 |
IEDL.DBID | DOA |
ISSN | 2255-2863 |
IngestDate | Wed Aug 27 01:28:23 EDT 2025 Sun Jul 13 04:28:05 EDT 2025 Tue Jul 01 04:33:11 EDT 2025 Thu Apr 24 23:08:05 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2157-4740f48a258ace30aa9ff69cfd87821165192dffc0bce3c913f2e647bbe6ae3f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doaj.org/article/f0ec41b7788e4cfaa3d3cb447a50e360 |
PQID | 2774954019 |
PQPubID | 2049104 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f0ec41b7788e4cfaa3d3cb447a50e360 proquest_journals_2774954019 crossref_citationtrail_10_14201_adcaij_27797 crossref_primary_10_14201_adcaij_27797 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-24 |
PublicationDateYYYYMMDD | 2023-01-24 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | Salamanca |
PublicationPlace_xml | – name: Salamanca |
PublicationTitle | Advances in distributed computing and artificial intelligence journal |
PublicationYear | 2023 |
Publisher | Ediciones Universidad de Salamanca |
Publisher_xml | – name: Ediciones Universidad de Salamanca |
References | 451618 451617 451609 451619 451614 451625 451613 451624 451616 451627 451615 451626 451610 451621 451620 451612 451623 451611 451622 |
References_xml | – ident: 451622 doi: 10.1007/978-3-319-61657-5_9 – ident: 451616 – ident: 451618 doi: 10.1016/j.neucom.2011.01.028 – ident: 451613 doi: 10.1007/s10044-008-0144-8 – ident: 451621 – ident: 451617 doi: 10.1109/CVPR.2019.00453 – ident: 451609 doi: 10.1007/s11042-019-7424-8 – ident: 451623 doi: 10.1109/ICCUBEA.2015.141 – ident: 451620 doi: 10.1109/ICCV.2017.74 – ident: 451627 – ident: 451624 doi: 10.1049/iet-bmt.2018.5233 – ident: 451612 doi: 10.1186/s13635-020-0102-6 – ident: 451610 doi: 10.1016/j.jvcir.2019.05.001 – ident: 451611 doi: 10.1186/s40537-021-00444-8 – ident: 451619 doi: 10.1016/j.jvcir.2014.03.009 – ident: 451614 – ident: 451615 – ident: 451625 doi: 10.1007/s00521-011-0647-x – ident: 451626 doi: 10.1109/IWBF.2018.8401568 |
SSID | ssj0001325217 |
Score | 2.2118373 |
Snippet | Gender classification is an important biometric task. It has been widely studied in the literature. Face modality is the most studied aspect of human-gender... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 249 |
SubjectTerms | Algorithms Artificial neural networks Classification convolutional neural networks Data analysis deep learning Experimentation face biometrics Gender gender classification oral region biometrics |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA5aL158i9UqOYgnV7Ob7OskKtYi6EEsFC9LnsUH3dpW_PvOpGkriJ52ScIeJjOZ2cnM9xFyXDjmXAGWlmVWRkLGcVQoBW9Ox4VKE618-9j9Q9bpirte2gsJt3Eoq5ydif6gNrXGHPl5AnFKCeFFXF4MPyJkjcLb1UChsUxW4gQ0CTvF27eLHAtPwDvlAVpTgK87l0bLl9cz-BrCPP1wRR6x_9eB7L1Me4OshfCQXk73c5Ms2cEWWZ9RL9Bgidvk-RECvMjDnVJPs0f7nhOOaoyGsfzHS5xi9wjFJnyKDAwwgHXufYq15kHnYAoxLf1j8jWq33ZIt33zdN2JAk1CpMFf55HIBXOikElaSG05k7J0Liu1MwW4f4TXgSjOOKeZgmldxtwlNhO5UjaTlju-SxqDemD3CE0Nc9YYw6UF141XhmDy1ljNZc6MKprkdCaxSgcMcaSyeK_wXwIFXE0FXHkBN8nJfPlwCp7x18IrFP98EWJe-4F61K-CCVWOWS1ilcNPuxXaSckN10qIXKbM8ow1SWu2eVUwxHG1UJv9_6cPyCoyyWN2JREt0piMPu0hxBsTdeSV6hvu0tly priority: 102 providerName: ProQuest |
Title | Real-world human gender classification from oral region using convolutional neural netwrok |
URI | https://www.proquest.com/docview/2774954019 https://doaj.org/article/f0ec41b7788e4cfaa3d3cb447a50e360 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2255-2863 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001325217 issn: 2255-2863 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2255-2863 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001325217 issn: 2255-2863 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2255-2863 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001325217 issn: 2255-2863 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2255-2863 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001325217 issn: 2255-2863 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2255-2863 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001325217 issn: 2255-2863 databaseCode: 8FG dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF60Xrz4Fqu17EE8GZtkN9nt0UprESxSLBQvYZ_ig1Zqxb_vzCYtBREvnhJ2lyRMZvLNbHa_j5Az6WPvJURanjsVcZUkkdQazrxJpM5So8P2sbtB3h_x23E2XpH6wjVhJT1wabiWj53hiRZQqjluvFLMMqM5FyqLHctDtQ4wtlJMhdkVlgIuiYpUkwPKtZQ16vnlMhUCCZ5WQChw9f_4FAd86e2QrSoxpFflA-2SNTfZI9sL0QVaxeA-eRxCahcFolMaBPboU1CDowbzYFz4E2xNcd8Ixe33FLUXoAFXuD9RXGVeeRt0IZtlOMy_ZtPXAzLqdR-u-1ElkBAZQGoRccFjz6VKM6mMY7FSbe_ztvFWAvAjsQ7kb9Z7E2voNu2E-dTlXGjtcuWYZ4ekNplO3BGhmY29s9Yy5QC08WchBLuzzjAlYqtlnVwsLFaYij0cRSzeCqwi0MBFaeAiGLhOzpfD30vajN8GdtD8y0HIdh0awAeKygeKv3ygThqLl1dUIfiBl4fiD8rH9vF_3OOEbKLSPM6-pLxBavPZpzuFfGSum2Rd9m6aZKPTHdwPm8ERvwEhbeUv |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4BPcClL6jYlrY-tD0RcGIncQ6o6mu7lMehAgn1YvxcFapdumyF-FP9jZ3xJoBUwY1TItuKovGMZ2zPfB_AGxV5jAotraqCyaTJ80xZi2_R5cqWhbOpfGxvvxocym9H5dEc_O1qYSitslsT00Ltx47OyDcLjFMaDC_y5v3Z74xYo-h2taPQmKnFTri8wC3b-db2Z5zft0XR_3LwaZC1rAKZQ_dWZ7KWPEplilIZFwQ3pomxalz0Cr0lodFg0ONjdNxit2tyEYtQydraUJkgosDvzsMDKYQgrH7V_3p9piMK9IZ1C-Up0bduGu_Mz5MN_HuClbrh-hJDwH8OIHm1_mN42Iaj7MNMf57AXBg9hUcd1QNrLX8ZfnzHgDJL8Kos0fqxYeKgY46ib0o3SjPMqFqFUdE_I8YHbKC8-iGj3PZWx7GLMDTTY3oxGZ-uwOG9CPAZLIzGo7AKrPQ8Bu-9MAFDBbqixCUm-OCEqbm3qgfrncS0azHLiTrjl6a9CwlYzwSsk4B78O5q-NkMrOO2gR9J_FeDCGM7NYwnQ92arI48OJnbulYqSBeNEV44K2VtSh5ExXuw1k2ebg3_XF-r6fO7u1_D4uBgb1fvbu_vvIAlYrGnk51CrsHCdPInvMRYZ2pfJQVjcHzfGv0P_FIXNw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-world+human+gender+classification+from+oral+region+using+convolutional+neural+netwrok&rft.jtitle=Advances+in+distributed+computing+and+artificial+intelligence+journal&rft.au=Mohamed+Oulad-Kaddour&rft.au=Hamid+Haddadou&rft.au=Cristina+Conde&rft.au=Daniel+Palacios-Alonso&rft.date=2023-01-24&rft.pub=Ediciones+Universidad+de+Salamanca&rft.eissn=2255-2863&rft.volume=11&rft.issue=3&rft.spage=249&rft.epage=261&rft_id=info:doi/10.14201%2Fadcaij.27797&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f0ec41b7788e4cfaa3d3cb447a50e360 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2255-2863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2255-2863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2255-2863&client=summon |